Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,572)

Search Parameters:
Keywords = surface enrichment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 560 KB  
Article
Development of Fructooligosaccharide-Rich Sugarcane Juice by Enzymatic Method and Enhancement of Its Microbial Safety Using High-Pressure Processing
by Tanyawat Kaewsalud, Jessica Michelle Liony, Sitthidat Tongdonyod, Suphat Phongthai and Wannaporn Klangpetch
Foods 2025, 14(19), 3417; https://doi.org/10.3390/foods14193417 - 3 Oct 2025
Abstract
Sugarcane juice (SJ) is a naturally sweet beverage rich in sucrose but prone to microbial contamination, raising concerns among health-conscious consumers. This study aimed to develop a functional SJ enriched with fructooligosaccharides (FOS) using enzymatic treatment, followed by high-pressure processing (HPP) to enhance [...] Read more.
Sugarcane juice (SJ) is a naturally sweet beverage rich in sucrose but prone to microbial contamination, raising concerns among health-conscious consumers. This study aimed to develop a functional SJ enriched with fructooligosaccharides (FOS) using enzymatic treatment, followed by high-pressure processing (HPP) to enhance its safety and quality. The enzymatic conversion of sucrose to FOS was achieved using Pectinex® Ultra SP-L (commercial enzyme), with varying enzyme concentrations, temperatures and incubation times to identify the optimal conditions via response surface methodology (RSM). Under optimal conditions (1000 U/g enzyme concentration, 48 °C, 13 h), sucrose in raw SJ (124.33 g/L) decreased by 59.17 g/L, resulting in maximum reducing sugars (16.02 ± 0.58 g/L) and enhanced FOS yields, notably kestose (2.37 g/L) and nystose (9.35 g/L). After being treated with HPP at 600 MPa for 3 min, E. coli K12 and L. innocua were effectively inactivated by achieving > 5 log reduction, meeting USFDA standards. Furthermore, it was also observed that HPP could reduce yeast (6.56 × 102 CFU/mL). Meanwhile, mold, E. coli, and coliforms were not detected. Additionally, HPP maintained the juice’s physicochemical properties, outperforming thermal pasteurization (85 °C for 10 min) in quality preservation. This study highlights the potential of enzymatic treatment and HPP in improving SJ safety and functionality. Full article
Show Figures

Figure 1

22 pages, 4631 KB  
Article
Crop Disease Spore Detection Method Based on Au@Ag NRS
by Yixue Zhang, Jili Guo, Fei Bian, Zhaowei Li, Chuandong Guo, Jialiang Zheng and Xiaodong Zhang
Agriculture 2025, 15(19), 2076; https://doi.org/10.3390/agriculture15192076 - 3 Oct 2025
Abstract
Crop diseases cause significant losses in agricultural production; early capture and identification of disease spores enable disease monitoring and prevention. This study experimentally optimized the preparation of Au@Ag NRS (Gold core@Silver shell Nanorods) sol as a Surface-Enhanced Raman Scattering (SERS) enhancement reagent via [...] Read more.
Crop diseases cause significant losses in agricultural production; early capture and identification of disease spores enable disease monitoring and prevention. This study experimentally optimized the preparation of Au@Ag NRS (Gold core@Silver shell Nanorods) sol as a Surface-Enhanced Raman Scattering (SERS) enhancement reagent via a modified seed-mediated growth method. Using an existing microfluidic chip developed by the research group, disease spores were separated and enriched, followed by combining Au@Ag NRS with Crop Disease Spores through electrostatic adsorption. Raman spectroscopy was employed to collect SERS fingerprint spectra of Crop Disease Spores. The spectra underwent baseline correction using Adaptive Least Squares (ALS) and standardization via Standard Normal Variate (SNV). Dimensionality reduction preprocessing was performed using Principal Component Analysis (PCA) and Successive Projections Algorithm combined with Competitive Adaptive Reweighted Sampling (SCARS). Classification was then executed using Support Vector Machine (SVM) and Multilayer Perceptron (MLP). The SCARS-MLP model achieved the highest accuracy at 97.92% on the test set, while SCARS-SVM, PCA-SVM, and SCARS-MLP models attained test set accuracy of 95.83%, 95.24%, and 96.55%, respectively. Thus, the proposed Au@Ag NRS-based SERS technology can be applied to detect airborne disease spores, establishing an early and precise method for Crop Disease detection. Full article
(This article belongs to the Special Issue Spectral Data Analytics for Crop Growth Information)
Show Figures

