Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = sustainable bioprocessing fermentation process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 838 KB  
Review
Understanding Bio-Based Surfactants, Their Production Strategies, Techno-Economic Viability, and Future Prospects of Producing Them on Sugar-Rich Renewable Resources
by Rajat Sharma and Buddhi P. Lamsal
Processes 2025, 13(9), 2811; https://doi.org/10.3390/pr13092811 - 2 Sep 2025
Viewed by 355
Abstract
Bio-based surfactants have demonstrated significant potential as economically viable and environmentally sustainable alternatives to petroleum-derived surfactants, with the global biosurfactant market expanding from USD 4.41 billion in 2023 to a projected USD 6.71 billion by 2032, representing a compound annual growth rate of [...] Read more.
Bio-based surfactants have demonstrated significant potential as economically viable and environmentally sustainable alternatives to petroleum-derived surfactants, with the global biosurfactant market expanding from USD 4.41 billion in 2023 to a projected USD 6.71 billion by 2032, representing a compound annual growth rate of 5.4%. While conventional surfactants such as alkyl aryl sulfates and alkyl benzene sulfonates exhibit extremely high aquatic toxicity and impose substantial ecological costs, biosurfactants including lipopeptides (surfactin, iturin, fengycin, lichenysin) produced by Bacillus species and glycolipids (rhamnolipids, sophorolipids, trehalose lipids, mannosylerythritol lipids) from Pseudomonas demonstrate superior biodegradability. However, current biosurfactant production costs, ranging from 5 to20 USD/kg, cannot compete effectively with synthetic surfactants, averaging approximately 2 USD/kg, necessitating comprehensive process improvements to achieve commercial viability. The utilization of renewable agricultural feedstocks containing 65–70% carbohydrates, including corn stover, sugarcane bagasse, rice bran, and palm oil mill effluent, has achieved production costs as low as 3.8 USD/kg through advanced optimized pretreatment technologies, enzyme catalysis, simultaneous saccharification and fermentation (SSF), and downstream processes, resulting in cost reductions compared to conventional methods. The implementation of artificial intelligence and machine learning algorithms for bioprocess optimization enables simultaneous optimization of genetic engineering, metabolic pathways, and fermentation parameters, achieving yield improvements and cost reductions, with projections indicating production costs below 2.50 USD/kg being needed in the next decade to achieve cost parity with synthetic surfactants, maintaining economic viability. Full article
Show Figures

Figure 1

28 pages, 1224 KB  
Review
A Review of Artificial Intelligence Applications for Biorefineries and Bioprocessing: From Data-Driven Processes to Optimization Strategies and Real-Time Control
by Alex Butean, Iulia Cutean, Ruben Barbero, Juan Enriquez and Alexandru Matei
Processes 2025, 13(8), 2544; https://doi.org/10.3390/pr13082544 - 12 Aug 2025
Viewed by 1160
Abstract
This paper reviews the integration of artificial intelligence (AI) and machine learning in biorefineries and bioprocessing, with applications in biocatalysis, enzyme optimization, real-time monitoring, and quality assurance. AI contributes to predictive modeling and allows the precise forecasting of process outcomes, resource management, and [...] Read more.
This paper reviews the integration of artificial intelligence (AI) and machine learning in biorefineries and bioprocessing, with applications in biocatalysis, enzyme optimization, real-time monitoring, and quality assurance. AI contributes to predictive modeling and allows the precise forecasting of process outcomes, resource management, and energy utilization. AI models, including supervised, unsupervised, and reinforcement learning, support improvements in important bioprocess stages, such as fermentation, purification, and microbial biosynthesis. Digital twins and soft-sensing technologies enable real-time control and increase operational precision in complex bioprocess environments. Hybrid modeling integrates data-driven AI techniques with common scientific principles, improving scalability and adaptability under dynamic operational conditions. This review addresses challenges in AI implementation, such as data standardization, model transparency, and the need for interdisciplinary collaboration. The discussion concludes with future directions and sustainable AI strategies, highlighting the potential of AI to strengthen scalable, efficient, and environmentally sustainable biorefinery operations. These findings highlight how AI-driven methodologies improve operational efficiency, reduce resource waste, and facilitate sustainable innovation in bioprocesses, thereby strengthening sustainability within the bioeconomy. Full article
Show Figures

