Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (814)

Search Parameters:
Keywords = temperature and moisture control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3395 KB  
Article
Sustainable Indoor Thermal Regulation with Hybrid Desiccant and Post-Cooling Technologies
by Lolaksha Shettigar, Nitesh Kumar, Madhwesh Nagaraj, Mandya Channegowda Gowrishankar, Shiva Kumar and Sampath Suranjan Salins
Sustainability 2025, 17(17), 7805; https://doi.org/10.3390/su17177805 - 29 Aug 2025
Abstract
This study investigated the performance of a hybrid desiccant dehumidification system integrated with a post-cooling mechanism, focusing on its application to energy-efficient indoor climate control. A liquid desiccant system using magnesium chloride (MgCl2) was tested in its pure form and in [...] Read more.
This study investigated the performance of a hybrid desiccant dehumidification system integrated with a post-cooling mechanism, focusing on its application to energy-efficient indoor climate control. A liquid desiccant system using magnesium chloride (MgCl2) was tested in its pure form and in combination with silica gel at 10% and 20% concentrations to enhance its moisture removal capabilities. The key parameters, including the air velocity (3–6 m/s), desiccant flow rate (1–3 LPM), and desiccant composition, were varied to analyze their effects on the dehumidification efficiency, moisture removal rate (MRR), temperature reduction after post-cooling, and coefficient of performance (COP). The results show that post-cooling using a crossflow heat exchanger effectively lowered the exit air temperature, ensuring thermal comfort. Addition of silica gel significantly improved system performance. The MgCl2 + 20% silica gel mixture achieved the highest dehumidification efficiency of 0.86, the greatest temperature drop of 1.95 °C, and the maximum COP of 2.36 at optimal flow conditions. While the dehumidification efficiency declined with increasing air velocity due to reduced contact time, the COP increased owing to the higher thermal processing of the air stream. This study highlights the potential of optimized hybrid desiccant systems as sustainable solutions for building air conditioning, aligning with the key Sustainable Development Goals (SDGs) related to clean energy, climate action, and sustainable infrastructure. Full article
Show Figures

Figure 1

18 pages, 2459 KB  
Article
Effect of Moisture and Aging of Kraft Paper Immersed in Mineral Oil and Synthetic Ester on Bubbling Inception Temperature in Power Transformers
by Ghada Gmati, Issouf Fofana, Patrick Picher, Oscar Henry Arroyo-Fernàndez, Djamal Rebaine, Fethi Meghnefi, Youssouf Brahami and Kouba Marie Lucia Yapi
Energies 2025, 18(17), 4579; https://doi.org/10.3390/en18174579 - 29 Aug 2025
Viewed by 43
Abstract
Bubbling Inception Temperature (BIT) is a critical metric that indicates the temperature at which gas bubbles form due to cellulose decomposition in a paper–oil insulation system. It serves as a key indicator of the thermal stability of transformer insulation, offering valuable insights into [...] Read more.
Bubbling Inception Temperature (BIT) is a critical metric that indicates the temperature at which gas bubbles form due to cellulose decomposition in a paper–oil insulation system. It serves as a key indicator of the thermal stability of transformer insulation, offering valuable insights into its performance under elevated temperatures. Building on findings from a companion study that examined the BIT of Kraft paper (KP), thermally upgraded Kraft paper (TUK), and aramid paper in mineral oil, this research expands the analysis to assess the impact of moisture, aging, and alternative dielectric fluids. Using the same customized experimental setup featuring precise dynamic load control, real-time bubble detection, and continuous monitoring of moisture and temperature, this study evaluates BIT across four distinct oil–paper aging stages: new (0 h) and 2 weeks, 4 weeks, and 6 weeks of accelerated thermal aging. This approach enables a comparative analysis of BIT in various paper–oil systems, focusing on both mineral oil and synthetic esters, as well as the influence of different moisture levels in the paper insulation. The results show that BIT decreases with aging, indicating reduced thermal stability. Furthermore, KP impregnated with synthetic ester exhibits a higher BIT than when impregnated with mineral oil, suggesting that synthetic esters may offer better resistance to bubble formation under thermal stress. Based on these results, empirical BIT models were developed as a function of degree of polymerization (DP) and water content in paper (WCP). This study further demonstrates how these models can be applied to quantify safety margins under emergency overloading conditions, providing a practical tool for operational decision-making in transformer thermal risk management. Full article
Show Figures

