Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,070)

Search Parameters:
Keywords = synthetic population

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 866 KB  
Review
Review of the Arbitrium (ARM) System: Molecular Mechanisms, Ecological Impacts, and Applications in Phage–Host Communication
by Junjie Shang, Qian Zhou and Yunlin Wei
Microorganisms 2025, 13(9), 2058; https://doi.org/10.3390/microorganisms13092058 (registering DOI) - 4 Sep 2025
Abstract
Bacteriophages (phages) play a pivotal role in shaping microbial communities and driving bacterial evolution. Among the diverse mechanisms governing phage–host interactions, the Arbitrium (ARM) communication system represents a recently discovered paradigm in phage decision-making between the lytic and lysogenic cycles. Initially identified in [...] Read more.
Bacteriophages (phages) play a pivotal role in shaping microbial communities and driving bacterial evolution. Among the diverse mechanisms governing phage–host interactions, the Arbitrium (ARM) communication system represents a recently discovered paradigm in phage decision-making between the lytic and lysogenic cycles. Initially identified in Bacillus-infecting phages, the ARM system employs a quorum-sensing-like peptide signaling mechanism to modulate infection dynamics and optimize population-level survival strategies. Recent studies have elucidated the structural and functional basis of ARM regulation, highlighting its potential applications in antimicrobial therapy, microbiome engineering, and synthetic biology. The significance of ARM systems lies in their ability to regulate bacterial population stability and influence the evolutionary trajectories of microbial ecosystems. Despite being a relatively recent discovery, ARM systems have garnered considerable attention due to their role in decoding phage population dynamics at the molecular level and their promising biotechnological applications. This review synthesizes current advancements in understanding ARM systems, including their molecular mechanisms, ecological implications, and translational potential. By integrating recent findings, we provide a comprehensive framework to guide future research on phage–host communication and its potential for innovative therapeutic strategies. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

21 pages, 1706 KB  
Systematic Review
Sustainable Nutrient Management Strategies for Enhancing Potato Production: The Role of Cover Crops—A Systematic Review
by Sbonile Xaba, Zaid Bello, Monde Rapiya and Nomali Ziphorah Ngobese
Horticulturae 2025, 11(9), 1051; https://doi.org/10.3390/horticulturae11091051 - 3 Sep 2025
Abstract
The global demand for agricultural products, like potatoes, is increasing due to population growth, so we must use more sustainable farming methods. Traditional potato farming often relies too much on synthetic fertilisers, which can harm the environment and lead to inefficiencies. This study [...] Read more.
The global demand for agricultural products, like potatoes, is increasing due to population growth, so we must use more sustainable farming methods. Traditional potato farming often relies too much on synthetic fertilisers, which can harm the environment and lead to inefficiencies. This study examines how different cover crops (like legumes) affect potato yields and quality, and their benefits for soil health. It also explores why farmers do not always use cover crops. This study found that using leguminous cover crops can increase potato yields by 12–38%, improve soil structure, reduce erosion and greenhouse gas emissions, and help with water retention. Cover crops also increase soil organic matter and help with nutrient cycling, making farming more sustainable. However, some farmers are hesitant to adopt cover crops because of concerns about yield risks and higher labour costs. To overcome these barriers, this study suggests educating farmers about the long-term benefits, providing financial incentives to help with the costs, and creating region-specific guidelines for using cover crops. Policymakers and agricultural organisations should encourage farming practices that focus on soil health and using resources efficiently. By addressing these challenges, we can make sustainable potato farming more common, helping ensure food security and environmental sustainability, especially with climate change. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