Figure 1

30 pages, 2603 KB  
Review
Sugarcane Industry By-Products: A Decade of Research Using Biotechnological Approaches
by Serafín Pérez-Contreras, Francisco Hernández-Rosas, Manuel A. Lizardi-Jiménez, José A. Herrera-Corredor, Obdulia Baltazar-Bernal, Dora A. Avalos-de la Cruz and Ricardo Hernández-Martínez
Recycling 2025, 10(4), 154; https://doi.org/10.3390/recycling10040154 - 2 Aug 2025
Viewed by 914
Abstract
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original [...] Read more.
The sugarcane industry plays a crucial economic role worldwide, with sucrose and ethanol as its main products. However, its processing generates large volumes of by-products—such as bagasse, molasses, vinasse, and straw—that contain valuable components for biotechnological valorization. This review integrates approximately 100 original research articles published in JCR-indexed journals between 2015 and 2025, of which over 50% focus specifically on sugarcane-derived agroindustrial residues. The biotechnological approaches discussed include submerged fermentation, solid-state fermentation, enzymatic biocatalysis, and anaerobic digestion, highlighting their potential for the production of biofuels, enzymes, and high-value bioproducts. In addition to identifying current advances, this review addresses key technical challenges such as (i) the need for efficient pretreatment to release fermentable sugars from lignocellulosic biomass; (ii) the compositional variability of by-products like vinasse and molasses; (iii) the generation of metabolic inhibitors—such as furfural and hydroxymethylfurfural—during thermochemical processes; and (iv) the high costs related to inputs like hydrolytic enzymes. Special attention is given to detoxification strategies for inhibitory compounds and to the integration of multifunctional processes to improve overall system efficiency. The final section outlines emerging trends (2024–2025) such as the use of CRISPR-engineered microbial consortia, advanced pretreatments, and immobilization systems to enhance the productivity and sustainability of bioprocesses. In conclusion, the valorization of sugarcane by-products through biotechnology not only contributes to waste reduction but also supports circular economy principles and the development of sustainable production models. Full article
Show Figures

Graphical abstract

27 pages, 940 KB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 1091
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

23 pages, 3262 KB  
Article
An Exploratory Study on the Growth Dynamics of Alkalihalophilus marmarensis Using a Model-Based Approach
by Yağmur Atakav, Eldin Kurpejović, Dilek Kazan and Nihat Alpagu Sayar
Appl. Microbiol. 2025, 5(3), 69; https://doi.org/10.3390/applmicrobiol5030069 - 17 Jul 2025
Viewed by 306
Abstract
Alkalihalophilus marmarensis is an obligate alkaliphile with exceptional tolerance to high-pH environments, making it a promising candidate for industrial bioprocesses that require contamination-resistant and extremophilic production platforms. However, its practical deployment is hindered by limited biomass formation under extreme conditions, which constrains overall [...] Read more.
Alkalihalophilus marmarensis is an obligate alkaliphile with exceptional tolerance to high-pH environments, making it a promising candidate for industrial bioprocesses that require contamination-resistant and extremophilic production platforms. However, its practical deployment is hindered by limited biomass formation under extreme conditions, which constrains overall productivity. This study presents a model-driven investigation of how pH (8.8 and 10.5), culture duration (24 and 48 h), and nitrogen source composition (peptone and meat extract) affect cell dry mass, lactate, and protease synthesis. Using the response surface methodology and multi-objective optimization, we established predictive models (R2 up to 0.92) and uncovered key trade-offs in biomass and metabolite yields. Our findings reveal that peptone concentration critically shapes the metabolic output, with low levels inhibiting growth and high levels suppressing protease activity. Maximum cell dry mass (4.5 g/L), lactate (19.3 g/L), and protease activity (43.5 U/mL) were achieved under distinct conditions, highlighting the potential for targeted process tuning. While the model validation confirmed predictions for lactate, deviations in cell dry mass and protease outputs underscore the complexity of growth–product interdependencies under nutrient-limited regimes. This work delivers a foundational framework for developing fermentations with A. marmarensis and advancing its application in sustainable, high-pH industrial bioprocesses. The insights gained here can be further leveraged through synthetic biology and bioprocess engineering to fully exploit the metabolic potential of obligate alkaliphiles like A. marmarensis. Full article
Show Figures