Figure 1

20 pages, 10218 KB  
Article
Numerical Simulation of Deep Bed Cooling Drying Process of Pellet Feed Based on Non-Equilibrium Model
by Wei Wang, Junhua Wu, Fanglei Zou, Hongying Wang and Liangju Wang
Appl. Sci. 2025, 15(17), 9445; https://doi.org/10.3390/app15179445 - 28 Aug 2025
Viewed by 77
Abstract
In this study, a deep bed cooling drying model based on non-equilibrium model was established for pellet feed. The modified Verma model was used to describe the thin-layer drying rate, and the air temperature coefficient was introduced to optimize the convection heat transfer [...] Read more.
In this study, a deep bed cooling drying model based on non-equilibrium model was established for pellet feed. The modified Verma model was used to describe the thin-layer drying rate, and the air temperature coefficient was introduced to optimize the convection heat transfer coefficient. The model was verified by the enterprise production data and laboratory-scale cooling and drying test. The results show that the improved model can accurately predict the changes in feed temperature and moisture and has good applicability to the cooling and drying process under different wind speeds, air temperatures, and humidity. The model lays a foundation for the development of an intelligent control system for a pellet feed cooler and has important engineering value for achieving real-time control of cooling process parameters, improving feed quality stability and energy savings, and reducing energy consumption. Full article
Show Figures

Figure 1

8 pages, 2553 KB  
Proceeding Paper
Arduino-Based Sensor System Prototype for Microclimate Monitoring of an Experimental Greenhouse
by Ivaylo Belovski, Todor Mihalev, Elena Koleva and Aleksandar Mandadzhiev
Eng. Proc. 2025, 104(1), 54; https://doi.org/10.3390/engproc2025104054 - 27 Aug 2025
Viewed by 108
Abstract
Arduino-based sensor systems are gaining widespread adoption in modern technological applications due to their accessibility, low-cost components, diverse sensor compatibility, high reliability, and user-friendly programming. Because of these advantages, such a system was selected to monitor and control microclimate parameters in a small-scale [...] Read more.
Arduino-based sensor systems are gaining widespread adoption in modern technological applications due to their accessibility, low-cost components, diverse sensor compatibility, high reliability, and user-friendly programming. Because of these advantages, such a system was selected to monitor and control microclimate parameters in a small-scale experimental greenhouse. The greenhouse will cultivate several vegetable species in soils with varying zeolite concentrations. The aim of this paper is to present the design and prototype development of a sensor system capable of tracking key environmental parameters, including temperature, humidity, atmospheric pressure, and soil moisture, while also enabling automated irrigation. Full article
Show Figures

Figure 1

20 pages, 13277 KB  
Article
The Thermodynamic and Dynamic Cause Analysis of Three Extensive Compound Heatwaves from 2011 to 2024 in Mainland Spain
by Zeqi Li, Nan Jiang, Yan Xu, Luísa Bastos, Jiangteng Wang and Tianhe Xu
Remote Sens. 2025, 17(17), 2976; https://doi.org/10.3390/rs17172976 - 27 Aug 2025
Viewed by 247
Abstract
In recent years, frequent heatwaves (HWs) in Spain have increased mortality rates and impacted ecosystems. While most studies only investigate the causes of HWs in a single year, we analyzed the thermodynamic and dynamic causes of three extensive compound HWs (defined as concurrent [...] Read more.
In recent years, frequent heatwaves (HWs) in Spain have increased mortality rates and impacted ecosystems. While most studies only investigate the causes of HWs in a single year, we analyzed the thermodynamic and dynamic causes of three extensive compound HWs (defined as concurrent daytime and nighttime high temperatures) over mainland Spain during the 2011–2024 summers using station and reanalysis data. In addition, we explained the differences in the duration of the three HWs in terms of thermodynamic processes and the evolution of large-scale circulation systems. For thermodynamic analysis, we applied the first law of thermodynamics to examine local temperature variations and the surface energy balance to assess solar radiation and soil moisture impacts on HWs. It was found that high temperatures occurred more frequently over mainland Spain during 2015–2024 compared with 2011–2014. The thermodynamic analysis indicates negative contributions from horizontal advection, positive contributions from adiabatic heating, and a dominant positive contribution from diabatic heating in the formation of the three HWs. Although we observed anomalously increased solar radiation during the three HWs, soil moisture deficit was the primary factor in HW formation. The dynamic analysis shows that a similar large-scale circulation configuration prevailed over mainland Spain during the three HWs. The region was simultaneously controlled by an anomalously intense Azores High and the ridge line of a warm high-pressure ridge, accompanied by a weak divergent flow. This work offers valuable insights for the study of HWs in Spain and helps to understand the universal mechanism behind the HWs. Full article
Show Figures