17 pages, 1569 KB  
Article
Floral Diversity Shapes Herbivore Colonization, Natural Enemy Performance, and Economic Returns in Cauliflower
by Keerthi Manikyanahalli Chandrashekara, Sachin Suresh Suroshe, Grandhi Ramamurthy Hithesh, Subhash Chander, Rakesh Kumar, Kirankumar G. Nagaraju, Srinivas Kummari, Rakshith H. Siddaswamy, Chaitanya Mallanagouda, Eere Vidya Madhuri, Jagadam Sai Rupali, Loganathan Ramakrishnan and Harishkumar H. Venkatachalapathi
Horticulturae 2025, 11(9), 1045; https://doi.org/10.3390/horticulturae11091045 - 2 Sep 2025
Abstract
Cauliflower, a widely cultivated vegetable crop valued for its edible curds, faces a persistent threat from insect pests, which are typically managed using synthetic insecticides. This study evaluated the benefits of intercropping practices as part of an ecological pest management strategy in cauliflower [...] Read more.
Cauliflower, a widely cultivated vegetable crop valued for its edible curds, faces a persistent threat from insect pests, which are typically managed using synthetic insecticides. This study evaluated the benefits of intercropping practices as part of an ecological pest management strategy in cauliflower cultivation during the winter seasons of 2017–18 and 2021–22. Nine insect pests belonging to six families of three orders were recorded. The calendula intercropping system (IS) consistently showed the lowest infestation by Plutella xylostella and Pieris brassicae/plant. Calendula IS had attracted the highest numbers of syrphids, Cotesia glomerata, Diaeretiella rapae, Cotesia vestalis, and coccinellids such as Coccinella septempunctata and Cheilomenes sexmaculata. In candytuft IS, a strong tri-trophic interaction between the flower and D. rapae significantly reduced aphid populations, for each additional D. rapae, aphid numbers decreased by 48.53 in 2018. The marigold IS recorded the highest Shannon diversity index in 2021–22. The longest adult survival of C. septempunctata (8.67 ± 3.35 days), in the absence of aphids was recorded on candytuft flowers. The total sugars and protein in flowers positively influenced the longevity of the adult coccinellid beetles (R2-40.42 and 20.79%, respectively). Calendula intercropping yielded the highest revenue return of Indian rupee (₹) 11.33 per INR 1 invested, compared to the cauliflower monocrop (1.58). These findings demonstrate that, intercropping and habitat manipulation can enhance ecological pest control and reduce the dependence on synthetic chemicals. Full article
(This article belongs to the Special Issue Enhancing Biological Control of Insect Pests of Horticultural Crops)
Show Figures

Graphical abstract

26 pages, 4380 KB  
Review
Novel Fermentation Techniques for Improving Food Functionality: An Overview
by Precious O. Ajanaku, Ayoyinka O. Olojede, Christiana O. Ajanaku, Godshelp O. Egharevba, Faith O. Agaja, Chikaodi B. Joseph and Remilekun M. Thomas
Fermentation 2025, 11(9), 509; https://doi.org/10.3390/fermentation11090509 - 31 Aug 2025
Viewed by 224
Abstract
Fermentation has been a crucial process in the preparation of foods and beverages for consumption, especially for the purpose of adding value to nutrients and bioactive compounds; however, conventional approaches have certain drawbacks such as not being able to fulfill the requirements of [...] Read more.
Fermentation has been a crucial process in the preparation of foods and beverages for consumption, especially for the purpose of adding value to nutrients and bioactive compounds; however, conventional approaches have certain drawbacks such as not being able to fulfill the requirements of the ever-increasing global population as well as the sustainability goals. This review aims to evaluate how the application of advanced fermentation techniques can transform the food production system to be more effective, nutritious, and environmentally friendly. The techniques discussed include metabolic engineering, synthetic biology, AI-driven fermentation, quorum sensing regulation, and high-pressure processing, with an emphasis on their ability to enhance microbial activity with a view to enhancing product output. Authentic, wide-coverage scientific research search engines were used such as Google Scholar, Research Gate, Science Direct, PubMed, and Frontiers. The literature search was carried out for reports, articles, as well as papers in peer-reviewed journals from 2010 to 2024. A statistical analysis with a graphical representation of publication trends on the main topics was conducted using PubMed data from 2010 to 2024. In this present review, 112 references were used to investigate novel fermentation technologies that fortify the end food products with nutritional and functional value. Images that illustrate the processes involved in novel fermentation technologies were designed using Adobe Photoshop. The findings indicate that, although there are issues regarding costs, the scalability of the process, and the acceptability of the products by the consumers, the technologies provide a way of developing healthy foods and products produced using sustainable systems. This paper thus calls for more research and development as well as for the establishment of a legal frameworks to allow for the integration of these technologies into the food production system and make the food industry future-proof. Full article
(This article belongs to the Special Issue Feature Review Papers in Fermentation for Food and Beverages 2024)
Show Figures

