Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = temperature and pressure control of operating rooms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3542 KB  
Article
Design and Implementation of a Cascade Control System for a Variable Air Volume in Operating Rooms Based on Pressure and Temperature Feedback
by Abdulmohaymin Bassim Qassim, Shaimaa Mudhafar Hashim and Wajdi Sadik Aboud
Sensors 2025, 25(18), 5656; https://doi.org/10.3390/s25185656 - 10 Sep 2025
Viewed by 509
Abstract
This research presents the design and implementation of a cascade Proportional–Integral (PI) controller tailored for a Variable Air Volume (VAV) system that was specially created and executed particularly for hospital operating rooms. The main goal of this work is to make sure that [...] Read more.
This research presents the design and implementation of a cascade Proportional–Integral (PI) controller tailored for a Variable Air Volume (VAV) system that was specially created and executed particularly for hospital operating rooms. The main goal of this work is to make sure that the temperature and positive pressure stay within the limits set by ASHRAE Standard 170-2017. This is necessary for patient safety, surgical accuracy, and system reliability. The proposed cascade design uses dual-loop PI controllers: one loop controls the temperature based on user-defined setpoints by local control touch screen, and the other loop accurately modulates the differential pressure to keep the pressure of the environment sterile (positive pressure). The system works perfectly with Building Automation System (BAS) parts from Automated Logic Corporation (ALC) brand, like Direct Digital Controllers (DDC) and Web-CTRL software with Variable Frequency Drives (VFDs), advanced sensors, and actuators that give real-time feedback, precise control, and energy efficiency. The system’s exceptional responsiveness, extraordinary stability, and resilient flexibility were proven through empirical validation at the Korean Iraqi Critical Care Hospital in Baghdad under a variety of operating circumstances. Even during rapid load changes and door openings, the control system successfully maintained the temperature between 18 and 22 °C and the differential pressure between 3 and 15 Pascals. Four performance scenarios, such as normal (pressure and temperature), high-temperature, high-pressure, and low-pressure cases, were tested. The results showed that the cascade PI control strategy is a reliable solution for critical care settings because it achieves precise environmental control, improves energy efficiency, and ensures compliance with strict healthcare facility standards. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 838 KB  
Review
A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma
by Miral Javed, Wei Cao, Linyi Tang and Kevin M. Keener
Toxins 2025, 17(3), 129; https://doi.org/10.3390/toxins17030129 - 10 Mar 2025
Cited by 1 | Viewed by 2375
Abstract
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global [...] Read more.
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the “working” gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

