Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (233)

Search Parameters:
Keywords = tablet disintegration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2669 KB  
Article
Development of Spray-Dried Mannitol–Pregelatinized Rice Starch Using SeDeM-Based Approach for Direct Compressible Cetirizine Dihydrochloride Tablets
by Phennapha Saokham, Ruttiros Khonkarn, Pratchaya Tipduangta, Pattaraporn Panraksa and Karnkamol Trisopon
Pharmaceutics 2025, 17(11), 1409; https://doi.org/10.3390/pharmaceutics17111409 - 30 Oct 2025
Abstract
Background/Objectives: Direct compression offers a cost-effective route for tablet manufacturing but is often limited by poor powder flow and compressibility. This study reported the development of a co-processed excipient comprising 98% mannitol and 2% pregelatinized rice starch (PRS) using spray drying with [...] Read more.
Background/Objectives: Direct compression offers a cost-effective route for tablet manufacturing but is often limited by poor powder flow and compressibility. This study reported the development of a co-processed excipient comprising 98% mannitol and 2% pregelatinized rice starch (PRS) using spray drying with ammonium bicarbonate as a pore-forming agent. Methods: This optimized excipient demonstrated balanced powder flow and enhanced compressibility suitable for direct compression applications. The SeDeM expert system guided the optimization process by evaluating raw and spray-dried components. PRS exhibited excellent flowability that decreased after spray drying but displayed significantly enhanced compressibility, whereas mannitol maintained superior flow but continued to show limited compressibility post-drying. Scanning electron microscopy, differential scanning calorimetry, Fourier-transform infrared spectroscopy, and X-ray powder diffraction confirmed the absence of chemical interactions and unchanged wettability during co-processing. Results: The resulting excipient combined the favorable flow characteristics of mannitol with the improved compressibility of PRS, rendering it suitable for direct compression. Cetirizine dihydrochloride (CET) tablets were formulated via exponential curve fitting within the SeDeM framework, yielding an optimal CET-to-excipient ratio of 13:87. The tablets met all pharmacopeial physicochemical requirements, including uniform mass, adequate tensile strength, rapid disintegration, and dissolution profiles comparable to a reference product, with dissimilarity (f1 = 4.28) and similarity (f2 = 64.03) factors within regulatory acceptance limits. Conclusions: These findings represented the first application of SeDeM methodology to a co-processed mannitol–pregelatinized rice starch system, enabling predictive optimization of powder flow and compressibility in direct compression formulations. Full article
Show Figures

Figure 1

18 pages, 2260 KB  
Article
The Development of Risperidone-Loaded Microfibers via Centrifugal Spinning to Enhance the Palatability of a Potential Drug for Autistic Children
by Sarah H. Alqahtani, Alhassan H. Aodah, Yasser A. Alshawakir, Bayan Y. Alshehri, Ali A. Alamer, Haya A. Alfassam, Fahad A. Almughem, Abdullah A. Alshehri and Essam A. Tawfik
Pharmaceutics 2025, 17(11), 1403; https://doi.org/10.3390/pharmaceutics17111403 - 30 Oct 2025
Abstract
Background/Objectives: Children with autism spectrum disorder (ASD) frequently experience poor compliance with oral medication due to bitterness, unpleasant taste, and unsuitable dosage forms such as large tablets or capsules. Risperidone, a widely prescribed antipsychotic for managing ASD symptoms, is particularly challenging in this [...] Read more.
Background/Objectives: Children with autism spectrum disorder (ASD) frequently experience poor compliance with oral medication due to bitterness, unpleasant taste, and unsuitable dosage forms such as large tablets or capsules. Risperidone, a widely prescribed antipsychotic for managing ASD symptoms, is particularly challenging in this regard. The present study aimed to develop a novel sucrose-based microfiber drug delivery system to improve the palatability, acceptance, and bioavailability of risperidone in pediatric patients with ASD. Methods: Risperidone was incorporated into sucrose microfibers using centrifugal spinning technology. Fiber morphology was characterized by scanning electron microscopy (SEM). Drug loading (DL), encapsulation efficiency (EE%), and disintegration time were measured. In vitro drug release and cytotoxicity assays were performed using human foreskin fibroblast cells (HFF-1). An in vivo palatability and preference study was conducted in male BALB/c mice to evaluate the acceptability of the formulation compared with a commercial risperidone oral solution. Results: SEM analysis revealed smooth, bead-free, non-porous fibers with uniform morphology and size distribution. The formulation showed a rapid disintegration time of ~3 s, DL of 30 ± 5 µg/mg, and EE% of 60 ± 10%. Approximately 50% of risperidone was released within 15 min. Cytotoxicity testing confirmed that concentrations ≤ 125 µg/mL maintained high cell metabolic activity, indicating biocompatibility. In vivo, the microfiber solution demonstrated a strong preference (93%) compared with the commercial oral solution (30%). Conclusions: Risperidone-loaded sucrose microfibers represent a promising fast-dissolving oral delivery system for children with ASD. This child-friendly formulation improves palatability and compliance while maintaining safety and drug release performance. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