Graphical abstract

27 pages, 1273 KB  
Review
A Critical Review of Commercial Collagen-Based Scaffolds in Bone Regeneration: Functional Properties and Clinical Evidence from Infuse® Bone Graft
by Niki Karipidou, John Paul Muller Gorley, Chrysoula Katrilaka, Chris Manglaris, Anastasios Nektarios Tzavellas, Maria Pitou, Angeliki Cheva, Nikolaos Michailidis, Eleftherios E. Tsiridis, Theodora Choli-Papadopoulou and Amalia Aggeli
J. Funct. Biomater. 2025, 16(9), 313; https://doi.org/10.3390/jfb16090313 - 29 Aug 2025
Viewed by 467
Abstract
This review article provides a comprehensive evaluation of Infuse® and InductOs®, two ground-breaking recombinant human Bone Morphogenetic Protein-2 (rhBMP-2)-based bone graft products, focusing on their tissue-level regenerative responses, clinical applications, and associated costs. Preclinical and clinical studies demonstrate that rhBMP-2 [...] Read more.
This review article provides a comprehensive evaluation of Infuse® and InductOs®, two ground-breaking recombinant human Bone Morphogenetic Protein-2 (rhBMP-2)-based bone graft products, focusing on their tissue-level regenerative responses, clinical applications, and associated costs. Preclinical and clinical studies demonstrate that rhBMP-2 induces strong osteoinductive activity, effectively promoting mesenchymal stem cell differentiation and vascularized bone remodeling. While generally well-tolerated, these osteoinductive effects are dose-dependent, and excessive dosing or off-label use may result in adverse outcomes, such as ectopic bone formation or soft tissue inflammation. Histological and imaging analyses in craniofacial, orthopedic, and spinal fusion models confirm significant bone regeneration, positioning rhBMP-2 as a viable alternative to autologous grafts. Notably, advances in delivery systems and scaffold design have enhanced the stability, bioavailability, and targeted release of rhBMP-2, leading to improved fusion rates and reduced healing times in selected patient populations. These innovations, alongside its proven regenerative efficacy, underscore its potential to expand treatment options in cases where autografts are limited or unsuitable. However, the high initial cost, primarily driven by rhBMP-2, remains a critical limitation. Although some studies suggest overall treatment costs might be comparable to autografts when factoring in reduced complications and operative time, autografts often remain more cost-effective. Infuse® has not substantially reduced the cost of bone regeneration and presents additional safety concerns due to the rapid (burst) release of growth factors and limited mechanical scaffold support. Despite representing a significant advancement in synthetic bone grafting, further innovation is essential to overcome limitations related to cost, mechanical properties, and controlled growth factor delivery. Full article
(This article belongs to the Special Issue Biomaterials for Bone Implant and Regeneration)
Show Figures

Figure 1

15 pages, 1799 KB  
Article
The Biological Variation in Serum ACE and CPN/CPB2 Activity in Healthy Individuals as Measured by the Degradation of Dabsylated Bradykinin—Reference Data and the Importance of Pre-Analytical Standardization
by Malte Bayer, Michael Snyder and Simone König
Proteomes 2025, 13(3), 40; https://doi.org/10.3390/proteomes13030040 - 27 Aug 2025
Viewed by 291
Abstract
Background: Bradykinin (BK) is an inflammatory mediator. The degradation of labeled synthetic BK in biofluids can be used to report on the activity of angiotensin-converting enzyme (ACE) and basic carboxypeptidases N and CBP2, for which the neuropeptide is a substrate. Clinical studies have [...] Read more.
Background: Bradykinin (BK) is an inflammatory mediator. The degradation of labeled synthetic BK in biofluids can be used to report on the activity of angiotensin-converting enzyme (ACE) and basic carboxypeptidases N and CBP2, for which the neuropeptide is a substrate. Clinical studies have shown significant changes in the serum activity of these enzymes in patients with inflammatory diseases. Methods: Here, we investigated variation in the cleavage of dabsylated synthetic BK (DBK) in serum and the formation of the major enzymatic fragments using a thin-layer chromatography-based neuropeptide reporter assay (NRA) in a large cohort of healthy volunteers from the international human Personal Omics Profiling consortium based at Stanford University. Results: Four major outcomes were reported. First, a set of NRA reference data for the healthy population was delivered, which is important for future investigations of patient sera. Second, it was shown that the measured serum degradation capacity for DBK was significantly higher in males than in females. There was no significant correlation of the NRA results with ethnicity, body mass index or overnight fasting. Third, a batch effect was noted among sampling sites (HUPO conferences). Thus, we used subcohorts rather than the entire collection for data mining. Fourth, as the low-cost and robust NRA is sensitive to enzyme activity, it provides such a necessary quick test to eliminate degraded and/or otherwise questionable samples. Conclusions: The results reiterate the critical importance of a high level of standardization in pre-analytical sample collection and processing—most notably, sample quality should be evaluated before conducting any large and expensive omics analyses. Full article
(This article belongs to the Section Proteomics Technology and Methodology Development)
Show Figures