Figure 1

18 pages, 5845 KB  
Article
Mechanical Properties and Microstructure of High-Performance Cold Mix Asphalt Modified with Portland Cement
by Anmar Dulaimi, Yasir N. Kadhim, Qassim Ali Al Quraishy, Hayder Al Hawesah, Tiago Pinto Ribeiro and Luís Filipe Almeida Bernardo
CivilEng 2025, 6(3), 46; https://doi.org/10.3390/civileng6030046 - 27 Aug 2025
Viewed by 207
Abstract
The use of hot mix asphalt (HMA) has several drawbacks, such as the emission of harmful gases into the atmosphere, difficulties in maintaining temperature over long distances, and the requirement for high energy consumption during preparation and installation. In order to solve these [...] Read more.
The use of hot mix asphalt (HMA) has several drawbacks, such as the emission of harmful gases into the atmosphere, difficulties in maintaining temperature over long distances, and the requirement for high energy consumption during preparation and installation. In order to solve these issues, this research aimed to produce High-Performance Cold Mix Asphalt (HP-CMA), in which Ordinary Portland Cement (OPC) is used as a filler to replace limestone filler at 0%, 1.5%, 3%, 4.5%, and 6% of the aggregate weight. Indirect Tensile Stiffness Modulus (ITSM), moisture susceptibility, temperature susceptibility, and microstructural analysis tests were carried out. The results showed that the ITSM was considerably enhanced when OPC was utilized. When comparing HP-CMA with 3% OPC to the control HMA (100–150 pen), the ITSM increased by approximately 80% after three days. In contrast, HP-CMA with 4.5% OPC achieved the same ITSM as the control HMA (40–60 pen) after seven days. Moreover, the ITSM of the HMA 40–60 pen decreased by 91.93% when the temperature rose from 20 °C to 45 °C, whereas the ITSM of the HP-CMA with 6% OPC decreased by 42.47% over the same temperature range. This suggests that HP-CMA is more stable than the HMA 40–60 pen at elevated temperatures. The superior performance of the HP-CMA can be attributed to two essential factors: the improved binding effect due to the demulsification of the asphalt emulsion used as a binder, and the formation of hydration products from the added cement. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

53 pages, 14385 KB  
Review
Stimuli-Responsive Starch-Based Biopolymer Coatings for Smart and Sustainable Fertilizers
by Babar Azeem
Gels 2025, 11(9), 681; https://doi.org/10.3390/gels11090681 - 26 Aug 2025
Viewed by 362
Abstract
The quest for sustainable agriculture demands nutrient delivery systems that align productivity with environmental responsibility. This review critically evaluates stimuli-responsive starch-based biopolymer coatings for controlled-release fertilizers (CRFs), highlighting their structure, functionality, and agronomic relevance. Starch, an abundant and biodegradable polysaccharide, offers intrinsic advantages [...] Read more.
The quest for sustainable agriculture demands nutrient delivery systems that align productivity with environmental responsibility. This review critically evaluates stimuli-responsive starch-based biopolymer coatings for controlled-release fertilizers (CRFs), highlighting their structure, functionality, and agronomic relevance. Starch, an abundant and biodegradable polysaccharide, offers intrinsic advantages such as modifiability, film-forming ability, and compatibility with green chemistry. The paper discusses starch’s physicochemical characteristics, its functionalization to achieve responsiveness to environmental triggers (pH, moisture, temperature, ionic strength), and coating strategies like in situ polymerization, grafting, and nanocomposite integration. A comprehensive analysis of release kinetics, swelling behavior, biodegradability, and water retention is provided, followed by evaluations under simulated field conditions, encompassing various soil types, environmental stressors, and crop responses. Comparative insights with other smart biopolymers such as chitosan, alginate, and cellulose underscore starch’s unique position in CRF technology. Despite promising developments, the review identifies critical research gaps, including limitations in scalability, coordination of multi-stimuli responses, and the need for extensive field validation. This work serves as a consolidated platform for researchers, policy makers, and agro-industrial stakeholders aiming to design smart, eco-friendly fertilizers that address global food security while minimizing ecological footprints. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