12 pages, 4178 KB  
Article
Static Mechanical Properties of Aeolian Sand Improved with Silt Subjected to Varying Temperature and Pressure
by Bojun Cui, Jian Xu, Xianxian Shao, Dechao Xu and Bingqi Zhang
Buildings 2024, 14(12), 3801; https://doi.org/10.3390/buildings14123801 - 28 Nov 2024
Cited by 1 | Viewed by 826
Abstract
Delineating the mechanical characteristics of aeolian sand improved with silt under temperature action is of great significance for the construction and long-term operation of engineering materials in seasonal frozen areas. Against the backdrop of aeolian sand resource utilization in the western region, local [...] Read more.
Delineating the mechanical characteristics of aeolian sand improved with silt under temperature action is of great significance for the construction and long-term operation of engineering materials in seasonal frozen areas. Against the backdrop of aeolian sand resource utilization in the western region, local obtainable wind turbine sand and silt were used as raw materials, and a series of triaxial compression tests were conducted on aeolian sand improved with silt through temperature-controlled triaxial testers. The experimental parameters were as follows: silt content of 0%, 5%, 10%, 15%, and 20%; confining pressures of 100 kPa, 200 kPa, and 300 kPa; and temperatures of room temperature, 0 °C, −5 °C, −10 °C, and −15 °C. The results of the experiment demonstrated that the interaction between silt dosage, confining pressure, and temperature effects significantly influenced the triaxial compression strength of aeolian sand improved with silt. As the dosage of silt increased from 0% to 15%, the peak strength of the samples rose by 7.72% to 18.03%. This maximum increase occurred at a silt dosage of 15%. With the increase in confining pressures, the stress–strain relationship curve for the sample exhibits strain softening characteristics. Under varying temperatures, the samples exhibited a consistent pattern of initial shrinkage followed by subsequent expansion. As temperatures decrease, cohesive forces exhibit a wavelike pattern in their variation, with an essentially constant internal friction angle. The research results can provide theoretical support for the selection of building materials in the northwest region, address the issue of regional material shortages, and improve the application of aeolian sand in seasonally frozen areas. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 3108 KB  
Article
Design and Construction of a Radiochemistry Laboratory and cGMP-Compliant Radiopharmacy Facility
by Angela Asor, Abdullah Metebi, Kylie Smith, Kurt Last, Elaine Strauss and Jinda Fan
Pharmaceuticals 2024, 17(6), 680; https://doi.org/10.3390/ph17060680 - 25 May 2024
Cited by 4 | Viewed by 3628
Abstract
The establishment of a compliant radiopharmacy facility within a university setting is crucial for supporting fundamental and preclinical studies, as well as for the production of high-quality radiopharmaceuticals for clinical testing in human protocols as part of Investigational New Drug (IND) applications that [...] Read more.
The establishment of a compliant radiopharmacy facility within a university setting is crucial for supporting fundamental and preclinical studies, as well as for the production of high-quality radiopharmaceuticals for clinical testing in human protocols as part of Investigational New Drug (IND) applications that are reviewed and approved by the U.S. Food and Drug Administration (FDA). This manuscript details the design and construction of a 550 ft2 facility, which included a radiopharmacy and a radiochemistry laboratory, to support radiopharmaceutical development research and facilitate translational research projects. The facility was designed to meet FDA guidelines for the production of aseptic radiopharmaceuticals in accordance with current good manufacturing practice (cGMP). A modular hard-panel cleanroom was constructed to meet manufacturing classifications set by the International Organization of Standardization (ISO), complete with a gowning room and an anteroom. Two lead-shielded hot cells and two dual-mini hot cells, connected via underground trenches containing shielded conduits, were installed to optimize radioactive material transfer while minimizing personnel radiation exposure. Concrete blocks and lead bricks provided sufficient and cost-effective radiation shielding for the trenches. Air quality was controlled using pre-filters and high-efficiency particulate air (HEPA) filters to meet cleanroom ISO7 (Class 10,000) standards. A laminar-flow biosafety cabinet was installed in the cleanroom for preparation of sterile dose vials. Noteworthy was a laminar-flow insert in the hot cell that provided a shielded laminar-flow sterile environment meeting ISO5 (class 100) standards. The design included the constant control and monitoring of differential air pressures across the cleanroom, anteroom, gowning room, and controlled research space, as well as maintenance of temperature and humidity. The facility was equipped with state-of-the-art equipment for quality control and release testing of radiopharmaceuticals. Administrative controls and standard operating procedures (SOPs) were established to ensure compliance with manufacturing standards and regulatory requirements. Overall, the design and construction of this radiopharmacy facility exemplified a commitment to advancing fundamental, translational, and clinical applications of radiopharmaceutical research within an academic environment. Full article
(This article belongs to the Special Issue Recent Advancements in Radiochemistry and PET Radiotracer Development)
Show Figures