Figure 1

35 pages, 1429 KB  
Review
Progressive Hydrogel Applications in Diabetic Foot Ulcer Management: Phase-Dependent Healing Strategies
by Priyanka Mallanagoudra, Sai Samanvitha M Ramakrishna, Sowmya Jaiswal, Dhruthi Keshava Prasanna, Rithika Seetharaman, Arunkumar Palaniappan and Sudarshan Kini
Polymers 2025, 17(17), 2303; https://doi.org/10.3390/polym17172303 - 26 Aug 2025
Viewed by 895
Abstract
Diabetes is emerging as a significant health and societal concern globally, impacting both young and old populations. In individuals with diabetic foot ulcers (DFUs), the wound healing process is hindered due to abnormal glucose metabolism and chronic inflammation. Minor injuries, blisters, or pressure [...] Read more.
Diabetes is emerging as a significant health and societal concern globally, impacting both young and old populations. In individuals with diabetic foot ulcers (DFUs), the wound healing process is hindered due to abnormal glucose metabolism and chronic inflammation. Minor injuries, blisters, or pressure sores can develop into chronic ulcers, which, if left untreated, may lead to serious infections, tissue necrosis, and eventual amputation. Current management techniques include debridement, wound dressing, oxygen therapy, antibiotic therapy, topical application of antibiotics, and surgical skin grafting, which are used to manage diabetic wounds and foot ulcers. This review focuses on a hydrogel-based strategy for phase-wise targeting of DFUs, addressing sequential stages of diabetic wound healing: hemostasis, infection, inflammation, and proliferative/remodeling phases. Hydrogels have emerged as a promising wound care solution due to their unique properties in providing a suitable wound-healing microenvironment. We explore natural polymers, including hyaluronic acid, chitosan, cellulose derivatives, and synthetic polymers such as poly (ethylene glycol), poly (acrylic acid), poly (2-hydroxyethyl methacrylate, and poly (acrylamide), emphasizing their role in hydrogel fabrication to manage DFU through phase-dependent strategies. Recent innovations, including self-healing hydrogels, stimuli-responsive hydrogels, nanocomposite hydrogels, bioactive hydrogels, and 3D-printed hydrogels, demonstrate enhanced therapeutic potential, improving patient outcomes. This review further discusses the applicability of various hydrogels to each phase of wound healing in DFU treatment, highlighting their potential to advance diabetic wound care through targeted, phase-specific interventions. Full article
(This article belongs to the Special Issue Advances in Biomimetic Smart Hydrogels)
Show Figures