14 pages, 573 KB  
Article
Physical and Functional Properties of Toothpaste Tablets
by Agata Blicharz-Kania, Justyna Kot and Dariusz Andrejko
Materials 2025, 18(20), 4804; https://doi.org/10.3390/ma18204804 - 21 Oct 2025
Viewed by 246
Abstract
Products such as toothpaste tablets align with the concept of sustainable cosmetic production. The aim of this study was to evaluate the physical and functional properties of toothpaste tablets with different formulations—with and without fluoride, surfactants, and dried herbs. The following parameters were [...] Read more.
Products such as toothpaste tablets align with the concept of sustainable cosmetic production. The aim of this study was to evaluate the physical and functional properties of toothpaste tablets with different formulations—with and without fluoride, surfactants, and dried herbs. The following parameters were determined: friability (using a shaking method), compressive strength (using a tensile testing machine), colour parameters (spectrophotometrically), pH, and foaming capacity. The study results showed that tablet durability is closely dependent on the formulation. Tablets made with commonly used ingredients (control sample) had the highest breaking force (55.24 N). Tablets without fluoride had the lowest friability (1.46%). Optical tests showed that different formulations affected tablet brightness and colour saturation. The largest changes were observed for samples containing dried herbs—ΔE > 5. The tablets with clove added had improved foam quality, which is important from a functional perspective. The disintegration time of the tablets was significantly shorter for the modified formulation samples. The study results indicate that the developed tablets, especially the control and fluoride-free samples, are sufficiently hard and durable. The tablets with added herbal ingredients, on the other hand, exhibit good foaming and dissolving properties and are waterless products without preservatives. Full article
Show Figures

Figure 1

29 pages, 2574 KB  
Article
Development and Evaluation of 3D-Printed Losartan Potassium Tablets Using Semi-Solid Extrusion: The Effect of Geometry, Drug Loading and Superdisintegrant
by Aleksandra Vojinović, Đorđe Medarević, Gordana Stanojević, Dušica Mirković, Snežana Mugoša, Ivana Adamov and Svetlana Ibrić
Pharmaceuticals 2025, 18(10), 1504; https://doi.org/10.3390/ph18101504 - 7 Oct 2025
Viewed by 459
Abstract
Background/Objectives: Semi-solid extrusion (SSE) three-dimensional (3D) printing offers a versatile approach for fabricating personalized oral dosage forms. This study aimed to develop and optimize losartan potassium tablets produced via SSE 3D printing, focusing on the effects of polymer composition, tablet geometry, drug loading, [...] Read more.
Background/Objectives: Semi-solid extrusion (SSE) three-dimensional (3D) printing offers a versatile approach for fabricating personalized oral dosage forms. This study aimed to develop and optimize losartan potassium tablets produced via SSE 3D printing, focusing on the effects of polymer composition, tablet geometry, drug loading, and superdisintegrant concentration on printability and performance characteristics. Methods: Formulations containing hydroxypropyl methylcellulose (HPMC) 4500 at various concentrations were evaluated for suitability in an ethanol–water (9:1 v/v) solvent system. The optimized formulation (5% w/w HPMC 4500) was used to print tablets with varying shapes, drug loadings (5–15% w/w; approximately 50–150 mg losartan potassium per tablet), and croscarmellose sodium concentrations (0–3% w/w). Printed tablets were characterized for dimensional accuracy, mass uniformity, disintegration time, and drug release behavior. Drug release kinetics were modeled to elucidate the release mechanism. Results: All SSE-printed tablets exhibited excellent dimensional precision (SD < 0.8 mm) and mass uniformity (SD < 0.12 g). Increasing drug loading enhanced the initial release rate, reaching up to 63% in 45 min for 15% loading. The addition of 1% croscarmellose sodium reduced disintegration time to approximately 25 min. Drug release profiles were best described by the Korsmeyer–Peppas model (R2 > 0.96), indicating diffusion-controlled release. Conclusions: SSE 3D printing demonstrated robustness and flexibility in producing losartan potassium tablets with consistent quality, tunable release properties, and strong potential for personalized pharmaceutical manufacturing. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