Figure 1

28 pages, 1593 KB  
Review
A Review on Marine Microbial Docosahexaenoic Acid Production Through Circular Economy, Fermentation Engineering, and Antioxidant Technology
by Fengwei Yin, Xiaolong Sun, Xi Luo, Weilong Zheng, Longfei Yin, Yingying Zhang and Yongqian Fu
Mar. Drugs 2025, 23(6), 256; https://doi.org/10.3390/md23060256 - 16 Jun 2025
Cited by 1 | Viewed by 1465
Abstract
Marine microbial-derived docosahexaenoic acid (DHA) has garnered significant attention as a sustainable and health-promoting alternative to fish oil-derived DHA. However, its industrial production from marine heterotrophic microorganisms faces challenges related to high costs and suboptimal oil quality, which hinder its broader application. This [...] Read more.
Marine microbial-derived docosahexaenoic acid (DHA) has garnered significant attention as a sustainable and health-promoting alternative to fish oil-derived DHA. However, its industrial production from marine heterotrophic microorganisms faces challenges related to high costs and suboptimal oil quality, which hinder its broader application. This review focuses on recent strategies aimed at achieving low-cost and high-quality marine microbial DHA production, emphasizing heterotrophic systems that dominate commercial supply. Key aspects include: Fermentation optimization using waste-derived feedstocks and bioprocess engineering to enhance DHA yields; Critical refining techniques—including degumming, neutralization, decolorization, and deodorization—are analyzed for improving DHA oil purity and quality, with emphasis on process optimization to adapt to the unique biochemical properties of microbial-derived oils. Additionally, strategies for oxidative stabilization, such as antioxidant protection, are discussed to extend the shelf life and preserve the nutritional value of marine microbial DHA oil. By integrating techno-economic and biochemical perspectives, this work outlines a holistic framework to guide the industrial optimization of marine microbial-sourced DHA oil production, addressing cost and quality challenges to facilitate its large-scale application as functional foods and nutraceuticals, thereby reducing reliance on marine resources and advancing sustainable omega-3 production. Full article
(This article belongs to the Special Issue Fatty Acids from Marine Organisms, 2nd Edition)
Show Figures