Graphical abstract

27 pages, 2873 KB  
Article
A Comprehensive Environmental and Molecular Strategy for the Evaluation of Fluroxypyr and Nature-Derived Compounds
by Ion Valeriu Caraba, Luminita Crisan and Marioara Nicoleta Caraba
Int. J. Mol. Sci. 2025, 26(17), 8209; https://doi.org/10.3390/ijms26178209 - 24 Aug 2025
Viewed by 498
Abstract
This study evaluated the effects of different doses of the herbicide fluroxypyr on soil microbial communities under controlled laboratory conditions. Specific enzymatic activities ((dehydrogenase (DA), urease (UA), catalase (CA), phosphatase (PA)) and quantitative variations in bacterial and fungal populations were measured regarding key [...] Read more.
This study evaluated the effects of different doses of the herbicide fluroxypyr on soil microbial communities under controlled laboratory conditions. Specific enzymatic activities ((dehydrogenase (DA), urease (UA), catalase (CA), phosphatase (PA)) and quantitative variations in bacterial and fungal populations were measured regarding key physico-chemical soil parameters (temperature, pH, electrical conductivity, moisture, organic matter, ammonium, nitrate nitrogen, and available phosphate content). The effects of the herbicide on the targeted parameters were dose- and time-dependent. Fluroxypyr induced a clear decrease in DA, CA, and PA during the first 14 days after administration, while UA showed a decrease in the first 7 days, followed by a slight increase starting on day 14, closely related to the applied dose. Microbial populations decreased in direct relation to the fluroxypyr dose. Organic matter content exhibited a positive correlation with DA, UA, CA, as well as with microbial populations. In addition, three natural compounds structurally similar to fluroxypyr were identified via 3D virtual screening, demonstrating potential herbicidal activity. Fluroxypyr can alter soil metabolic activity and disrupt microbial communities, thereby affecting soil fertility. Used as a reference in 3D screening, fluroxypyr helped identify three natural compounds with potential herbicidal activity as safer alternatives to synthetic herbicides. Full article
Show Figures

Figure 1

30 pages, 1627 KB  
Review
Linezolid in the Focus of Antimicrobial Resistance of Enterococcus Species: A Global Overview of Genomic Studies
by Slavil Peykov, Boris Kirov and Tanya Strateva
Int. J. Mol. Sci. 2025, 26(17), 8207; https://doi.org/10.3390/ijms26178207 - 24 Aug 2025
Viewed by 664
Abstract
Linezolid (LNZ) is a synthetic oxazolidinone antibiotic that inhibits bacterial protein synthesis through binding to ribosomal RNA, also preventing the assembly of the initiation complex during translation. It is one of the last-line therapeutic options for serious infections caused by problematic Gram-positive pathogens, [...] Read more.
Linezolid (LNZ) is a synthetic oxazolidinone antibiotic that inhibits bacterial protein synthesis through binding to ribosomal RNA, also preventing the assembly of the initiation complex during translation. It is one of the last-line therapeutic options for serious infections caused by problematic Gram-positive pathogens, including vancomycin-resistant and multidrug-resistant Enterococcus species. Data from recent large-scale studies show a 2.5-fold increase in the prevalence of clinical LNZ-resistant enterococci (LRE) over the past decade with a global detection rate of 1.1% for LNZ-resistant E. faecium (LREfm) and 2.2% for LNZ-resistant E. faecalis (LREfs). Most reported cases have originated from China, followed by South Korea and the United States. LREfm typically belongs to the high-risk clonal complex 17, whereas LREfs demonstrates a heterogeneous population structure. Mutations in the 23S rRNA and ribosomal proteins, as well as acquired resistance genes such as cfr, optrA, and poxtA are involved in the development of LNZ resistance among enterococci. Whole-genome sequencing (WGS) has been recognized as a gold standard for identifying the underlying molecular mechanisms. It exposes that numerous LRE isolates possess multiple LNZ resistance determinants and mutations, further complicating the treatment strategies. The present review article summarizes all known mutational and non-mutational LNZ resistance mechanisms and presents a global overview of WGS-based studies with emphasis on resistome analysis of clinical LREfs and LREfm isolates published in the literature during the period 2014–2025. Full article
(This article belongs to the Special Issue Drug Treatment for Bacterial Infections)
Show Figures