Figure 1

18 pages, 3145 KB  
Article
CRISPR/Cas9-Mediated Targeted Mutagenesis of GmAS1/2 Genes Alters Leaf Shape in Soybean
by Juan Xu, Mengyue Pan, Yu Zhu, Peiguo Wang, Liwei Jiang, Dami Xu, Xinyang Wang, Limiao Chen, Wei Guo, Hongli Yang and Dong Cao
Int. J. Mol. Sci. 2025, 26(19), 9657; https://doi.org/10.3390/ijms26199657 - 3 Oct 2025
Abstract
ASYMMETRIC LEAVES1 (AS1) and AS2 play essential roles in regulating leaf development in plants. However, their functional roles in soybean remain poorly understood. Here, we identified two members of the soybean AS1 gene family, GmAS1a and GmAS1c, which exhibit high [...] Read more.
ASYMMETRIC LEAVES1 (AS1) and AS2 play essential roles in regulating leaf development in plants. However, their functional roles in soybean remain poorly understood. Here, we identified two members of the soybean AS1 gene family, GmAS1a and GmAS1c, which exhibit high expression levels in stem and leaf tissues. Using the CRISPR/Cas9 system, we targeted four GmAS1 and three GmAS2 genes, generating mutant lines with distinct leaf development phenotypes, including wrinkling (refers to fine lines and creases on the leaf surface, like aged skin texture), curling (describes the inward or outward rolling of leaf edges, deviating from the typical flat shape), and narrow. We found that functional redundancy exists among the four GmAS1 genes in soybean. GmAS1 and GmAS2 cooperatively regulate leaf curling, leaf crinkling phenotypes, and leaf width in soybean, with functional redundancy also observed between these two genes. Transcriptome sequencing analysis of w3 mutant (as1b as1c as1d as2a as2b as2c) identified 1801 differentially expressed genes (DEGs), including 192 transcription factors (TFs). Gene ontology enrichment analysis revealed significant enrichment of DEGs in pathways associated with plant hormone biosynthesis and signal transduction. A detailed examination of the DEGs showed several genes involved in the development of leaf lateral organs, such as KNOX (SHOOT MERISTEMLESS (STM), KNAT1, KNAT2, and KNAT6), LOB (LBD25, LBD30), and ARP5, were down-regulated in w3/WT (wild-type) comparison. CRISPR/Cas9-mediated targeted mutagenesis of the GmAS1/2 genes significantly impairs leaf development and polarity establishment in soybean, providing valuable germplasm resources and a theoretical framework for future studies on leaf morphogenesis. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