27 pages, 2873 KB  
Article
A Comprehensive Environmental and Molecular Strategy for the Evaluation of Fluroxypyr and Nature-Derived Compounds
by Ion Valeriu Caraba, Luminita Crisan and Marioara Nicoleta Caraba
Int. J. Mol. Sci. 2025, 26(17), 8209; https://doi.org/10.3390/ijms26178209 - 24 Aug 2025
Viewed by 446
Abstract
This study evaluated the effects of different doses of the herbicide fluroxypyr on soil microbial communities under controlled laboratory conditions. Specific enzymatic activities ((dehydrogenase (DA), urease (UA), catalase (CA), phosphatase (PA)) and quantitative variations in bacterial and fungal populations were measured regarding key [...] Read more.
This study evaluated the effects of different doses of the herbicide fluroxypyr on soil microbial communities under controlled laboratory conditions. Specific enzymatic activities ((dehydrogenase (DA), urease (UA), catalase (CA), phosphatase (PA)) and quantitative variations in bacterial and fungal populations were measured regarding key physico-chemical soil parameters (temperature, pH, electrical conductivity, moisture, organic matter, ammonium, nitrate nitrogen, and available phosphate content). The effects of the herbicide on the targeted parameters were dose- and time-dependent. Fluroxypyr induced a clear decrease in DA, CA, and PA during the first 14 days after administration, while UA showed a decrease in the first 7 days, followed by a slight increase starting on day 14, closely related to the applied dose. Microbial populations decreased in direct relation to the fluroxypyr dose. Organic matter content exhibited a positive correlation with DA, UA, CA, as well as with microbial populations. In addition, three natural compounds structurally similar to fluroxypyr were identified via 3D virtual screening, demonstrating potential herbicidal activity. Fluroxypyr can alter soil metabolic activity and disrupt microbial communities, thereby affecting soil fertility. Used as a reference in 3D screening, fluroxypyr helped identify three natural compounds with potential herbicidal activity as safer alternatives to synthetic herbicides. Full article
Show Figures

Figure 1

25 pages, 3579 KB  
Review
Mulching for Weed Management in Medicinal and Aromatic Cropping Systems
by Ana Dragumilo, Tatjana Marković, Sava Vrbničanin, Stefan Gordanić, Milan Lukić, Miloš Rajković, Željana Prijić and Dragana Božić
Horticulturae 2025, 11(9), 998; https://doi.org/10.3390/horticulturae11090998 - 22 Aug 2025
Viewed by 306
Abstract
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a [...] Read more.
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a sustainable, non-chemical method for weed management in the cultivation of MAPs and examines how effectively organic, synthetic, and living mulches reduce weeds and increase yields. Regarding different mulch materials such as straw, sawdust, bark, needles, compost, polyethylene, and biodegradable films, the basic processes of mulch activity, including light interception, physical suppression, and microclimate adjustment, are examined. The review further analyzes the impact of mulching on soil parameters (moisture, temperature, pH, chlorophyll content) and the biosynthesis of secondary metabolites. The findings consistently indicate that mulching substantially reduces weed biomass, improves crop performance, and supports organic farming practices. However, there are still issues with cost, material availability, and possible soil changes, and the efficacy is affected by variables including cultivated plant species, mulch type, and application thickness. The review highlights the importance of further research to optimize the selection of mulch and MAPs and their application across various agroecological conditions, and indicates that mulching is a potential, environmentally friendly technique for weed control in MAP cultivations. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