Figure 1

16 pages, 627 KB  
Article
Co-Fermentation and Genomic Insights into Lactic Acid Bacteria for Enhanced Propionic Acid Production Using a Non-GMO Approach
by Lidia Stasiak-Różańska, Jan Gawor, Kamil Piwowarek, Agata Fabiszewska and Tamara Aleksandrzak-Piekarczyk
Foods 2025, 14(9), 1573; https://doi.org/10.3390/foods14091573 - 29 Apr 2025
Cited by 1 | Viewed by 816
Abstract
Propionic acid (PA) is an important organic acid with applications in food preservation, feed additives, and bio-based chemical production. While industrial PA is mostly derived from petrochemical processes, sustainable microbial alternatives are gaining attention. In this study, we explored a co-fermentation strategy using [...] Read more.
Propionic acid (PA) is an important organic acid with applications in food preservation, feed additives, and bio-based chemical production. While industrial PA is mostly derived from petrochemical processes, sustainable microbial alternatives are gaining attention. In this study, we explored a co-fermentation strategy using lactic acid bacteria (LAB) with complementary metabolic capabilities to enhance PA biosynthesis via the 1,2-propanediol (PDO) pathway. Genome-based screening identified a metabolic division between strains capable of producing PDO (e.g., Carnobacterium maltaromaticum IBB3447) and those converting PDO to PA (e.g., Levilactobacillus brevis IBB3735). Notably, we discovered that C. maltaromaticum IBB3447 is capable of PDO 24 biosynthesis, a function previously undescribed in this species. Phenotypic assays confirmed glycerol metabolism and acid tolerance among strains. In co-culture fermentation trials, the highest PA concentration (6.87 mM) was achieved using simultaneous fermentation in a fructose–sorbitol–glucose (FRC-SOR-GLC) medium, accompanied by prior PDO accumulation (up to 13.13 mM). No single strain produced PA independently, confirming that metabolic cooperation is required. These findings reveal a novel LAB-based bioprocess for sustainable PA and PDO production, using cross-feeding interactions and the valorization of industrial waste streams. The study supports future optimization and scale-up for circular bioeconomy applications. Full article
(This article belongs to the Special Issue Application of Fermentation Biotechnology in Food Science)
17 pages, 1990 KB  
Article
Hydrotalcites as a Promising Adsorbent for Hemicellulose Hydrolysate Detoxification in Xylitol Production
by Débora D. V. da Silva, Kelly J. Dussán, Isabela A. L. Costa, Marcus B. S. Forte and Maria G. A. Felipe
Fermentation 2025, 11(5), 243; https://doi.org/10.3390/fermentation11050243 - 27 Apr 2025
Viewed by 808
Abstract
The worldwide demand for sustainable bioprocesses is undeniable, as well as for research aimed at the biotechnological exploitation of lignocellulosic materials, especially their hemicellulosic fractions rich in xylose. Various bioproducts can be obtained from these fractions, although some bottlenecks still exist, such as [...] Read more.
The worldwide demand for sustainable bioprocesses is undeniable, as well as for research aimed at the biotechnological exploitation of lignocellulosic materials, especially their hemicellulosic fractions rich in xylose. Various bioproducts can be obtained from these fractions, although some bottlenecks still exist, such as the presence in hemicellulosic hydrolysates of compounds that are toxic for microorganisms, which requires a previous step of detoxification to reduce them to non-inhibitory levels. The present investigation proposes the use of hydrotalcites as a new detoxifying agent for the hemicellulosic hydrolysate of sugarcane straw to produce xylitol by Candida tropicalis, aiming at a greater removal of phenolics and less loss of sugars. The design of these experiments was used for factorial effect analysis in a simultaneous way; the influences of pH and temperature were evaluated, considering the detoxification process at different times for both uncalcined and calcined hydrotalcite adsorbents. While for the calcined hydrotalcite, the temperature was the significant factor, for the uncalcined, there was also an influence of pH and little effect on the factors of yield and productivity. The effectiveness of hydrotalcites as demonstrated in this research, mainly regarding the ability to reduce the content of phenolic compounds in hydrolysates with a low loss of sugar content, followed by fermentability to produce xylitol, is a strong requirement for the proposition of these new adsorbents in investigations of the development of sustainable technologies for obtaining bioproducts in a biorefinery context. Full article
(This article belongs to the Special Issue Bioprocesses for Biomass Valorization in Biorefineries)
Show Figures