20 pages, 7345 KB  
Article
Integrated Analysis of Heavy-Metal Pollution in Three Gorges Reservoir Sediments: Spatial Distribution, Source Apportionment, and Ecological Risk Assessment
by Haitao Yan, Baocheng Wang, Kaikai Zheng, Chunlan Peng, Jinbo Yan and Bao Qian
Water 2025, 17(19), 2852; https://doi.org/10.3390/w17192852 - 30 Sep 2025
Abstract
The Three Gorges Reservoir, serving as a crucial ecological barrier for the middle-lower Yangtze River basin, faces substantial threats to watershed ecosystems from sediment-associated heavy metal, threatening aquatic ecosystems and human health via bioaccumulation. Leveraging the legislative framework of the Yangtze River Protection [...] Read more.
The Three Gorges Reservoir, serving as a crucial ecological barrier for the middle-lower Yangtze River basin, faces substantial threats to watershed ecosystems from sediment-associated heavy metal, threatening aquatic ecosystems and human health via bioaccumulation. Leveraging the legislative framework of the Yangtze River Protection Law, this study analyzed sediment cores (0–65 cm) collected from 12 representative sites in the Three Gorges Reservoir using 2020 Air–Space–Ground integrated monitoring data from the Changjiang Water Resources Commission. Concentrations of nine heavy metals (Cd, Cu, Pb, Fe, Mn, Cr, As, Hg, and Zn) were quantified to characterize spatial and vertical distribution patterns. Source apportionment was conducted through correlation analysis and principal component analysis (PCA). Contamination severity and ecological risks were assessed via geo-accumulation index (Igeo), potential ecological risk index (RI), and acute toxicity metrics. The findings indicated substantial spatial heterogeneity in sediment heavy-metal concentrations, with the coefficients of variation (CV) for Hg and Cd reaching 214.46% and 116.76%, respectively. Cu and Pb showed surface enrichment, while Cd exhibited distinct vertical accumulation. Source apportionment indicated geogenic dominance for most metals, with anthropogenic contributions specifically linked to Cd and Hg enrichment. Among the metals assessed, Cd emerged as the primary ecological risk driver, with localized strong risk levels (Ei > 320), particularly at FP and SS sites. These findings establish a scientific foundation for precision pollution control and ecological restoration strategies targeting reservoir sediments. Full article
(This article belongs to the Special Issue Sources, Transport, and Fate of Contaminants in Waters and Sediment)
Show Figures

Figure 1

32 pages, 524 KB  
Review
Listeria monocytogenes: A Foodborne Pathogen with Implications for One Health and the Brazilian Context
by Felipe Gaia de Sousa, Rosely Maria Luzia Fraga, Ana Cristina Ribeiro Mendes, Rogério Carvalho Souza and Suzane Lilian Beier
Microorganisms 2025, 13(10), 2280; https://doi.org/10.3390/microorganisms13102280 - 30 Sep 2025
Abstract
Foodborne diseases (FBDs) represent significant public health concerns as they are conditions associated with deficient manufacturing practices. They comprise important diseases with acute or chronic courses, frequently occurring in outbreak form and associated with significant gastrointestinal disorders. FBDs are related to infrastructure and [...] Read more.
Foodborne diseases (FBDs) represent significant public health concerns as they are conditions associated with deficient manufacturing practices. They comprise important diseases with acute or chronic courses, frequently occurring in outbreak form and associated with significant gastrointestinal disorders. FBDs are related to infrastructure and organizational issues in urban centers, such that contamination in food processing facilities, lack of access to basic sanitation, and social and financial vulnerability are some of the factors that favor their occurrence and the demand for health services. Among the agents associated with FBDs is Listeria sp., especially Listeria monocytogenes (L. monocytogenes). The objective of this article is to characterize L. monocytogenes and its potential impact on One Health, given its importance as a significant foodborne pathogen. A thorough scientific literature search was conducted to obtain information on the subject, aiming to assist in the verification and presentation of evidence. L. monocytogenes is a pathogen with specific characteristics that ensure its adhesion, adaptation, growth, and survival on various surfaces, such as biofilm formation ability and thermotolerance. Several diagnostic methods are available for detection of the agent, including enrichment media, molecular techniques, and subtyping evaluation. Its control represents a significant challenge, with critical implications due to bacterial perpetuation characteristics and the implementation/monitoring of sanitization programs and commercialization of animal-derived products (POAO). Thus, vulnerable and susceptible populations are more exposed to foodborne pathogens due to health-related determinants, such as inadequate sanitation, poor food safety control, and insufficient personal hygiene. The pathogen’s persistence and difficulty of control represent a significant public One Health threat. Full article
(This article belongs to the Special Issue An Update on Listeria monocytogenes, Third Edition)
Show Figures