30 pages, 5301 KB  
Article
Dual-Scale Modelling of the Vacuum Drying Process for Transformer Cellulose-Based Insulation
by Nikola Borovnik, Saša Mudrinić and Nenad Ferdelji
Processes 2025, 13(9), 2676; https://doi.org/10.3390/pr13092676 - 22 Aug 2025
Viewed by 302
Abstract
The vacuum drying of cellulose-based insulation is an essential step in the transformer manufacturing process, typically consisting of both heat and vacuum application. The moisture inside cellulose insulation during this process is transferred by various transport mechanisms, some of which are affected by [...] Read more.
The vacuum drying of cellulose-based insulation is an essential step in the transformer manufacturing process, typically consisting of both heat and vacuum application. The moisture inside cellulose insulation during this process is transferred by various transport mechanisms, some of which are affected by the insulation’s temperature. Moreover, the conditions within the vacuum chamber are generally transient and highly dynamic, depending on the employed process control strategy, and may include various phenomena, such as gas expansion during pump-down and radiative heat transfer. From a modelling perspective, these factors can significantly impact the drying rate by altering the boundary conditions of heat and mass transport equations. To account for such effects, a model that considers the process at both the scale of cellulose insulation and the scale of the vacuum chamber is presented. A simplified drying system with two-point process control is introduced to simulate multiple cases. The results highlight the sensitivity of drying behaviour to both the model parameters and the selected control strategy. A comparison with existing Fickian diffusion models indicates that the proposed model, when properly calibrated, can reliably reproduce drying dynamics and thus provide a powerful tool for optimizing vacuum drying procedures. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

13 pages, 1203 KB  
Article
Peste des Petits Ruminants Vaccine: Criteria for Assessing Its Thermotolerance
by Charles S. Bodjo, Hassen Belay Gelaw, Zione D. Luhanga, Yebechaye Degefa Tessema, Jean-De-Dieu Baziki, Cisse R. Moustapha Boukary, Gelagay Ayelet Melesse, Ethel Chitsungo, Nick Nwankpa, Simon Kihu, Felix Njeumi, Satya Parida and Adama Diallo
Viruses 2025, 17(9), 1151; https://doi.org/10.3390/v17091151 - 22 Aug 2025
Viewed by 1148
Abstract
The Peste des Petits Ruminants (PPR) live attenuated vaccines, the PPR virus (PPRV) Nigeria 75/1 strain (lineage II) and PPRV India Sungry 96 strain (lineage IV), currently used for control and eradication programme are very efficient vaccines as they provide the host, sheep [...] Read more.
The Peste des Petits Ruminants (PPR) live attenuated vaccines, the PPR virus (PPRV) Nigeria 75/1 strain (lineage II) and PPRV India Sungry 96 strain (lineage IV), currently used for control and eradication programme are very efficient vaccines as they provide the host, sheep and goats, a lifelong immunity after a single minimum recommended dose of 102.5 TCID50/mL. Unfortunately, both live attenuated vaccines are thermolabile and their use requires maintaining the cold chain from the manufactory premises to the field as most PPR-infected regions are facing of hot climate, with poor infrastructure, and the maintenance of an effective cold chain remains a challenge. To address this challenge, efforts have focused on developing thermotolerant (ThT) PPR vaccines using different stabilisers and improving the freeze-drying process. This study aimed to define the criteria for the evaluation of the stability of ThT PPR vaccines. A total of 37 batches of freeze-dried PPR vaccines using the PPRV Nigeria 75/1 strain, including eight (8) and twenty-nine (29) vaccines labelled as ThT and conventional formulations, respectively, were tested to evaluate the stability at temperatures of 40 °C to simulate the field conditions in some hot climate regions. All the vaccine batches included in this study initially showed acceptable levels of residual moisture, below 3%, and titres above the minimum WOAH standard requirement of 102.5 TCID50/mL. Following the incubation at 40 °C, 56.7% and 46% of the 37 vaccine batches tested retained titres above 102.5 TCID50/mL on day 3 and day 5, respectively. These vaccines use stabilisers such as skimmed milk, lactalbumin–sucrose, trehalose and one unnamed product (which may be protected for patent). The mean of titre loss among the PPR vaccines maintaining titres above 102.5 TCID50/mL was 0.78 log10 at day 3 and 0.99 log10 at day 5, suggesting a significant early degradation during the first 3 days. Based on these data, it is proposed that thermotolerant PPR vaccines should maintain a minimum titre of 102.5 TCID50/mL for vaccine dose on day 5 post-incubation at 40 °C with a titre loss below 1 log10 per mL. Preliminary immunogenicity test results showed that the PPR ThT vaccine meeting this criterion could be used in the field without maintaining a cold chain for up to 3 weeks, offering a practical solution for vaccination in remote areas. Full article
Show Figures