37 pages, 5459 KB  
Article
Influence of Drug Properties, Formulation Composition, and Processing Parameters on the Stability and Dissolution Performance of Amorphous Solid Dispersions-Based Tablets
by Ioannis Pantazos, Maria Poimenidou, Dimitrios Kouskouridas, Evangelos Tzaferas, Vasiliki Karava, Christos Cholevas, Afroditi Kapourani and Panagiotis Barmpalexis
Polymers 2025, 17(18), 2484; https://doi.org/10.3390/polym17182484 - 14 Sep 2025
Viewed by 1620
Abstract
Polymeric-based amorphous solid dispersions (ASDs) represent a widely employed strategy for enhancing the oral bioavailability of poorly water-soluble drugs, but their successful implementation in solid dosage forms requires careful optimization of both formulation composition and compaction parameters. In this study, the performance of [...] Read more.
Polymeric-based amorphous solid dispersions (ASDs) represent a widely employed strategy for enhancing the oral bioavailability of poorly water-soluble drugs, but their successful implementation in solid dosage forms requires careful optimization of both formulation composition and compaction parameters. In this study, the performance of polymeric-based ASD tablets were investigated using two model active pharmaceutical ingredients (APIs) with distinct glass-forming abilities (GFAs) and physicochemical characteristics: (1) indomethacin (IND, a good glass former) and (2) carbamazepine (CBZ, a poor glass former). ASDs were prepared at various API-to-polyvinylpyrrolidone (PVP) ratios (10:90, 20:80 and 40:60 w/w) and incorporated into round-shaped tablets at different ASD loadings (20% and 50% w/w). The impact of compaction pressure and dwell time on the mechanical properties, disintegration, and supersaturation performance was assessed, both immediately after preparation and following three months of storage at 25 °C and 60% relative humidity. Solid-state analysis confirmed the amorphous state of the APIs and revealed the development of API–polymer molecular interactions. Supersaturation studies under non-sink conditions demonstrated that dissolution behavior was strongly influenced by drug loading, polymer content, and compaction conditions, with CBZ formulations exhibiting faster release but greater susceptibility to performance loss during storage. The comparative evaluation of IND and CBZ highlights the critical role of API properties in determining the physical stability and dissolution performance of ASD tablets, underscoring the need for API-specific design strategies in ASD-based formulation development. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