Graphical abstract

24 pages, 22609 KB  
Article
Terrain-Based High-Resolution Microclimate Modeling for Cold-Air-Pool-Induced Frost Risk Assessment in Karst Depressions
by András Dobos, Réka Farkas and Endre Dobos
Climate 2025, 13(10), 205; https://doi.org/10.3390/cli13100205 - 30 Sep 2025
Abstract
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the [...] Read more.
Cold-air pooling (CAP) and frost risk represent significant climate-related hazards in karstic and agricultural environments, where local topography and surface cover strongly modulate microclimatic conditions. This study focuses on the Mohos sinkhole, Hungary’s cold pole, situated on the Bükk Plateau, to investigate the formation, structure, and persistence of CAPs in a Central European karst depression. High-resolution terrain-based modeling was conducted using UAV-derived digital surface models combined with multiple GIS tools (Sky-View Factor, Wind Exposition Index, Cold Air Flow, and Diurnal Anisotropic Heat). These models were validated and enriched by multi-level temperature measurements and thermal imaging under various synoptic conditions. Results reveal that temperature inversions frequently form during clear, calm nights, leading to extreme near-surface cold accumulation within the sinkhole. Inversions may persist into the day due to topographic shading and density stratification. Vegetation and basin geometry influence radiative and turbulent fluxes, shaping the spatial extent and intensity of cold-air layers. The CAP is interpreted as part of a broader interconnected multi-sinkhole system. This integrated approach offers a transferable, cost-effective framework for terrain-driven frost hazard assessment, with direct relevance to precision agriculture, mesoscale model refinement, and site-specific climate adaptation in mountainous or frost-sensitive regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

11 pages, 2482 KB  
Article
Rapid and Quantitative Detection of TNF-α in Human Tears Using a Portable Electrochemiluminescence-Based Device
by Shaohong Qu, Boyu Zhu, Zihao Liu, Xing Chen, Peifang Dong and Lihang Zhu
Biosensors 2025, 15(10), 645; https://doi.org/10.3390/bios15100645 - 29 Sep 2025
Abstract
Personalized, point-of-care testing of human tears is essential for ocular disease diagnosis, yet it is hampered by picomolar biomarker levels and microliter sample volumes. In this work, we developed an integrated, portable electrochemiluminescence (ECL)-based device for rapid and quantitative detection of tumor necrosis [...] Read more.
Personalized, point-of-care testing of human tears is essential for ocular disease diagnosis, yet it is hampered by picomolar biomarker levels and microliter sample volumes. In this work, we developed an integrated, portable electrochemiluminescence (ECL)-based device for rapid and quantitative detection of tumor necrosis factor alpha (TNF-α), a pivotal inflammatory marker in ocular surface disease, with particular relevance to dry eye syndrome (DES). The device integrates a miniaturized electrochemical cell for ECL reactions and a compact silica photomultiplier for signal measurement. A vertical silica mesochannel (VSM)-coated ITO electrode is also integrated and further functionalized with TNF-α-specific aptamers. The VSM enables the enrichment of ECL luminophores, thus enabling further amplification of ECL signals and enhancing sensitivity. A wide linear range from 0.1 to 200 pg/mL was achieved using 10-fold dilution of 3 μL tear samples. Overall, this study provides a portable, highly sensitive platform for personalized analysis of TNF-α in tear fluid, enabling rapid point-of-care assessment of DES. Full article
Show Figures

Figure 1

12 pages, 1732 KB  
Data Descriptor
A Dataset of Environmental Toxins for Water Monitoring in Coastal Waters of Southern Centre, Vietnam: Case of Nha Trang Bay
by Hoang Xuan Ben, Tran Cong Thinh and Phan Minh-Thu
Data 2025, 10(10), 155; https://doi.org/10.3390/data10100155 - 29 Sep 2025
Abstract
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: [...] Read more.
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: surface samples at approximately 0.5–1.0 m below the water surface, and bottom samples 1.0 to 2.0 m above the seabed, depending on site-specific bathymetry. These samples were analyzed for key water quality parameters, including biological oxygen demand (BOD5), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and Chlorophyll-a (Chl-a). The data establish a valuable baseline for assessing both spatial and temporal patterns of water quality, and for calculating eutrophication index to evaluate potential environmental degradation. Importantly, it also demonstrates practical applications for environmental management. The dataset can support assessments of how seasonal tourism peaks contribute to nutrient enrichment, how aquaculture expansion affects dissolved oxygen dynamics, and how water quality trends evolve under increasing anthropogenic pressure. These applications make it a useful resource for evaluating pollution control efforts and for guiding sustainable development in coastal areas. By promoting open access, the dataset not only supports scientific research but also strengthens evidence-based management strategies to protect ecosystem health and socio-economic resilience in Nha Trang Bay. Full article
Show Figures