Figure 1

19 pages, 3081 KB  
Article
Temporal and Statistical Insights into Multivariate Time Series Forecasting of Corn Outlet Moisture in Industrial Continuous-Flow Drying Systems
by Marko Simonič and Simon Klančnik
Appl. Sci. 2025, 15(16), 9187; https://doi.org/10.3390/app15169187 - 21 Aug 2025
Viewed by 327
Abstract
Corn drying is a critical post-harvest process to ensure product quality and compliance with moisture standards. Traditional optimization approaches often overlook dynamic interactions between operational parameters and environmental factors in industrial continuous flow drying systems. This study integrates statistical analysis and deep learning [...] Read more.
Corn drying is a critical post-harvest process to ensure product quality and compliance with moisture standards. Traditional optimization approaches often overlook dynamic interactions between operational parameters and environmental factors in industrial continuous flow drying systems. This study integrates statistical analysis and deep learning to predict outlet moisture content, leveraging a dataset of 3826 observations from an operational dryer. The effects of inlet moisture, target air temperature, and material discharge interval on thermal behavior of the system were evaluated through linear regression and t-test, which provided interpretable insights into process dependencies. Three neural network architectures (LSTM, GRU, and TCN) were benchmarked for multivariate time-series forecasting of outlet corn moisture, with hyperparameters optimized using grid search to ensure fair performance comparison. Results demonstrated GRU’s superior performance in the context of absolute deviations, achieving the lowest mean absolute error (MAE = 0.304%) and competitive mean squared error (MSE = 0.304%), compared to LSTM (MAE = 0.368%, MSE = 0.291%) and TCN (MAE = 0.397%, MSE = 0.315%). While GRU excelled in average prediction accuracy, LSTM’s lower MSE highlighted its robustness against extreme deviations. The hybrid methodology bridges statistical insights for interpretability with deep learning’s dynamic predictive capabilities, offering a scalable framework for real-time process optimization. By combining traditional analytical methods (e.g., regression and t-test) with deep learning-driven forecasting, this work advances intelligent monitoring and control of industrial drying systems, enhancing process stability, ensuring compliance with moisture standards, and indirectly supporting energy efficiency by reducing over drying and enabling more consistent operation. Full article
Show Figures

Figure 1

19 pages, 4055 KB  
Article
Effects of Cassava and Modified Starch on the Structural and Functional Characteristics of Peanut Protein-Based Meat Analogs
by Yuhan Su, Jiale Guan, Shuhong Liu, Yiqun Zhu, Liangyan Hu, Yifan Zhang, Fei Lu and Minpeng Zhu
Foods 2025, 14(16), 2849; https://doi.org/10.3390/foods14162849 - 17 Aug 2025
Viewed by 385
Abstract
Meat analog manufacturing via high-moisture extrusion technology is a complex process wherein the properties of protein materials constitute a critical determining factor. In this study, we enhanced the fiber structure properties of high-moisture extruded peanut protein-based meat analogs by incorporating different starches (cassava [...] Read more.
Meat analog manufacturing via high-moisture extrusion technology is a complex process wherein the properties of protein materials constitute a critical determining factor. In this study, we enhanced the fiber structure properties of high-moisture extruded peanut protein-based meat analogs by incorporating different starches (cassava starch, acetyl distarch phosphate [ADSP], and hydroxypropyl starch) to address challenges in water retention, emulsification, and digestibility. The impact of the starch content (0, 3, 6, 9, 12%) was assessed using low-field nuclear magnetic resonance, ultraviolet/fluorescence spectroscopy, differential scanning calorimetry, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and functional tests. Compared with controls without starch, adding 6% ADSP significantly improved the water retention by forming a dense, charged network, reducing T2b (0.37 ms) and T22 (175.30 ms). ADSP (12%) enhanced the emulsification (activity index 10.28 m2/g, stability index 75%); the cassava starch (12%) increased the in vitro protein digestibility to 83% due to amylopectin degradation. Hydroxypropyl starch (6%) elevated the thermal stability (peak temperature 125.71 °C) by forming a viscous protective matrix (p < 0.05). Ultraviolet and fluorescence spectra indicated protein–starch interactions, with ADSP inducing the most pronounced conformational changes. This study demonstrated that the starch type and concentration critically modulate protein–starch interactions, offering guidance for enhancing the quality of meat analogs. Full article
Show Figures