Figure 1

36 pages, 1745 KB  
Review
The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective
by Iuliu Gabriel Malos, Andra-Ionela Ghizdareanu, Livia Vidu, Catalin Bogdan Matei and Diana Pasarin
Foods 2025, 14(9), 1488; https://doi.org/10.3390/foods14091488 - 24 Apr 2025
Cited by 5 | Viewed by 2627
Abstract
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical [...] Read more.
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical oxygen demand underlines the important need for sustainable processing alternatives. This review explores the biotechnological potential of whey as a fermentation medium by examining its chemical composition, microbial interactions, and ability to support the synthesis of valuable metabolites. Functional microorganisms such as lactic acid bacteria (Lactobacillus helveticus, L. acidophilus), yeasts (Kluyveromyces marxianus), actinobacteria, and filamentous fungi (Aspergillus oryzae) have demonstrated the ability to efficiently convert whey into a wide range of bioactive compounds, including organic acids, exopolysaccharides (EPSs), bacteriocins, enzymes, and peptides. To enhance microbial growth and metabolite production, whey fermentation can be carried out using various techniques, including batch, fed-batch, continuous and immobilized cell fermentation, and membrane bioreactors. These bioprocessing methods improve substrate utilization and metabolite yields, contributing to the efficient utilization of whey. These bioactive compounds have diverse applications in food, pharmaceuticals, agriculture, and biofuels and strengthen the role of whey as a sustainable biotechnological resource. Patents and clinical studies confirm the diverse bioactivities of whey-derived metabolites and their industrial potential. Whey peptides provide antihypertensive, antioxidant, immunomodulatory, and antimicrobial benefits, while bacteriocins and EPSs act as natural preservatives in foods and pharmaceuticals. Also, organic acids such as lactic acid and propionic acid act as biopreservatives that improve food safety and provide health-promoting formulations. These results emphasize whey’s significant industrial relevance as a sustainable, cost-efficient substrate for the production of high-quality bioactive compounds in the food, pharmaceutical, agricultural, and bioenergy sectors. Full article
Show Figures

Figure 1

22 pages, 840 KB  
Review
Advanced Optimization of Bioprocess Parameters for Exopolysaccharides Synthesis in Extremophiles
by Nadja Radchenkova and Songül Yaşar Yıldız
Processes 2025, 13(3), 822; https://doi.org/10.3390/pr13030822 - 11 Mar 2025
Cited by 3 | Viewed by 1840
Abstract
Exopolysaccharides (EPSs) represent versatile biopolymers finding diverse applications in food, pharmaceuticals, and bioremediation industries. Extremophiles, thriving under extreme environmental conditions, have emerged as a promising source of novel EPSs with better stability and bioactivity. The present work reviews the complex influence of various [...] Read more.
Exopolysaccharides (EPSs) represent versatile biopolymers finding diverse applications in food, pharmaceuticals, and bioremediation industries. Extremophiles, thriving under extreme environmental conditions, have emerged as a promising source of novel EPSs with better stability and bioactivity. The present work reviews the complex influence of various abiotic factors and bioprocess parameters such as temperature, pH, carbon and nitrogen sources, C/N ratios, and oxygen transfer dynamics on the production of EPSs from extremophilic microorganisms. Results underline the important role of temperature for structural and functional properties of EPSs, from the synthesis of cryoprotective polymers in psychrophiles to the production of thermostable EPSs in thermophiles under cold stress. The pH has an extensive effect on enzymatic activities: optimal neutral to slightly acidic conditions exist for most strains. Carbon sources determine not only the yield of EPSs but also its structural features, while nitrogen sources and C/N ratios regulate the balance between biomass production and polymer biosynthesis. Besides that, oxygen transfer limitations—which may happen in particularly viscous or saline media—are overtaken by optimized bioreactor configuration and stirring strategies. These findings are highly relevant to the development of tailored cultivation conditions enabling the maximization of EPS yields and adaptation of its properties to comply with industrial requirements. This study provides a framework for enhancing EPS production by leveraging the adaptive traits of extremophiles. This approach supports the sustainable use of biopolymers, advances fermentation production processes, and helps uncover the underlying mechanisms involved. Full article
Show Figures

Figure 1

17 pages, 3112 KB  
Article
Assessment of the Hydrogen Production Potential in a Zeolite Assisted Two-Phase Dark and Photo-Fermentation Process from Urban Waste Mixture
by Marco Gottardo, Navid Khorramian, Paolo Pavan, Federico Battista, David Bolzonella, Roberto Lauri and Francesco Valentino
Resources 2025, 14(3), 43; https://doi.org/10.3390/resources14030043 - 6 Mar 2025
Viewed by 1121
Abstract
Waste-based sustainable solutions proposed by scientific and industrial communities for energy production are an approach that can respond to the growing concerns regarding climate change and fossil resources depletion. This study investigates a two-phase bioprocess combining dark fermentation (DF) and photo-fermentation (PF) to [...] Read more.
Waste-based sustainable solutions proposed by scientific and industrial communities for energy production are an approach that can respond to the growing concerns regarding climate change and fossil resources depletion. This study investigates a two-phase bioprocess combining dark fermentation (DF) and photo-fermentation (PF) to enhance hydrogen yield while anaerobically treating urban organic food waste and sewage sludge. A key objective was to assess the effect of waste composition and temperature on hydrogen accumulation, with particular attention to the fermentation product and the role of zeolite in improving process efficiency. In the DF stage, the addition of zeolite significantly enhanced hydrogen production by increasing microbial activity and improving substrate bioavailability. As a result, hydrogen production increased up to 27.3 mmol H2/(L d) under thermophilic conditions. After the suspended solids were removed from the dark fermentation broth, a photo-fermentation step driven by a pure strain of Rhodopseudomonas palustris was performed under permanent IR light and different substrate-to-inoculum [S/I] ratios. The maximum hydrogen production rate was 9.33 mmol H2/(L d), when R. palustris was inoculated at the lowest [S/I] ratio (<20 COD/COD) and with 0.5 g VSS/L as the initial concentration. This condition in the photo-fermentation process led to an increase in the hydrogen yield up to 35% compared to values obtained from dark fermentation alone. Full article
Show Figures

Figure 1

20 pages, 915 KB  
Review
Advances in Bioprocess Engineering for Optimising Chlorella vulgaris Fermentation: Biotechnological Innovations and Applications
by Ana R. Mendes, Maria P. Spínola, Madalena Lordelo and José A. M. Prates
Foods 2024, 13(24), 4154; https://doi.org/10.3390/foods13244154 - 22 Dec 2024
Cited by 6 | Viewed by 2865
Abstract
Chlorella vulgaris, a unicellular green microalga, has obtained significant attention due to its high protein content, abundance of bioactive compounds, and broad biotechnological potential. Used in nutraceuticals, pharmaceuticals, and functional foods, it is now gaining traction in cosmetics, biopharmaceuticals, and environmental applications. [...] Read more.
Chlorella vulgaris, a unicellular green microalga, has obtained significant attention due to its high protein content, abundance of bioactive compounds, and broad biotechnological potential. Used in nutraceuticals, pharmaceuticals, and functional foods, it is now gaining traction in cosmetics, biopharmaceuticals, and environmental applications. Recent advancements in fermentation technology, such as the development of high-density fermentation strategies, adaptive evolution of strains, and real-time monitoring systems, have greatly improved the efficiency, scalability, and sustainability of C. vulgaris production, enhancing bioavailability and product quality. This review explores developments in C. vulgaris fermentation, highlighting advancements in strain improvement through genetic engineering, metabolic optimization, mutagenesis, and adaptive evolution, alongside bioprocess engineering and the optimization of fermentation parameters. Key considerations include bioreactor design, downstream processing, and innovative monitoring technologies aimed at maximizing biomass yield and bioactive compound production. Emerging applications of fermented C. vulgaris across industries are also highlighted, along with future perspectives on scaling up production, addressing regulatory challenges, and ensuring biosafety. These insights provide a comprehensive outlook on the future of C. vulgaris fermentation in biotechnological applications. Full article
Show Figures

Figure 1

27 pages, 3299 KB  
Review
Advances in Biotechnological Strategies for Sustainable Production of Non-Animal Proteins: Challenges, Innovations, and Applications
by Emanuel do Nascimento Muniz, Rebeca Teixeira de Queiroz Montenegro, Daniel Nascimento da Silva, Alan Portal D’Almeida, Luciana Rocha Barros Gonçalves and Tiago Lima de Albuquerque
Fermentation 2024, 10(12), 638; https://doi.org/10.3390/fermentation10120638 - 13 Dec 2024
Cited by 12 | Viewed by 4394
Abstract
This review explores recent advances in the design of fermentation processes for producing alternative proteins, focusing on utilizing agro-industrial waste and renewable substrates. New bioprocess strategies, such as experimental designs, optimizing bioreactors, bioprocesses, and applying precision fermentation can improve the protein yields and [...] Read more.
This review explores recent advances in the design of fermentation processes for producing alternative proteins, focusing on utilizing agro-industrial waste and renewable substrates. New bioprocess strategies, such as experimental designs, optimizing bioreactors, bioprocesses, and applying precision fermentation can improve the protein yields and nutritional value. Also, unconventional substrates, such as hydrolysates derived from agro-industrial residues conversion may result in cost reduction and enhanced feasibility. The application of enzymes to produce protein-rich foods with high bioaccessibility that improve digestibility and nutritional value are also highlighted. This article addresses the importance of developing cost-effective fermentation solutions that minimize the environmental impact while addressing technical challenges such as scalability and contamination control. Furthermore, it emphasizes the growing need for innovations in fermentation process design to ensure the sustainability of industrial protein production. The review concludes that improvements in process design are fundamental in overcoming technological and regulatory barriers, particularly in increasing the efficiency and competitiveness of non-meat proteins in the global market. Full article
(This article belongs to the Special Issue Research on Microbial Protein Synthesis: 2nd Edition)
Show Figures

Figure 1

14 pages, 297 KB  
Review
Innovations in Limnospira platensis Fermentation: From Process Enhancements to Biotechnological Applications
by Maria P. Spínola, Ana R. Mendes and José A. M. Prates
Fermentation 2024, 10(12), 633; https://doi.org/10.3390/fermentation10120633 - 11 Dec 2024
Cited by 2 | Viewed by 1221
Abstract
The cyanobacterium Limnospira platensis, vulgarly Spirulina, has gained significant attention due to its high protein content, rich bioactive compounds, and health benefits, making it a valuable resource in biotechnology, nutraceuticals, food supplements, biopharmaceuticals, and cosmetics. Recent advancements in fermentation technology have considerably [...] Read more.
The cyanobacterium Limnospira platensis, vulgarly Spirulina, has gained significant attention due to its high protein content, rich bioactive compounds, and health benefits, making it a valuable resource in biotechnology, nutraceuticals, food supplements, biopharmaceuticals, and cosmetics. Recent advancements in fermentation technology have considerably improved the efficiency, scalability, and cost-effectiveness of L. platensis production while addressing environmental sustainability and enhancing product quality. Based on well-recognized databases (Google Scholar, PubMed, Scopus, Web of Science), this review explores the latest developments in L. platensis fermentation, emphasizing strain improvement, bioprocess engineering, and optimization of fermentation parameters. It also examines key factors such as bioreactor design, downstream processing, and innovative monitoring technologies aimed at maximizing biomass yield and bioactive compound production. Additionally, emerging applications of fermented L. platensis in various industries and future perspectives, including large-scale production, regulatory barriers, and biosafety considerations, are discussed. These insights provide a comprehensive outlook on the future of L. platensis fermentation in biotechnological applications. Full article
(This article belongs to the Special Issue Cyanobacteria and Eukaryotic Microalgae)
18 pages, 1446 KB  
Review
Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste
by José Ángel Salas-Millán and Encarna Aguayo
Foods 2024, 13(22), 3680; https://doi.org/10.3390/foods13223680 - 19 Nov 2024
Cited by 11 | Viewed by 5946
Abstract
In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most [...] Read more.
In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most versatile food processing techniques, utilises microorganisms or enzymes to induce desirable biochemical transformations that enhance the nutritional value, digestibility, safety, and sensory properties of food products. This process has been identified as a promising method for producing novel, high-value food products from discarded or non-aesthetic fruits and vegetables that fail to meet commercial standards due to aesthetic factors such as size or appearance. Besides waste reduction, fermentation enables the production of functional beverages and foods enriched with probiotics, antioxidants, and other bioactive compounds, depending on the specific horticultural matrix and the types of microorganisms employed. This review explores the current bioprocesses used or under investigation, such as alcoholic, lactic, and acetic acid fermentation, for the revalorisation of fruit and vegetable by-products, with particular emphasis on how fermentation can transform these by-products into valuable foods and ingredients for human consumption, contributing to a more sustainable and circular food system. Full article
Show Figures

Figure 1

Back to TopTop