Figure 1

33 pages, 2985 KB  
Review
A Review of the Application of Compliance Phenomenon in Particle Separation Within Microfluidic Systems
by Wei Wang, Jin Yan, Junsheng Wang, Yuezhu Wang, Ge Chen, Zihao Weng, Hongchen Pang, Xianzhang Wang and Dapeng Zhang
Micromachines 2025, 16(10), 1115; https://doi.org/10.3390/mi16101115 - 29 Sep 2025
Abstract
Microfluidic chips made of polydimethylsiloxane (PDMS) have shown significant application potential in aquatic environments with high microbial density, such as “marine ranches”, due to their high-throughput, high-efficiency and high-precision detection capabilities. This technology can rapidly identify pathogenic microorganisms or harmful particles in aquaculture [...] Read more.
Microfluidic chips made of polydimethylsiloxane (PDMS) have shown significant application potential in aquatic environments with high microbial density, such as “marine ranches”, due to their high-throughput, high-efficiency and high-precision detection capabilities. This technology can rapidly identify pathogenic microorganisms or harmful particles in aquaculture systems, thereby providing urgently needed innovative methods for implementing preventive measures and enhancing aquaculture productivity. By regulating the micro-nano scale channel structure, microfluidic technology can precisely control fluid flow patterns, offering new insights and effective solutions for microbiological research and the separation and analysis of particulate matter. This paper first provides a concise overview of the application of microfluidic chip technology in the analysis of marine microorganisms. Subsequently, it focuses on the “compliance” phenomenon in PDMS-based microfluidic systems, systematically reviewing the potential mechanisms, latest progress and impacts of compliance behavior in mechanically elastic materials such as PDMS. Additionally, this article also investigates the role of “compliance” in key processes of microfluidic technology application, including the capture, separation, enrichment and detection of microorganisms and particles. Moreover, the relationship between surface wettability engineering and compliance phenomena is also explored. We believe that this review will contribute to enhancing the understanding and control of the mechanical behavior of microfluids and the particles they carry within microfluidic systems, providing valuable theoretical insights and practical guidance for researchers in this field. Full article
(This article belongs to the Special Issue Exploring the Potential Applications of Microfluidics)
Show Figures

Figure 1

24 pages, 8527 KB  
Article
Multi-Feature Estimation Approach for Soil Nitrogen Content in Caohai Wetland Based on Diverse Data Sources
by Zhuo Dong, Yu Zhang, Guanglai Zhu, Tianjiao Luo, Xin Yao, Yongxiang Fan and Chaoyong Shen
Land 2025, 14(10), 1967; https://doi.org/10.3390/land14101967 - 29 Sep 2025
Abstract
Nitrogen (N) is a key nutrient for sustaining ecosystem productivity and agricultural sustainability; however, achieving high-precision monitoring in wetlands with highly heterogeneous surface types remains challenging. This study focuses on Caohai, a representative karst plateau wetland in China, and integrates Sentinel-2 multispectral and [...] Read more.
Nitrogen (N) is a key nutrient for sustaining ecosystem productivity and agricultural sustainability; however, achieving high-precision monitoring in wetlands with highly heterogeneous surface types remains challenging. This study focuses on Caohai, a representative karst plateau wetland in China, and integrates Sentinel-2 multispectral and Zhuhai-1 hyperspectral remote sensing data to develop a soil nitrogen inversion model based on spectral indices, texture features, and their integrated combinations. A comparison of four machine learning models (RF, SVM, PLSR, and BPNN) demonstrates that the SVM model, incorporating Zhuhai-1 hyperspectral data with combined spectral and texture features, yields the highest inversion accuracy. Incorporating land-use type as an auxiliary variable further enhanced the stability and generalization capability of the model. The study reveals the spatial enrichment of soil nitrogen content along the wetland margins of Caohai, where remote sensing inversion results show significantly higher nitrogen levels compared to surrounding areas, highlighting the distinctive role of wetland ecosystems in nutrient accumulation. Using Caohai Wetland on the Chinese karst plateau as a case study, this research validates the applicability of integrating spectral and texture features in complex wetland environments and provides a valuable reference for soil nutrient monitoring in similar ecosystems. Full article
Show Figures