Figure 1

42 pages, 8548 KB  
Review
Magnetron Sputtered Lead Titanates Thin Films for Pyroelectric Applications: Part 1: Epitaxial Growth, Material Characterization
by Morteza Fathipour, Yanan Xu and Mukti Rana
Materials 2024, 17(1), 221; https://doi.org/10.3390/ma17010221 - 30 Dec 2023
Cited by 1 | Viewed by 2343
Abstract
Pyroelectric materials, are those materials with the property that in the absence of any externally applied electric field, develop a built-in spontaneous polarization in their unit cell structure. They are regarded as ideal detector elements for infrared applications because they can provide fast [...] Read more.
Pyroelectric materials, are those materials with the property that in the absence of any externally applied electric field, develop a built-in spontaneous polarization in their unit cell structure. They are regarded as ideal detector elements for infrared applications because they can provide fast response time and uniform sensitivity at room temperature over all wavelengths. Crystals of the perovskite Lead Titanate (PbTiO3) family show pyroelectric characteristics and undergo structural phase transitions. They have a high Curie temperature (the temperature at which the material changes from the ferroelectric (polar) to the paraelectric (nonpolar) phase), high pyroelectric coefficient, high spontaneous polarization, low dielectric constant, and constitute important component materials not only useful for infrared detection, but also with vast applications in electronic, optic, and Micro-electromechanical systems (MEMS) devices. However, the preparation of large perfect, and pure single crystals of PbTiO3 is challenging. Additionally, difficulties arise in the application of such bulk crystals in terms of connection to processing circuits, large size, and high voltages required for their operation. A number of thin film fabrication techniques have been proposed to overcome these inadequacies, among which, magnetron sputtering has demonstrated many potentials. By addressing these aspects, the review article aims to contribute to the understanding of the challenges in the field of pyroelectric materials, highlight potential solutions, and showcase the advancements and potentials of pyroelectric perovskite series including PbZrTiO3 (PZT), PbxCa1x (PZN-PT), etc. for which PbTiO3 is the end member. The review is presented in two parts. Part 1 focuses on material aspects, including preparation methods using magnetron sputtering and material characterization. We take a tutorial approach to discuss the progress made in epitaxial growth of lead titanate-based ceramics prepared by magnetron sputtering and examine how processing conditions may affect the crystalline quality of the growing film by linking to the properties of the substrate/buffer layer, growth substrate temperature, and the oxygen partial pressure in the gas mixture. Careful control and optimization of these parameters are crucial for achieving high-quality thin films with desired structural and morphological characteristics. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

13 pages, 2011 KB  
Article
Diagnosis of Noise Inside Neonatal Incubators under Free-Field Conditions
by Francisco Fernández-Zacarías, Juan Luis Beira-Jiménez, Virginia Puyana-Romero and Ricardo Hernández-Molina
Acoustics 2023, 5(2), 354-366; https://doi.org/10.3390/acoustics5020021 - 26 Mar 2023
Cited by 3 | Viewed by 3804
Abstract
The study aims to diagnose the sound pressure levels inside incubators in a controlled environment under free-field conditions. The tests were carried out in a semi-anechoic room under the standard UNE-EN ISO 3745:2012/A1:2018 in three different operating states: off, on, and on with [...] Read more.
The study aims to diagnose the sound pressure levels inside incubators in a controlled environment under free-field conditions. The tests were carried out in a semi-anechoic room under the standard UNE-EN ISO 3745:2012/A1:2018 in three different operating states: off, on, and on with a temperature alarm triggered. Sound pressure levels were analyzed in three different models of incubators, both inside and outside. The main noise indices analyzed were the corrected equivalent continuous level (LKeq) and the equivalent continuous level (Leq) in third-octave bands. The results obtained under normal operating conditions showed variations among the different incubators, with overall values between 48.8 and 56.3 dBA. The influence of the alarm considerably worsened these data. The values obtained showed that premature newborns are exposed to noise levels above international recommendations. All incubators tested showed the presence of tonal components, both outside and inside the incubator cabin, and, in some cases, low-frequency components, but no impulsivity components were observed in any case. Full article
(This article belongs to the Special Issue Vibration and Noise)
Show Figures

Figure 1

22 pages, 36570 KB  
Article
Supervision and Control System of the Operational Variables of a Cluster in a High-Pressure Gas Injection Plant
by Cristhian Ronceros, José Medina, Juan Vásquez, Pedro León, José Fernández and Estefany Urday
Processes 2023, 11(3), 698; https://doi.org/10.3390/pr11030698 - 26 Feb 2023
Cited by 6 | Viewed by 2947
Abstract
The objective of this research was to develop a technological architecture proposal that allows for the supervision and control of the operational parameters of gas injection (flow, temperature, and pressure) in a cluster of a high-pressure gas injection plant. The proposal provides a [...] Read more.
The objective of this research was to develop a technological architecture proposal that allows for the supervision and control of the operational parameters of gas injection (flow, temperature, and pressure) in a cluster of a high-pressure gas injection plant. The proposal provides a supervision and control system for the HPGIP I high-pressure gas injection plant that includes instrumentation equipment (transmitters and actuators), a remote terminal unit (RTU) as a control device, and the creation of a control logic as the basis for the development of the SCADA GALBA®, through which the operational variables involved in the process of the gas injection plant can be visualized and controlled, allowing the automatic regulation of the flow of gas that enters the deposits. Automatization of the process allows for the elimination of the average error differential that increases from 2 to 5% when the control valve is opened manually. Currently, the MUC-67 and MUC-68 wells that make up cluster 5 require a control valve opening of 20% and 5%, respectively, and this percentage is directly affected by the average valve opening error when performed manually. In addition, there is a savings of around 40 min in the response time by the operators for the adjustment of the opening or closing parameters of the control valve manually. The proposal allows for the different control actions on the variables or parameters of gas injection present in the clump to be carried out from a control room. Full article
(This article belongs to the Special Issue Automation Control Systems & Process Control for Industry 4.0)
Show Figures