Figure 1

27 pages, 1466 KB  
Review
Curative Therapies for Hemophilias and Hemoglobinopathies in Adults: Immune, Gene, and Stem Cell Approaches in a Global Context
by Ayrton Bangolo, Behzad Amoozgar, Lili Zhang, Sarvarinder Gill, Daniel Lushimba Milolo, Justin Ngindu Kankonde, Claude Mbuyi Batakamuna, Robert Tassan, Christina Cho, John Bukasa-Kakamba and Kelley Mowatt-Pesce
Biomedicines 2025, 13(8), 2022; https://doi.org/10.3390/biomedicines13082022 - 19 Aug 2025
Viewed by 716
Abstract
Hemophilias and hemoglobinopathies—including hemophilias A and B, sickle cell disease (SCD), and β-thalassemia—are debilitating genetic disorders associated with significant global health burdens. While traditional management has centered on factor replacement and transfusions, these approaches remain palliative, with limited access and durability in many [...] Read more.
Hemophilias and hemoglobinopathies—including hemophilias A and B, sickle cell disease (SCD), and β-thalassemia—are debilitating genetic disorders associated with significant global health burdens. While traditional management has centered on factor replacement and transfusions, these approaches remain palliative, with limited access and durability in many regions. Recent advances in immune-based therapeutics (e.g., emicizumab, concizumab, crizanlizumab), viral vector-mediated gene addition (e.g., Roctavian, Hemgenix), and gene-modified autologous stem cell therapies (e.g., Zynteglo, Casgevy) have ushered in a new era of disease-modifying and potentially curative interventions. These therapies offer durable efficacy and improved quality of life, particularly in adult populations. However, implementation remains uneven across global health systems due to high costs, limited infrastructure, and regulatory heterogeneity. Additionally, ethical considerations such as long-term surveillance, informed consent in vulnerable populations, and social perceptions of genetic modification present ongoing challenges. Innovations such as multiplex genome editing, immune-evasive donor platforms, synthetic biology, and AI-driven treatment modeling are poised to expand therapeutic horizons. Equitable access, particularly in regions bearing the highest disease burden, will require collaborative funding strategies, regional capacity building, and inclusive regulatory frameworks. This review summarizes the current landscape of curative therapy, outlines implementation barriers, and calls for coordinated international action to ensure that transformative care reaches all affected individuals worldwide. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular and Translational Medicine in USA)
Show Figures

Figure 1

23 pages, 2428 KB  
Review
Cabbage Stink Bug (Eurydema ventralis Kolenati, 1846) (Hemiptera: Pentatomidae)—An Increasingly Important Pest in Europe
by Sergeja Adamič Zamljen, Tanja Bohinc and Stanislav Trdan
Agriculture 2025, 15(16), 1779; https://doi.org/10.3390/agriculture15161779 - 19 Aug 2025
Viewed by 417
Abstract
Eurydema ventralis Kolenati, 1846 (Hemiptera: Pentatomidae), commonly known as the cabbage stink bug, is an increasingly important pest in Brassicaceae crops across Europe, including Slovenia. This review provides a comprehensive synthesis of current knowledge on the taxonomy, biology, distribution, and economic impact of [...] Read more.
Eurydema ventralis Kolenati, 1846 (Hemiptera: Pentatomidae), commonly known as the cabbage stink bug, is an increasingly important pest in Brassicaceae crops across Europe, including Slovenia. This review provides a comprehensive synthesis of current knowledge on the taxonomy, biology, distribution, and economic impact of Eurydema ventralis, with a focus on cabbage (Brassica oleracea L. var. capitata) cultivation. Various monitoring and population assessment methods are discussed as foundational tools for implementing integrated pest management (IPM). The focus of this study is on the available control strategies, including chemical, biological, cultural, and mechanical approaches. While synthetic insecticides remain a commonly used option, their environmental impact, potential for resistance development, and non-target effects raise concerns. Increasing research attention is being given to biological control agents, such as egg parasitoids, generalist predators (e.g., Coccinellidae, Carabidae, Nabidae), and entomopathogenic fungi. These agents show considerable promise but are not being fully utilized at present. A further review of cultural practices and mechanical control methods is also undertaken for their role in reducing pest populations. The compatibility of different strategies within an IPM framework is examined in detail. In conclusion, this review identifies existing knowledge gaps and puts forward a number of recommendations for future research directions. The purpose of these recommendations is to support the development of more sustainable and ecological pest management solutions for E. ventralis in cabbage cultivation. Full article
Show Figures