Figure 1

16 pages, 2916 KB  
Article
Synergistic Regulation of Solvation Shell and Anode Interface by Bifunctional Additives for Stable Aqueous Zinc-Ion Batteries
by Luo Zhang, Die Chen, Chenxia Zhao, Haibo Tian, Gaoda Li, Xiaohong He, Gengpei Xia, Yafan Luo and Dingyu Yang
Nanomaterials 2025, 15(19), 1482; https://doi.org/10.3390/nano15191482 - 28 Sep 2025
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted significant attention for large-scale energy storage owing to their high safety, low cost, and environmental friendliness. However, issues such as dendrite growth, hydrogen evolution, and corrosion at the zinc anode severely limit their cycling stability. In this study, a “synergistic solvation shell–interfacial adsorption regulation” strategy is proposed, employing potassium gluconate (KG) and dimethyl sulfoxide (DMSO) as composite additives to achieve highly reversible zinc anodes. DMSO integrates into the Zn2+ solvation shell, weakening Zn2+-H2O interactions and suppressing the activity of free water, while gluconate anions preferentially adsorb onto the zinc anode surface, inducing the formation of a robust solid electrolyte interphase (SEI) enriched in Zn(OH)2 and ZnCO3. Nuclear magnetic resonance(NMR), Raman, and Fourier transform infrared spectroscopy(FTIR) analyses confirm the reconstruction of the solvation structure and reduction in water activity, and X-ray photoelectron spectroscopy(XPS) verifies the formation of the SEI layer. Benefiting from this strategy, Zn||Zn symmetric cells exhibit stable cycling for over 1800 h at 1 mA cm−2 and 1 mAh cm−2, and Zn||Cu cells achieve an average coulombic efficiency of 96.39%, along with pronounced suppression of the hydrogen evolution reaction. This work provides a new paradigm for the design of low-cost and high-performance electrolyte additives. Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Figure 1

18 pages, 2711 KB  
Article
Computational Evidence for Digenic Contribution of AIPL1 and BBS2 Rare Variants in Inherited Retinal Dystrophy
by Simona Alibrandi, Concetta Scimone, Giorgia Abate, Sergio Zaccaria Scalinci, Antonina Sidoti and Luigi Donato
Int. J. Mol. Sci. 2025, 26(19), 9430; https://doi.org/10.3390/ijms26199430 - 26 Sep 2025
Abstract
Inherited retinal dystrophies (IRDs) are clinically and genetically heterogeneous disorders. Most IRDs follow a monogenic inheritance pattern. However, an increasing number of unresolved cases suggest the possible contribution of oligogenic or digenic mechanisms. Here, we report two ultra-rare missense variants—AIPL1 R302L and BBS2 [...] Read more.
Inherited retinal dystrophies (IRDs) are clinically and genetically heterogeneous disorders. Most IRDs follow a monogenic inheritance pattern. However, an increasing number of unresolved cases suggest the possible contribution of oligogenic or digenic mechanisms. Here, we report two ultra-rare missense variants—AIPL1 R302L and BBS2 P134R—that co-segregate with early-onset nonsyndromic retinal degeneration in affected individuals from a non-consanguineous family. We performed a multi-level computational investigation to assess whether these variants may act through a convergent pathogenic mechanism. Using AlphaFold2-predicted structures, we modeled both wild-type and mutant proteins, introduced point mutations, and performed energy minimization and validation. FoldX, DynaMut2, and DUET all predicted destabilizing effects at the variant sites, corroborated by local disruption of secondary structure and altered surface electrostatics. Comparative docking (via HDOCK and ClusPro) identified a putative interaction interface between the TPR domain of AIPL1 and the β-sheet face of BBS2. This interface was destabilized in the double-mutant model. At the systems level, transcriptomic profiling confirmed co-expression of AIPL1 and BBS2 in human retina and fetal eye, while functional enrichment analysis highlighted overlapping involvement in ciliary and proteostasis pathways. Network propagation suggested that the two proteins may converge on shared interactors relevant to photoreceptor maintenance. Collectively, these in silico results provide structural and systems-level support for a candidate digenic mechanism involving AIPL1 and BBS2. While experimental validation remains necessary, our study proposes a testable mechanistic hypothesis and underscores the value of computational approaches in uncovering complex genetic contributions to IRDs. Full article
Show Figures