Figure 1

14 pages, 3875 KB  
Article
An SOI-Structured Piezoresistive Differential Pressure Sensor with High Performance
by Zebin Xu, Jiahui Yan, Meilin Ji, Yongxin Zhou, Dandan Wang, Yuanzhi Wang, Zhihong Mai, Xuefeng Zhao, Tianxiang Nan, Guozhong Xing and Songsong Zhang
Micromachines 2022, 13(12), 2250; https://doi.org/10.3390/mi13122250 - 17 Dec 2022
Cited by 18 | Viewed by 4547
Abstract
This paper presents a piezoresistive differential pressure sensor based on a silicon-on-insulator (SOI) structure for low pressure detection from 0 to 30 kPa. In the design phase, the stress distribution on the sensing membrane surface is simulated, and the doping concentration and geometry [...] Read more.
This paper presents a piezoresistive differential pressure sensor based on a silicon-on-insulator (SOI) structure for low pressure detection from 0 to 30 kPa. In the design phase, the stress distribution on the sensing membrane surface is simulated, and the doping concentration and geometry of the piezoresistor are evaluated. By optimizing the process, the realization of the pressure sensing diaphragm with a controllable thickness is achieved, and good ohmic contact is ensured. To obtain higher sensitivity and high temperature stability, an SOI structure with a 1.5 µm ultra-thin monocrystalline silicon layer is used in device manufacturing. The device diaphragm size is 700 µm × 700 µm × 2.1 µm. The experimental results show that the fabricated piezoresistive pressure sensor has a high sensitivity of 2.255 mV/V/kPa and a sensing resolution of less than 100 Pa at room temperature. The sensor has a temperature coefficient of sensitivity (TCS) of −0.221 %FS/°C and a temperature coefficient of offset (TCO) of −0.209 %FS/°C at operating temperatures ranging from 20 °C to 160 °C. The reported piezoresistive microelectromechanical systems (MEMS) pressure sensors are fabricated on 8-inch wafers using standard CMOS-compatible processes, which provides a volume solution for embedded integrated precision detection applications of air pressure, offering better insights for high-temperature and miniaturized low-pressure sensor research. Full article
(This article belongs to the Special Issue Design, Fabrication, Testing of MEMS/NEMS)
Show Figures

Figure 1

11 pages, 3275 KB  
Article
Design and Testing of Apparatus for Producing Dry Fog
by Marek Ochowiak, Magdalena Matuszak, Sylwia Włodarczak and Andżelika Krupińska
Energies 2022, 15(24), 9296; https://doi.org/10.3390/en15249296 - 8 Dec 2022
Viewed by 1973
Abstract
Dry fog is a specific form of aerosol that is used in many branches of industry and many aspects of everyday life. It can be used, inter alia, to disinfect rooms or to control the level of humidity. One of its greatest advantages [...] Read more.
Dry fog is a specific form of aerosol that is used in many branches of industry and many aspects of everyday life. It can be used, inter alia, to disinfect rooms or to control the level of humidity. One of its greatest advantages is undoubtedly its ability to work in the vicinity of electrical devices. Although the process of its formation and the very phenomenon of its occurrence are extremely simple things to describe, there are still many aspects that can be discovered, which are the focus of research by scientists around the world. One of the main parameters that influence the production process of dry fog is the pressure of the supplied gas, as well as the environmental conditions in which the aerosol is formed. This work focuses on the production of dry fog with the use of the designed and constructed apparatus, the structure of which is based on a jet nebulizer. The test and measurement stand is equipped with a compressor with a built-in pressure gauge for reading air pressure, a valve that allows the flow to be regulated, and an air supply and heating device that operates at various power values. The aim of this research was to check the impact of the power that is supplied to the system, as well as the impact of changing selected parameters such as gas pressure (which is one of the required media), on the liquid spraying process. The analysis of the results obtained during the experimental tests was based on the photographic method and allowed the mean Sauter volume–surface diameters of the obtained droplets to be compared. The analysis also showed that an increase in the power of the air supply and heating device translates directly into an increase in the ambient temperature in which the dry fog is formed, and contributes to the reduction of the diameter of the generated droplets. Changing the pressure of the atomized gas has a direct impact on the size of droplets in the generated aerosol—the higher the pressure, the smaller the droplets. Full article
Show Figures

Figure 1

15 pages, 4369 KB  
Article
Investigation of Airflow Distribution and Contamination Control with Different Schemes in an Operating Room
by Fujen Wang, Indra Permana, Dibakar Rakshit and Bowo Yuli Prasetyo
Atmosphere 2021, 12(12), 1639; https://doi.org/10.3390/atmos12121639 - 8 Dec 2021
Cited by 19 | Viewed by 5649
Abstract
Controlling contamination via proper airflow distribution in an operating room becomes vital to ensure the reliable surgery process. The heating, ventilation, and air conditioning (HVAC) systems significantly influence the operating room environment, including temperature, relative humidity, pressurization, particle counts, filtration, and ventilation rate. [...] Read more.
Controlling contamination via proper airflow distribution in an operating room becomes vital to ensure the reliable surgery process. The heating, ventilation, and air conditioning (HVAC) systems significantly influence the operating room environment, including temperature, relative humidity, pressurization, particle counts, filtration, and ventilation rate. A full-scale operating room has been investigated extensively through field measurements and numerical analyses. Computational fluid dynamics (CFD) simulation was conducted and verified with the field measurement data. The simulation was analyzed with three different operating room schemes, including at-rest conditions (case 1), normal operational conditions with personnel (case 2), and actual conditions with personnel inside and some medical equipment blocking the return air (case 3). The concentration decay method was used to evaluate this study. The results revealed that the contamination concentration in case 1 could be diluted quickly with the average value of 404 ppm, whereas the concentration in case 2 slightly increased while performing a surgery with the average value of 420 ppm. The return air grilles in case 3, blocked by obstacles from some medical equipment, resulted in the average concentration value of 474 ppm. Other than that, the contaminant dilution could be obstructed dramatically, which revealed that proper and smooth airflow distribution is essential for contamination control. The ventilation efficiency of case 2 and case 3 dropped around 6% and 17.91% compared to case 1 in the unoccupied and ideal condition. Ventilation efficiency also decreased along with decreasing the air change rate per hour (ACH), while with increasing ACH, the ventilation efficiency in case 3 actually increased, approaching case 2 in the ideal condition. Full article
(This article belongs to the Topic Ventilation and Indoor Air Quality)
Show Figures

Figure 1

18 pages, 4427 KB  
Article
Depolymerization and Hydrogenation of Organosolv Eucalyptus Lignin by Using Nickel Raney Catalyst
by Massimo Morgana, Egidio Viola, Francesco Zimbardi, Nadia Cerone, Assunta Romanelli and Vito Valerio
Processes 2021, 9(7), 1093; https://doi.org/10.3390/pr9071093 - 23 Jun 2021
Cited by 5 | Viewed by 3470
Abstract
The use of lignocellulosic biomass to obtain biofuels and chemicals produces a large amount of lignin as a byproduct. Lignin valorization into chemicals needs efficient conversion processes to be developed. In this work, hydrocracking of organosolv lignin was performed by using nickel Raney [...] Read more.
The use of lignocellulosic biomass to obtain biofuels and chemicals produces a large amount of lignin as a byproduct. Lignin valorization into chemicals needs efficient conversion processes to be developed. In this work, hydrocracking of organosolv lignin was performed by using nickel Raney catalyst. Organosolv lignin was obtained from the pretreatment of eucalyptus wood at 170 °C for 1 h by using 1/100/100 (w/v/v) ratio of biomass/oxalic acid solution (0.4% w/w)/1-butanol. The resulting organic phase of lignin in 1-butanol was used in hydrogenation tests. The conversion of lignin was carried out with a batch reactor equipped with a 0.3 L vessel with adjustable internal stirrer and heat control. The reactor was pressurized at 5 bar with hydrogen at room temperature, and then the temperature was raised to 250 °C and kept for 30 min. Operative conditions were optimized to achieve high conversion in monomers and to minimize the loss of solvent. At the best performance conditions, about 10 wt % of the lignin was solubilized into monomeric phenols. The need to find a trade-off between lignin conversion and solvent side reaction was highlighted. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

13 pages, 3744 KB  
Article
Hysteresis in As-Synthesized MoS2 Transistors: Origin and Sensing Perspectives
by Carlos Marquez, Norberto Salazar, Farzan Gity, Jose C. Galdon, Carlos Navarro, Carlos Sampedro, Paul K. Hurley, Edward Yi Chang and Francisco Gamiz
Micromachines 2021, 12(6), 646; https://doi.org/10.3390/mi12060646 - 31 May 2021
Cited by 5 | Viewed by 4233
Abstract
Two-dimensional materials, including molybdenum disulfide (MoS2), present promising sensing and detecting capabilities thanks to their extreme sensitivity to changes in the environment. Their reduced thickness also facilitates the electrostatic control of the channel and opens the door to flexible electronic applications. [...] Read more.
Two-dimensional materials, including molybdenum disulfide (MoS2), present promising sensing and detecting capabilities thanks to their extreme sensitivity to changes in the environment. Their reduced thickness also facilitates the electrostatic control of the channel and opens the door to flexible electronic applications. However, these materials still exhibit integration difficulties with complementary-MOS standardized processes and methods. The device reliability is compromised by gate insulator selection and the quality of the metal/semiconductor and semiconductor/insulator interfaces. Despite some improvements regarding mobility, hysteresis and Schottky barriers having been reported thanks to metal engineering, vertically stacked heterostructures with compatible thin-layers (such as hexagonal boron nitride or device encapsulation) variability is still an important constraint to sensor performance. In this work, we fabricated and extensively characterized the reliability of as-synthesized back-gated MoS2 transistors. Under atmospheric and room-temperature conditions, these devices present a wide electrical hysteresis (up to 5 volts) in their transfer characteristics. However, their performance is highly influenced by the temperature, light and pressure conditions. The singular signature in the time response of the devices points to adsorbates and contaminants inducing mobile charges and trapping/detrapping carrier phenomena as the mechanisms responsible for time-dependent current degradation. Far from being only a reliability issue, we demonstrated a method to exploit this device response to perform light, temperature and/or pressure sensors in as-synthesized devices. Two orders of magnitude drain current level differences were demonstrated by comparing device operation under light and dark conditions while a factor up to 105 is observed at vacuum versus atmospheric pressure environments. Full article
(This article belongs to the Special Issue Emerging CMOS Devices)
Show Figures

Figure 1

15 pages, 5416 KB  
Article
Three-Axis Pneumatic Haptic Display for the Mechanical and Thermal Stimulation of a Human Finger Pad
by Eun-Hyuk Lee, Sang-Hoon Kim and Kwang-Seok Yun
Actuators 2021, 10(3), 60; https://doi.org/10.3390/act10030060 - 17 Mar 2021
Cited by 15 | Viewed by 4952
Abstract
Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure [...] Read more.
Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure to provide shear and normal tactile pressure through an inflation of the balloons inherent in the device. The device provides a lateral displacement of ±1.5 mm for shear haptic feedback and a vertical inflation of the balloon of up to 3.7 mm for normal haptic feedback. It is designed to deliver thermal feedback to the operator through the attachment of a heater to the finger stage of the device, in addition to mechanical haptic feedback. A custom-designed control module is employed to generate appropriate haptic feedback by computing signals from sensors or control computers. This control module has a manual gain control function to compensate for the force exerted on the device by the user’s fingers. Experimental results showed that it could improve the positional accuracy and linearity of the device and minimize hysteresis phenomena. The temperature of the device could be controlled by a pulse-width modulation signal from room temperature to 90 °C. Psychophysical experiments show that cognitive accuracy is affected by gain, and temperature is not significantly affected. Full article
Show Figures

Figure 1

15 pages, 4415 KB  
Article
Temperature and Humidity PID Controller for a Bioprinter Atmospheric Enclosure System
by Manuel Matamoros, J. Carlos Gómez-Blanco, Álvaro J. Sánchez, Enrique Mancha, Alfonso C. Marcos, J. Pablo Carrasco-Amador and J. Blas Pagador
Micromachines 2020, 11(11), 999; https://doi.org/10.3390/mi11110999 - 12 Nov 2020
Cited by 22 | Viewed by 5926
Abstract
Bioprinting is a complex process, highly dependent on bioink properties (materials and cells) and environmental conditions (mainly temperature, humidity and CO2 concentration) during the bioprinting process. To guarantee proper cellular viability and an accurate geometry, it is mandatory to control all these [...] Read more.
Bioprinting is a complex process, highly dependent on bioink properties (materials and cells) and environmental conditions (mainly temperature, humidity and CO2 concentration) during the bioprinting process. To guarantee proper cellular viability and an accurate geometry, it is mandatory to control all these factors. Despite internal factors, such as printing pressures, temperatures or speeds, being well-controlled in actual bioprinters, there is a lack in the controlling of external parameters, such as room temperature or humidity. In this sense, the objective of this work is to control the temperature and humidity of a new, atmospheric enclosure system for bioprinting. The control has been carried out with a decoupled proportional integral derivative (PID) controller that was designed, simulated and experimentally tested in order to ensure the proper operation of all its components. Finally, the PID controller can stabilize the atmospheric enclosure system temperature in 311 s and the humidity in 65 s, with an average error of 1.89% and 1.30%, respectively. In this sense, the proposed atmospheric enclosure system can reach and maintain the proper temperature and humidity values during post-printing and provide a pre-incubation environment that promotes stability, integrity and cell viability of the 3D bioprinted structures. Full article
(This article belongs to the Special Issue Biofabrication and 3D Bioprinting)
Show Figures

Figure 1

22 pages, 3020 KB  
Article
A Study on Performance Characteristics of a Heat Pump System with High-Pressure Side Chiller for Light-Duty Commercial Electric Vehicles
by Moo-Yeon Lee, Kunal Sandip Garud, Han-Byeol Jeon and Ho-Seong Lee
Symmetry 2020, 12(8), 1237; https://doi.org/10.3390/sym12081237 - 27 Jul 2020
Cited by 6 | Viewed by 5813
Abstract
One of barriers for the present heat pump system’s application in an electric vehicle was decreased performance under cold ambient conditions due to the lack of evaporating heat source. In order to improve the heat pump’s performance, a high-pressure side chiller was additionally [...] Read more.
One of barriers for the present heat pump system’s application in an electric vehicle was decreased performance under cold ambient conditions due to the lack of evaporating heat source. In order to improve the heat pump’s performance, a high-pressure side chiller was additionally installed, and the tested heat pump system was modified with respect to refrigerant flow direction along with operating modes. In the present work, the performance characteristics of the heat pump system with a high-pressure side chiller for light-duty commercial electric vehicles were studied experimentally under hot and cold ambient conditions, reflecting real road driving. The high-pressure side chiller was located after the electric compressor so that the highest refrigerant temperature transferred the heat to the coolant. The controlled coolant with discharged refrigerant from the electric compressor was used to heat up the cabin, transferring heat to the inlet air like the internal combustion engine vehicle’s heating system, except with unused engine waste heat. In the cooling mode, for the exterior air temperature of 35 °C and interior air temperature of 25 °C, cooling performance along with the compressor speed showed that the system efficiency decreased by 16.4% on average, the cooling capacity increased by 8.0% on average and the compressor work increased by 27% on average. In heating mode, at the exterior and interior air temperature of −6.7 °C, compressor speed and coolant temperature variation with steady conditions were tested with respect to heating performance. In transient mode, to increase coolant temperature with a closed loop from −6.7 °C, tested system characteristics were studied along the compressor speed with respect to heating up the cabin. As the inlet air of the HVAC was maintained at −6.7 °C, even though the heat-up rate of the cabin room was a little slow, the cabin temperature reached 20 °C within 50 min and the temperature difference with the ambient air attained 28.7 °C. Full article
(This article belongs to the Special Issue Heat Transfer in Engineering)
Show Figures

Figure 1

Back to TopTop