Graphical abstract

18 pages, 3189 KB  
Article
Environmental Monitoring and Quality Dynamics of Wheat During One Year of Natural Storage
by Diana Petronela Poetelea, Emilian Mosnegutu, Claudia Tomozei, Florin Nedeff, Narcis Barsan, Mirela Panainte-Lehadus, Diana Carmen Mirila and Grzegorz Przydatek
Processes 2025, 13(8), 2549; https://doi.org/10.3390/pr13082549 - 13 Aug 2025
Viewed by 342
Abstract
This study investigates the impact of climatic factors on the quality of naturally stored wheat, focusing on the relationship between environmental conditions (temperature and humidity) and key physico-chemical properties (internal moisture, protein, gluten, and test weight). Elevated temperatures (>25 °C) and high relative [...] Read more.
This study investigates the impact of climatic factors on the quality of naturally stored wheat, focusing on the relationship between environmental conditions (temperature and humidity) and key physico-chemical properties (internal moisture, protein, gluten, and test weight). Elevated temperatures (>25 °C) and high relative humidity (>65%) are known to accelerate grain degradation, promoting mold development and reducing baking quality. This research was conducted over 12 months in a temperate-region storage facility in Romania, using RO 1 common wheat (Triticum aestivum L.) harvested in 2023. A total of 48 samples were periodically collected, and environmental and product parameters were continuously monitored using a LoRaWAN-based digital system. The results revealed strong correlations between ambient humidity and grain moisture (r2 = 0.99), and between external and internal temperatures (r2 = 0.99), with observable thermal and hygroscopic lags. Wheat quality degradation was most pronounced during warmer months, with protein content decreasing from 13.1% to 11.6%, gluten from 27.1% to below 26%, and hectoliter weight from 80.1 kg/hl to under 78 kg/hl. Multivariate statistical analyses (PCA and HCA) identified clusters of interdependent variables, while regression-based predictive models achieved high accuracy (r2 > 0.97), confirming the feasibility of forecasting wheat quality under varying climatic scenarios. These findings underscore the critical role of climate control and real-time environmental monitoring in preserving wheat quality during storage. This study supports the integration of advanced technologies and predictive analytics into post-harvest management strategies, contributing to reduced losses and enhanced food safety in the agri-food supply chain. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 4150 KB  
Article
Testing and EDEM Simulation Analysis of Material Properties of Small Vegetable Seeds for Sustainable Seeding Process
by Jiaoyang Duan, Xingrui Shi and Baolong Wang
Sustainability 2025, 17(16), 7292; https://doi.org/10.3390/su17167292 - 12 Aug 2025
Viewed by 382
Abstract
In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural [...] Read more.
In the design of operating procedures, structures, and control systems for agricultural machinery and equipment, it is necessary to fully consider data on the properties of relevant agricultural materials as the basis for research and design. Therefore, studying the physical properties of agricultural materials is of great significance. The basic physical parameters of agricultural materials include their shape, size, density, porosity, and moisture content. This study focuses on the triaxial dimensions, 1000-grain weight, moisture content, and tribological properties (sliding friction angle, natural repose angle) of the seeds of 16 varieties of small-seeded vegetables commonly grown in Hainan, including flowering Chinese cabbage, Chinese cabbage, lettuce, and leaf lettuce. Measurements were conducted using instruments such as a digital vernier caliper (Deli, Ningbo, China; accuracy 0.01 mm), an electronic balance (LICHEN, Shanghai, China; accuracy 0.001 g), a constant-temperature oven (Shangyi, Shanghai, China), and self-developed sliding friction angle and natural repose angle testers. Discrete element simulations were performed via EDEM 2021 software to validate the tribological properties by establishing particle models (spherical for flowering Chinese cabbage and Chinese cabbage; long–flat for lettuce and leaf lettuce) and instrument geometric models. Additionally, seed germinability (germination potential, germination rate, and germination speed) was tested using a constant-temperature incubation method. The results showed distinct differences between near-spherical and long–flat seeds in geometric characteristics, 1000-grain weight (2.27–3.06 g vs. 1.00–1.29 g), and tribological behavior (e.g., smaller natural repose angles for near-spherical seeds indicating better flowability). Plastic plates were identified as optimal for seed box guides due to lower sliding friction coefficients. EDEM 2021 simulations effectively verified the experimental data. High-germination-rate seeds (e.g., Hong Kong flowering Chinese cabbage, and Lifeng No.3 Chinese cabbage) were recommended for subsequent trials. These findings provide data support for the selection, design, and optimization of seed rope braiding machine components and sustainable seeding process. Full article
(This article belongs to the Special Issue Agricultural Engineering for Sustainable Development)
Show Figures

Figure 1

Back to TopTop