Figure 1

22 pages, 3161 KB  
Article
The Marine Natural Compound Aplysinamisine I Selectively Induces Apoptosis and Exhibits Synergy with Taxol™ in Triple-Negative Breast Cancer Spheroids
by Esther A. Guzmán, Tara A. Peterson, Dedra K. Harmody and Amy E. Wright
Mar. Drugs 2025, 23(10), 380; https://doi.org/10.3390/md23100380 - 26 Sep 2025
Abstract
Triple-negative breast cancers (TNBC) lack estrogen, progesterone, and express little, if any, HER2 receptors on their surface. No targeted therapies exist for this aggressive form of breast cancer. A library of enriched fractions from marine organisms was screened in a multi-parametric cytotoxicity assay [...] Read more.
Triple-negative breast cancers (TNBC) lack estrogen, progesterone, and express little, if any, HER2 receptors on their surface. No targeted therapies exist for this aggressive form of breast cancer. A library of enriched fractions from marine organisms was screened in a multi-parametric cytotoxicity assay using MDA-MB-231 and MDA-MB-468 TNBC cells, grown as spheroids (3D cultures). Spheroids better resemble tumors and are considered more clinically predictive. The assay measures apoptosis via the cleavage of caspase 3/7, viability via DNA content, and loss of membrane integrity via 7AAD staining at 24 h of treatment. Fractions were also tested in a traditional 2D MTT assay at 72 h. A fraction from the sponge Aplysina was active in the 3D assay. Aplysinamisine I was identified as the compound responsible for the activity. Aplysinamisine I induces apoptosis in MDA-MB-268 spheroids with an IC50 of 2.9 ± 0.28 µM at 24 h. This novel activity is the most potent for the compound to date. Its IC50 in the MTT assay at 72 h is >80 µM. Striking synergy with Taxol™ is shown in both cell lines. Proteomic analysis led to a differential protein expression profile. Through bioinformatics, this profile led to the hypothesis that the inhibition of nucleophosmin is the potential mode of action of the compound. However, initial studies show only a modest decrease in nucleophosmin expression in spheroids treated with aplysinamisine I. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 5th Edition)
Show Figures