Figure 1

18 pages, 2236 KB  
Article
Lethal Effect and Two-Sex Life Table of Tuta absoluta (Meyrick) Treated with Melaleuca alternifolia and Eucalyptus staigeriana Essential Oils
by Brenda C. F. Braga, Dejane S. Alves, Andreísa F. Lima, Júlia A. C. Oliveira, Karolina G. Figueiredo, Vinícius C. Carvalho, Suzan K. V. Bertolucci and Geraldo A. Carvalho
Horticulturae 2025, 11(8), 951; https://doi.org/10.3390/horticulturae11080951 - 12 Aug 2025
Viewed by 439
Abstract
The Tuta absoluta species represents a significant threat to solanaceous crops globally and has developed resistance to conventional synthetic insecticides. This study investigated the insecticidal properties of essential oils (EOs) from Melaleuca alternifolia and Eucalyptus staigeriana against T. absoluta using the age-stage, two-sex [...] Read more.
The Tuta absoluta species represents a significant threat to solanaceous crops globally and has developed resistance to conventional synthetic insecticides. This study investigated the insecticidal properties of essential oils (EOs) from Melaleuca alternifolia and Eucalyptus staigeriana against T. absoluta using the age-stage, two-sex life table methodology. Initially, the EOs of M. alternifolia and E. staigeriana were chemically characterized by gas chromatography (GC) techniques. In this analysis, we identified 19 compounds in M. alternifolia essential oil, with terpinen-4-ol, γ-terpinene, and α-terpinene as the predominant constituents. Eucalyptus staigeriana essential oil contained 25 identified compounds, predominantly limonene, terpinolene, geranial, and neral. Essential oils were dissolved in acetone and applied topically to larval stages. Both treatments significantly reduced pest longevity and adversely affected key demographic parameters. Melaleuca alternifolia treatment resulted in a substantial decrease in the intrinsic rate of population increase, indicating potential for population suppression. These findings support the potential application of M. alternifolia and E. staigeriana EOs as biological control agents against T. absoluta in integrated pest management programs. Full article
Show Figures

Graphical abstract

24 pages, 4158 KB  
Article
Land Subsidence and Coastal Flood Impact Scenarios Based on Remote Sensing in Selangor, Malaysia
by Navakanesh M. Batmanathan, Joy Jacqueline Pereira, Afroz Ahmad Shah, Nurfashareena Muhamad and Lim Choun Sian
J. Mar. Sci. Eng. 2025, 13(8), 1539; https://doi.org/10.3390/jmse13081539 - 11 Aug 2025
Viewed by 740
Abstract
This study uses remote sensing data to assess susceptibility to hazards, which are then validated to model impact scenarios for land subsidence and coastal flooding in the Integrated Coastal Zone Management (ICZM) of Selangor, Malaysia, to support decision-making in urban planning and land [...] Read more.
This study uses remote sensing data to assess susceptibility to hazards, which are then validated to model impact scenarios for land subsidence and coastal flooding in the Integrated Coastal Zone Management (ICZM) of Selangor, Malaysia, to support decision-making in urban planning and land management. Land subsidence and coastal floods affect a major proportion of the population in the ICZM, with subsidence being significant contributing factors, but information on the extent of susceptible areas, monitoring, and wide-area coverage is limited. Land subsidence distribution is demarcated using Interferometric Synthetic Aperture Radar (InSAR) time-series data (2015–2022), and integrated with coastal flood susceptibility derived from Analytic Hierarchy Process (AHP)-based weights to model impacts on land cover. Results indicate maximum subsidence rates of 46 mm/year (descending orbit) and 61 mm/year (ascending orbit); reflecting a gradual increase in subsidence trends with an average rate of 13 mm/year. In the worst-case scenario, within the ICZM area of 2262 km2, nearly 12% of the total built-up land cover with the highest population density is exposed to land subsidence, while exposure to coastal floods is relatively larger, covering nearly 34% of the built-up area. Almost 27% of the built-up area is exposed to the combined effects of both land subsidence and coastal floods, under present sea level conditions, with increasing risks of coastal floods over 2040, 2050 and 2100, due to both combinations. This research prioritizes areas for further study and provides a scientific foundation for resilience strategies aimed at ensuring sustainable coastal development within the ICZM. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

10 pages, 2339 KB  
Article
Molluscicidal Activity of the Crude Extract and Fractions of Myrsine parvifolia
by Keyla Nunes Farias Gomes, Leonardo da Silva Rangel, João Claudio Vitoria Ático Leite, Gabriel Rocha Caldas, Arthur Luiz Corrêa, Marcelo Guerra Santos, Leandro Machado Rocha, José Augusto Albuquerque dos Santos and Robson Xavier Faria
Separations 2025, 12(8), 208; https://doi.org/10.3390/separations12080208 - 11 Aug 2025
Viewed by 256
Abstract
As the second most common infectious parasitic disease in the world, schistosomiasis is present in Brazil, mainly in the Northeast and Southeast regions. Currently, the recommended form of prevention is controlling this disease’s intermediate host, mollusks of the Biomphalaria genus, using the chemical [...] Read more.
As the second most common infectious parasitic disease in the world, schistosomiasis is present in Brazil, mainly in the Northeast and Southeast regions. Currently, the recommended form of prevention is controlling this disease’s intermediate host, mollusks of the Biomphalaria genus, using the chemical molluscicide Bayluscide WP 70®. This synthetic molluscicide is expensive, has low selectivity for Biomphalaria glabrata species, and is toxic to the environment. In this context, the use of natural products such as molluscicides represents a sustainable control method. The objective of this study was to evaluate the molluscicidal effects of a crude ethanolic extract of the leaves and stems and fractions of the species Myrsine parvifolia on the mollusk Biomphalaria glabrata. Methods: The methodology was adapted from standards defined by the World Health Organization (WHO), where the molluscicidal activity of Myrsine parvifolia was investigated as an alternative for the population control of Biomphalaria glabrata and That’s right. environmental toxicity was evaluated using the Physella sp. The results revealed that the stem ethanolic crude extract exhibited activity after 24 h of exposure, with an LC50 of 207.4 mg/L and an LC90 of 256.2 mg/L. Conclusions: Myrsine parvifolia can be used as a sustainable biological alternative for the population control of Biomphalaria glabrata snails, especially for poor populations and inaccessible regions. Full article
(This article belongs to the Special Issue Advanced Research on Extraction and Analysis of Plant Extracts)
Show Figures

Figure 1

32 pages, 2353 KB  
Review
The Effect of Polyploidisation on the Physiological Parameters, Biochemical Profile, and Tolerance to Abiotic and Biotic Stresses of Plants
by Marta Koziara-Ciupa and Anna Trojak-Goluch
Agronomy 2025, 15(8), 1918; https://doi.org/10.3390/agronomy15081918 - 8 Aug 2025
Viewed by 304
Abstract
Polyploidisation is a very common phenomenon in the plant kingdom and plays a key role in plant evolution and breeding. It promotes speciation and the extension of biodiversity. It is estimated that approximately 47% of flowering plant species are polyploids, derived from two [...] Read more.
Polyploidisation is a very common phenomenon in the plant kingdom and plays a key role in plant evolution and breeding. It promotes speciation and the extension of biodiversity. It is estimated that approximately 47% of flowering plant species are polyploids, derived from two or more diploid ancestral species. In natural populations, the predominant methods of whole-genome multiplication are somatic cell polyploidisation, meiotic cell polyploidisation, or endoreduplication. The formation and maintenance of polyploidy is accompanied by a series of epigenetic and gene expression changes, leading to alterations in the structural, physiological, and biochemical characteristics of polyploids relative to diploids. This article provides information on the mechanisms of formation of natural and synthetic polyploids. It presents a number of examples of the effects of polyploidisation on the composition and content of secondary metabolites of polyploids, providing evidence of the importance of the phenomenon in plant adaptation to the environment, improvement of wild species, and crops. It aims to gather and systematise knowledge on the effects of polyploidisation on plant physiological traits, including stomatal conductance (Gs), transpiration rate (Tr), light saturation point (LSP), as well as the most important photosynthetic parameters determining biomass accumulation. The text also presents the latest findings on the adaptation of polyploids to biotic and abiotic stresses and explains the basic mechanisms of epigenetic changes determining resistance to selected stress factors. Full article
Show Figures

Figure 1

Back to TopTop