27 pages, 3173 KB  
Article
Development of pH-Sensitive Multiparticulates for Orally Disintegrating Tablets of Proton Pump Inhibitors: Physicochemical Characterization and Drug Release Studies
by Mahendra Singh, Punna Reddy Ullapu, Arokia Vijaya Anand Mariadoss, Satyender Kumar and Sung Gu Kang
Pharmaceutics 2025, 17(9), 1187; https://doi.org/10.3390/pharmaceutics17091187 - 12 Sep 2025
Viewed by 572
Abstract
Background/Objectives: Enteric coating protects active pharmaceutical ingredients from gastric degradation, but conventional tablets may present swallowing difficulties in geriatric and pediatric patients. Hence, this study intended to develop pH-responsive multiparticulates, formulated into orally disintegrating tablets (ODTs), for targeted intestinal drug delivery in individuals [...] Read more.
Background/Objectives: Enteric coating protects active pharmaceutical ingredients from gastric degradation, but conventional tablets may present swallowing difficulties in geriatric and pediatric patients. Hence, this study intended to develop pH-responsive multiparticulates, formulated into orally disintegrating tablets (ODTs), for targeted intestinal drug delivery in individuals with dysphagia. Methods: Multiparticulates were developed via sequential seal coating, drug layering, sub-coating, and enteric coating on inert cores using a fluidized bed coater (Pam Glatt, India; bottom spray). Selected enteric-coated batches were directly compressed into ODTs using microcrystalline cellulose (Avicel PH102) and mannitol (Pearlitol SD 160) as fillers, with Explotab®, Ac-Di-Sol®, or crospovidone M® as superdisintegrants. Results: Multiparticulates exhibited mean diameters of 197.671–529.511 μm and span values of 0.603–0.838. Span value < 1, indicating a narrow size distribution. Electron microscopy confirmed the spherical morphology of Batches 7a and b. Enteric-coated batches (5b, 6, 7a, 7b) released ≤10% of the drug in 0.1 N HCl at 2 h. Optimized formulation ODT 7b released 7.904% of the drug under gastric conditions and 79.749% in phosphate buffer (pH 6.8) within 2.5 h, following first-order drug release kinetics. ODT 7b demonstrated hardness (2.538 ± 0.144 kg/cm2), wetting time (11.17 ± 1.051 s), friability (0.712%), and drug content (99.81 ± 1.01%) within acceptable limits. Conclusions: The pH-dependent multiparticulates provided sustained intestinal drug release and, when incorporated into ODTs, yielded a dosage form with a rapid wetting time and acceptable mechanical properties. This dosage form can offer a promising approach for improving compliance and therapeutic efficacy in patients with swallowing difficulties (dysphagia). Full article
(This article belongs to the Special Issue Paediatric and Neonatal Specific Dosage Forms and Administration)
Show Figures

Figure 1

21 pages, 8670 KB  
Article
Physicochemical, Granulometric, Morphological, and Surface Characterization of Dried Yellow Pitaya Powder as a Potential Diluent for Immediate-Release Quercetin Tablets
by Alejandra Mesa, Melanie Leyva, Jesús Gil Gonzáles, José Oñate-Garzón and Constain H. Salamanca
Sci 2025, 7(3), 126; https://doi.org/10.3390/sci7030126 - 5 Sep 2025
Viewed by 594
Abstract
The growing interest in sustainable materials has encouraged the valorization of agro-industrial byproducts for pharmaceutical, nutraceutical, and food applications. This study evaluated yellow pitaya peel powder, obtained via convective and refractance window drying, as a diluent in immediate-release quercetin tablets. The powders were [...] Read more.
The growing interest in sustainable materials has encouraged the valorization of agro-industrial byproducts for pharmaceutical, nutraceutical, and food applications. This study evaluated yellow pitaya peel powder, obtained via convective and refractance window drying, as a diluent in immediate-release quercetin tablets. The powders were characterized by physicochemical, granulometric, morphological, and surface properties, and compared with conventional excipients, including partially pregelatinized corn starch and spray-dried lactose monohydrate. Refractance window drying improved solubility, flowability, and structural integrity, while convective drying produced finer, more porous particles with lower water activity. Tablets formulated with both powders showed adequate hardness, low friability, and disintegration times under five minutes. All systems achieved complete quercetin release. Kinetic modeling revealed anomalous, matrix-regulated transport, with Weibull and Modified Hill models providing the best fit. Based on these results, pitaya peel powder could be considered a suitable diluent for the development of immediate-release tablets, offering functional performance aligned with sustainable formulation strategies. Full article
Show Figures

Graphical abstract

17 pages, 808 KB  
Article
Development of Orally Disintegrating Tablets of Standardized Rhodiola rosea Extract
by Oxana Brante, Rihards Talivaldis Bagons, Santa Niedra, Austris Mazurs, Baiba Mauriņa, Jurga Bernatoniene and Konstantins Logviss
Pharmaceuticals 2025, 18(9), 1328; https://doi.org/10.3390/ph18091328 - 4 Sep 2025
Viewed by 1934
Abstract
Background/Objectives: Rhodiola rosea L. (Crassulaceae), a perennial adaptogenic herb native to Northern Europe, Asia, and North America, is renowned for its therapeutic properties attributed to phenolic compounds including flavonoids, phenylethanoids, phenylpropanoids, and cinnamyl alcohol glycosides. The plant’s antioxidant and anti-inflammatory [...] Read more.
Background/Objectives: Rhodiola rosea L. (Crassulaceae), a perennial adaptogenic herb native to Northern Europe, Asia, and North America, is renowned for its therapeutic properties attributed to phenolic compounds including flavonoids, phenylethanoids, phenylpropanoids, and cinnamyl alcohol glycosides. The plant’s antioxidant and anti-inflammatory activities align with its traditional use in boosting physical and cognitive performance, reducing fatigue, and improving stress resilience. However, conventional dosage forms present compliance challenges, particularly for vulnerable populations with swallowing difficulties. This study aimed to develop and optimize orally disintegrating tablets (ODTs) containing standardized Rhodiola rosea root and rhizome (RR) dry extract to ensure rapid disintegration and acceptable taste, thereby improving patient compliance. Methods: Dried Rhodiola rosea root and rhizome (particle size 2–3 mm) were extracted using 70% m/m ethanol using the fractionated maceration methodology. The resulting dry RR extract was standardized to 3.0% m/m rosavin content by blending batches of the extract and analyzed using validated chromatographic methods. The standardized dry extract was formulated into ODTs via direct compression technology. Various excipients were evaluated to achieve rapid disintegration while masking the characteristic bitter taste of RR extract. Results: The optimized ODT formulation (500 mg, 11 mm ø, 20% standardized RR dry extract) disintegrated within 3 min and effectively masking the characteristic bitterness of the RR extract. The formulation maintained content uniformity and did not exhibit loss of active compounds during processing, meeting European Pharmacopoeia requirements for ODTs. Conclusions: The developed ODTs containing standardized Rhodiola rosea extract offer a patient-friendly alternative for oro-mucosal administration, supporting improved compliance in populations with swallowing difficulties while retaining the extract’s phytochemical integrity and sensory acceptability. Full article
Show Figures

Graphical abstract

19 pages, 5085 KB  
Article
Fabrication and Evaluation of Isomalt-Based Microfibers as Drug Carrier Systems
by Andrea Kovács, Bálint Attila Kecskés, Gábor Filipszki, Dóra Farkas, Bence Tóth, István Antal and Nikolett Kállai-Szabó
Pharmaceutics 2025, 17(8), 1063; https://doi.org/10.3390/pharmaceutics17081063 - 15 Aug 2025
Viewed by 920
Abstract
Background/Objectives: The melt-spinning process has seen limited application in the pharmaceutical industry. However, nano- and microfibrous structures show significant potential for novel drug delivery systems, due to their high specific surface area. To facilitate broader adoption in pharmaceutical technology, critical parameters influencing [...] Read more.
Background/Objectives: The melt-spinning process has seen limited application in the pharmaceutical industry. However, nano- and microfibrous structures show significant potential for novel drug delivery systems, due to their high specific surface area. To facilitate broader adoption in pharmaceutical technology, critical parameters influencing fiber quality and yield must be investigated. In this study, we aimed to develop an isomalt-based microfibrous carrier system for active pharmaceutical ingredients. Methods: The effects of different isomalt compositions—specifically, varying ratios of GPS (6-O-α-d-glucopyranosyl-d-sorbitol) and GPM (1-O-α-d-glucopyranosyl-d-mannitol)—as well as key process parameters, were systematically investigated to optimize fiber formation. The prepared fibers underwent different treatments. Morphological changes were monitored with a microscope, and microstructural changes were studied using a differential scanning calorimeter and X-ray diffractometer. The macroscopic behavior of the fibers was evaluated by image analysis under monitored conditions. Results: Statistical analysis was used to determine the optimal setting to produce isomalt-based fibers. We found that storage over ethanol vapor has a positive effect on the stability of the fibers. We successfully prepared ibuprofen sodium-containing fibers that remained stable after alcohol treatment and enabled drug release within 15 s. Conclusions: It was found that the applied GPS:GPM isomalt ratio significantly influenced fiber formation and that storage over ethanol positively influenced the processability and stability of the fibrous structure. An isomalt-based microfibrous system with advantageous physicochemical and structural properties was successfully developed as a potential drug carrier. The system is also resistant to the destructive effects of ambient humidity, enabling preparation of suitable dosage forms. Full article
Show Figures

Graphical abstract

33 pages, 2639 KB  
Article
Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation
by Barbara Giordani, Federica Monti, Elisa Corazza, Sofia Gasperini, Carola Parolin, Angela Abruzzo, Claudio Foschi, Antonella Marangoni, Monia Lenzi, Barbara Luppi and Beatrice Vitali
Pharmaceutics 2025, 17(8), 1011; https://doi.org/10.3390/pharmaceutics17081011 - 1 Aug 2025
Viewed by 766
Abstract
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics [...] Read more.
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics (i.e., cell-free supernatant and heat-killed cells), with the purpose of developing oral formulations to support intestinal health. Methods: The safety, effects on the adhesion of bifidobacteria and enteropathogens to intestinal cells, and anti-inflammatory properties of L. vaginalis BC17 viable cells and postbiotics were evaluated. Fast-disintegrating tablets were formulated by freeze-drying cell-free supernatant in combination with heat-killed or viable cells alongside maltodextrins. Results: The formulations were shown to be non-genotoxic and compatible with intestinal cell lines (Caco-2 and HT-29). BC17 viable cells survived in co-culture with intestinal cells up to 48 h and exhibited moderate adhesion to the cell lines. Notably, both BC17 viable cells and postbiotics enhanced the adhesion of beneficial bifidobacteria to Caco-2 cells by up to 250%, while reducing enteropathogens adhesion by 40–70%. Moreover, they exerted significant anti-inflammatory effects, reducing nitric oxide production in macrophages by 40–50% and protecting intestinal cells from SDS-induced damage. The formulations allowed administration of at least 109 BC17 cells in infants and adults through easy and rapid dispersion in milk or water, or directly in the oral cavity without chewing, and preserved their functional properties for up to 3 months of storage. Conclusions: L. vaginalis BC17 viable cells and postbiotics, as well as fast-disintegrating tablets, showed promising functional and safety profiles. Although further in vivo validation is needed, this approach represents a compelling strategy for promoting gut health. Full article
Show Figures

Graphical abstract

21 pages, 1905 KB  
Article
Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping
by Gerard Sweeney, Dijia Liu, Taher Hatahet, David S. Jones, Shu Li and Gavin P. Andrews
Pharmaceutics 2025, 17(8), 955; https://doi.org/10.3390/pharmaceutics17080955 - 24 Jul 2025
Viewed by 855
Abstract
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with [...] Read more.
Background/Objectives: Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with a particular focus on excipient functionality and robustness against AIDD. Methods: Felodipine sustained-release formulations were prepared via HME using Syncrowax HGLC as a thermally processable wax matrix. Microcrystalline cellulose (MCC) and lactose monohydrate were incorporated as functional fillers and processing aids. The influence of wax content and filler type on mechanical properties, wettability, and drug release behaviour was systematically evaluated. Ethanol susceptibility testing was conducted under simulated co-ingestion conditions (4%, 20%, and 40% v/v ethanol) to assess AIDD risk. Results: MCC-containing tablets demonstrated superior sustained-release characteristics over 24 h, showing better wettability and disintegration. In contrast, tablets formulated with lactose monohydrate remained structurally intact during dissolution, overly restricting drug release. This limitation was effectively addressed through granulation, where reduced particle size significantly improved surface accessibility, with 0.5–1 mm granules achieving a satisfactory release profile. Ethanol susceptibility testing revealed divergent behaviours between the two filler systems. Unexpectedly, MCC-containing tablets showed suppressed drug release in ethanolic media, likely resulting from inhibitory effect of ethanol on filler swelling and disintegration. Conversely, formulations containing lactose monohydrate retained their release performance in up to 20% v/v ethanol, with only high concentrations (40% v/v) compromising matrix drug-retaining functionality and leading to remarkably increased drug release. Conclusions: This study highlights the pivotal role of excipient type and constitutional ratios in engineering wax-based sustained-release formulations. It further contributes to the understanding of AIDD risk through in vitro assessment and offers a rational design strategy for robust, alcohol-resistant oral delivery systems for felodipine. Full article
(This article belongs to the Special Issue Advances in Hot Melt Extrusion Technology)
Show Figures

Figure 1

19 pages, 2098 KB  
Article
Influence of an Antioxidant Nanomaterial on Oral Tablet Formulation: Flow Properties and Critical Quality Attributes
by Andrea C. Ortiz, Javiera Carrasco-Rojas, Sofía Peñaloza, Mario J. Simirgiotis, Lorena Rubio-Quiroz, Diego Ruiz, Carlos F. Lagos, Javier Morales and Francisco Arriagada
Antioxidants 2025, 14(7), 829; https://doi.org/10.3390/antiox14070829 - 5 Jul 2025
Viewed by 982
Abstract
Antioxidant nanomaterials, particularly mesoporous silica nanoparticles (MSNs) functionalized with polyphenols, offer innovative solutions for protecting oxidation-sensitive components and enhancing bioavailability in pharmaceuticals or extending the shelf life of nutraceutical and food products. This study investigates the influence of MSNs functionalized with caffeic acid [...] Read more.
Antioxidant nanomaterials, particularly mesoporous silica nanoparticles (MSNs) functionalized with polyphenols, offer innovative solutions for protecting oxidation-sensitive components and enhancing bioavailability in pharmaceuticals or extending the shelf life of nutraceutical and food products. This study investigates the influence of MSNs functionalized with caffeic acid (MSN-CAF) on powder flow properties and their tableting performance. Aminated MSNs were synthesized via co-condensation and conjugated with caffeic acid using EDC/NHS chemistry. Antioxidant capacity was evaluated using DPPH, ABTS●+, ORAC, and FRAP assays. Powder blends with varying MSN-CAF concentrations (10–70%) were characterized for flow properties (angle of repose, Hausner ratio, Carr’s index), tablets were produced via direct compression, and critical quality attributes (weight uniformity, hardness, friability, disintegration, nanoparticle release) were assessed. MSN-CAF exhibited reduced antioxidant capacity compared with free caffeic acid due to pore entrapment but retained significant activity. Formulation F1 (10% MSN-CAF) showed excellent flowability (angle of repose: 12°, Hausner ratio: 1.16, Carr’s index: 14%), enabling robust tablet production with rapid disintegration, low friability, and complete nanoparticle release in 10 min. Additionally, the antioxidant nanomaterial demonstrated biocompatibility with the HepG2 cell line. MSN-CAF is a versatile nanoexcipient for direct compression tablets, offering potential as an active packaging agent and delivery system in the nutraceutical and food industries. Full article
Show Figures

Figure 1

17 pages, 2898 KB  
Article
Selective Laser Sintering of Atomoxetine Tablets: An Innovative Approach for Small-Scale, Personalized Production
by Gordana Stanojević, Ivana Adamov, Snežana Mugoša, Veselinka Vukićević and Svetlana Ibrić
Pharmaceutics 2025, 17(6), 794; https://doi.org/10.3390/pharmaceutics17060794 - 18 Jun 2025
Viewed by 754
Abstract
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing [...] Read more.
Background/Objectives: The growing interest in personalized medicine has accelerated the exploration of three-dimensional (3D) printing technologies in pharmaceutical applications. This study investigates the potential of selective laser sintering (SLS) as a flexible, small-scale manufacturing method for atomoxetine tablets tailored for individualized therapy, comparing it with conventional direct compression. Methods: Atomoxetine tablets were produced using SLS 3D printing with varying laser scanning speeds and compared to tablets made via a compaction simulator. Formulations were based on hydroxypropyl methylcellulose (HPMC) as the primary matrix former. The physical properties, drug content, disintegration time, and dissolution profiles were evaluated. The structural and chemical integrity were assessed using SEM, FTIR, DSC, and XRPD. Results: The SLS tablets exhibited comparable mechanical properties and drug content to those made by compaction. Lower laser speeds produced harder tablets with slower disintegration, while higher speeds yielded more porous tablets with ultra-rapid drug release (>85% in 15 min). All tablets met the European Pharmacopoeia dissolution criteria. No significant drug–excipient interactions or changes in crystallinity were detected. Conclusions: SLS printing is a viable alternative to traditional tablet manufacturing, offering control over drug release profiles through parameter adjustment. The technique supports the development of high-quality, patient-specific dosage forms and shows promise for broader implementation in personalized pharmaceutical therapy. Full article
Show Figures

Graphical abstract

21 pages, 5864 KB  
Article
Surge Dose® Formulations of NSAIDs Provide for Ultra-Rapid and Consistent Drug Absorption in Both the Fasted and Fed State as Predicted by Physiologically Based Biopharmaceutics Modelling
by Harri Dickinson, Zhixin Jiang, Paul A. Dickinson, Ian R. Wilding and Geraldine A. Elliott
Pharmaceutics 2025, 17(6), 708; https://doi.org/10.3390/pharmaceutics17060708 - 28 May 2025
Viewed by 1442
Abstract
Background/Objectives: This paper describes the use of physiologically based biopharmaceutics modelling (PBBM) to predict the effect of food on diclofenac and ibuprofen absorption from ultra-rapid-release Surge Dose® tablets. Methods: Fasted-state diclofenac pharmacokinetics (PK) were used with published IV data and biorelevant dissolution [...] Read more.
Background/Objectives: This paper describes the use of physiologically based biopharmaceutics modelling (PBBM) to predict the effect of food on diclofenac and ibuprofen absorption from ultra-rapid-release Surge Dose® tablets. Methods: Fasted-state diclofenac pharmacokinetics (PK) were used with published IV data and biorelevant dissolution data for the diclofenac tablets to develop a mechanistic PBBM model which could be used to predict absorption. Results: The resultant model that best fitted the PK data showed that, in vivo, the ultra-rapid-release tablets behaved like a solution with a median time to peak plasma concentration (Tmax) of 20 min. Incorporating a well-established model for gastric emptying in the fed state, the fed Tmax for these tablets was predicted to be 21 min, similar to that seen in fasted subjects. Use of a PBBM model to predict absorption of ibuprofen in the fasted and fed states again showed that ultra-rapid-release tablets produced fast and consistent absorption independent of the presence of food. Predicted mean Tmax values were 31.8 and 35.4 min in the fasted and fed states, respectively. Conclusions: Therefore, even if Surge Dose® formulations are taken after food, as frequently recommended for NSAIDs, the speed of absorption and subsequent onset of action should not be impacted. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

15 pages, 3844 KB  
Article
Effervescent Tablet Preparation by Twin-Screw Melt Granulation with Sorbitol as a Melt Binder
by Zoltán Márk Horváth, Kirils Kukuls, Alīna Jaroslava Frolova, Marta Žogota, Elżbieta Maria Buczkowska, Līga Pētersone and Valentyn Mohylyuk
Pharmaceutics 2025, 17(5), 676; https://doi.org/10.3390/pharmaceutics17050676 - 21 May 2025
Viewed by 3781
Abstract
Methods: Effervescent granules containing citric acid and sodium bicarbonate were successfully prepared for the first time via TS-MG using a polyol (sorbitol) as a melt binder. Results: Processing parameters, specifically granulation temperature and screw speed, were systematically varied to investigate their [...] Read more.
Methods: Effervescent granules containing citric acid and sodium bicarbonate were successfully prepared for the first time via TS-MG using a polyol (sorbitol) as a melt binder. Results: Processing parameters, specifically granulation temperature and screw speed, were systematically varied to investigate their influence. The granulation efficiency, inversely related to the wt.% of fines, decreased in the following order across the tested conditions (granulation temperature–screw speed; ℃-rpm): 95-6 > 100-5 > 90-5 > 100-7 > 90-7. Granulation temperature had a minimal impact on the bulk and tapped densities of the uncalibrated granules, whereas increased screw speed led to higher densities, associated with a reduced proportion of fines. The tensile strength of the resulting effervescent tablets increased with granulation temperature and was generally higher for tablets derived from granules with higher granulation efficiency. The residence time within the TS-MG barrel decreased with increasing temperature and screw speed. Notably, the greatest effect of granulation temperature on tensile strength occurred between 90 and 95 °C, particularly under longer residence times. The disintegration time of the tablets was shortest for the 90 °C and 5 rpm condition, corresponding to the lowest tensile strength, while tablets across formulations showed consistent homogeneity as indicated by similar pH values post-disintegration. Conclusions: These findings underscore sorbitol’s suitability as a melt binder and highlight the interplay between TS-MG parameters and the physical characteristics of effervescent granules and tablets. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

Back to TopTop