Figure 1

31 pages, 14210 KB  
Article
Evaluation of Geogenic Enrichment Using Satellite, Geochemical, and Aeromagnetic Data in the Central Anti-Atlas (Morocco): Implications for Soil Enrichment
by Mouna Id-Belqas, Said Boutaleb, Fatima Zahra Echogdali, Mustapha Ikirri, Hasna El Ayady and Mohamed Abioui
Earth 2025, 6(4), 113; https://doi.org/10.3390/earth6040113 - 25 Sep 2025
Abstract
Natural geogenic effects lead to alterations in soil heavy metal concentrations. This study assesses the presence of elevated trace-element concentrations in the Oued Irriri watershed in southeastern Morocco. ASTER satellite imagery, geochemical, and aeromagnetic data are combined to determine the origin of these [...] Read more.
Natural geogenic effects lead to alterations in soil heavy metal concentrations. This study assesses the presence of elevated trace-element concentrations in the Oued Irriri watershed in southeastern Morocco. ASTER satellite imagery, geochemical, and aeromagnetic data are combined to determine the origin of these anomalies. Processing of ASTER images delineated alteration zones coinciding with areas of high heavy metal anomalies by detecting hydrothermal alteration minerals, including muscovite, montmorillonite, illite, hematite, jarosite, chlorite, and epidote. Principal Component Analysis (PCA) of geochemical data distribution in soils enabled the characterization of variations in trace-element concentrations, the extraction of geochemical anomalies, and the identification of potential sources of contamination. Comparing satellite image processing results with geochemical analyses facilitated the production of a geogenic enrichment map. The study results indicate high enrichment levels of zinc, Molybdenum, and bismuth in the western basin, of purely lithological origin. Hydrothermal alteration surfaces intersect geochemical anomaly zones in the north and northeast, primarily showing the impact of fault rooting on the surface deposition of Cu, Ba, Hg, and Pb-rich deposits. This study developed a geogenic enrichment map indicating naturally affected areas, identifying potential risks to eco-environmental systems, and better preventing the effects of geogenic enrichment. Full article
Show Figures

Figure 1

14 pages, 1352 KB  
Article
Ecological Imprint of Rare Earth Mining on Microbial Communities and Water Quality Across Depth and Distance Gradients in Ganzhou, China
by Yian Wang, Fei Shi, Fengxiang Lang, Guohua Wang, Yan Mao, Yingjie Xiao, Li Yin, Genhe He and Yonghui Liao
Microorganisms 2025, 13(10), 2236; https://doi.org/10.3390/microorganisms13102236 - 24 Sep 2025
Viewed by 68
Abstract
Rare earth element (REE) mining exerts profound impacts on aquatic ecosystems, yet the microbial community responses and water quality under such stress remain underexplored. In this study, the surface (0.2 m) and subsurface (1.0 m) water along a spatial transect from proximal to [...] Read more.
Rare earth element (REE) mining exerts profound impacts on aquatic ecosystems, yet the microbial community responses and water quality under such stress remain underexplored. In this study, the surface (0.2 m) and subsurface (1.0 m) water along a spatial transect from proximal to distal points was investigated in a REE-mining area of Ganzhou, China. Physicochemical analyses revealed pronounced gradients of nitrogen (e.g., NH4+−N, NO3−N), heavy metals (e.g., Mn, Zn, Pb), and REEs (e.g., La, Nd, Ce), with higher accumulation near mining sources and partial attenuation downstream. Dissolved oxygen and redox potential indicated mildly reducing conditions at contaminated points, potentially promoting denitrification and altering nitrogen cycling. Metagenomic sequencing showed significant shifts in microbial community composition, with enrichment of metal- and nitrogen-tolerant taxa, and key denitrifiers (e.g., Acidovorax, Bradyrhizobium, Rhodanobacter), particularly at upstream polluted points. KEGG-based gene annotation highlighted dynamic nitrogen transformations mediated by multiple pathways, including nitrification, denitrification, dissimilatory nitrate reduction to ammonium, and nitrogen fixation. Notably, genes associated with nitrite and nitrate reduction (e.g., nir, nar, nrf) were enriched near mining sources, indicating enhanced nitrogen conversion potential, while downstream activation of nitrogen-fixing genes suggested partial ecosystem recovery. Meanwhile, some microbial such as Variovorax carried metal tolerant genes (e.g., ars, chr, cnr). These findings demonstrate that REE and heavy metal contamination restructure microbial networks, modulate nitrogen cycling, and create localized ecological stress gradients. This study provides a comprehensive assessment of mining-related water pollution, microbial responses, and ecological risks, offering valuable insights for monitoring, restoration, and sustainable management of REE-impacted aquatic environments. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop