Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = tetracoordinated boron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2636 KiB  
Article
The First N,O-Chelated Diphenylboron-Based Fluorescent Probe for Peroxynitrite and Its Bioimaging Applications
by Xiaoping Ye, Longxuan Li, Hong Liu, Yuyu Fang and Xiaoya Liu
Biosensors 2024, 14(11), 515; https://doi.org/10.3390/bios14110515 - 22 Oct 2024
Cited by 1 | Viewed by 1370
Abstract
Peroxynitrite (ONOO) is a reactive oxygen species (ROS) that takes part in the oxidation-reduction homeostasis while at the same time being responsible for activating numerous pathological pathways. Accordingly, monitoring the dynamic changes in ONOO concentration has attracted a great deal [...] Read more.
Peroxynitrite (ONOO) is a reactive oxygen species (ROS) that takes part in the oxidation-reduction homeostasis while at the same time being responsible for activating numerous pathological pathways. Accordingly, monitoring the dynamic changes in ONOO concentration has attracted a great deal of attention, undoubtedly prompting the development of appropriate fluorescent chemosensors. Herein, we developed a novel N,O-chelated diphenylboron-based fluorescent probe (DPB) for ONOO featuring high selectivity, a quick response time (2.0 min), and a low detection limit (55 nM). DPB incorporates tetra-coordinated boron in the center of the fluorogenic core and a three-coordinated boron from the pinacolphenylboronate fragment, which acts as the recognition site for ONOO. As confirmed by HR-MS and 1H NMR, the interaction of DPB with ONOO led to an oxidative cleavage of pinacolphenylboronate moiety to produce strongly emissive derivative DPB-OH. The fluorescence enhancement is likely a result of a substantial deactivation of non-radiative decay due to the replacement of the bulky pinacolphenylboronate moiety with a compact hydroxyl group. Importantly, DPB probe exhibits negligible cytotoxicity and favorable biocompatibility allowing for an efficient tracking of ONOO in living cells and zebrafish. Overall, the current study does not only represents the first N,O-chelated diphenylboron-based fluorescent probe for a specific analyte, but also serves as a guideline for designing more potent fluorescent probes based on the chemistry of boron chelates. Full article
Show Figures

Figure 1

15 pages, 5364 KiB  
Article
Insights into the Effect of a Microwave Field on the Properties of Modified γ-Alumina: A DFT Study
by Xiayu Fan, Tong Li, Hui Shang, Zonghao Xue, Jie Yang and Aijun Duan
Processes 2024, 12(10), 2064; https://doi.org/10.3390/pr12102064 - 24 Sep 2024
Viewed by 880
Abstract
γ-Alumina is often used as a support for hydrodesulfurization catalysts due to its excellent performance. During the catalytic reaction, the strong surface acidity of γ-alumina can induce a strong interaction between the active phase and the support. The reaction activity of the catalyst [...] Read more.
γ-Alumina is often used as a support for hydrodesulfurization catalysts due to its excellent performance. During the catalytic reaction, the strong surface acidity of γ-alumina can induce a strong interaction between the active phase and the support. The reaction activity of the catalyst can be affected by changing the present mode of the active phase on the surface of the support. The (110) crystal plane, acting as the strongest acidity plane of γ-alumina, was selected for modification. The supports modified with boron and phosphorus were successfully constructed, and the acid strengths were quantified by simulating the adsorption of the relevant probe molecules: pyridine in correlation with surface electronic properties via density functional theory. The surface adsorption energy calculation shows that the boron-modified surface is able to moderately reduce the adsorption capacity of alumina, while that of the surface modified by phosphorus is found to be enhanced over the sites of a tetrahedral coordination structure; however, at the other unsaturated Al sites, this is obviously reduced. The results of introducing electric fields imply that applying horizontal electric fields changes the surface acidity of alumina under the premise of a stable structure. With the enhancement of the horizontal electric fields, the adsorption capacity of tetra-coordination sites on the original surface gradually decreases, while those of the others gradually increases. However, for the boron-modified surface, introducing horizontal electric fields can reduce the adsorption capacity of all sites. Hence, microwave-electric-field-assisted modification of B further reduces the surface acidity of alumina, making it beneficial for deep hydrodesulfurization reactions. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

17 pages, 4236 KiB  
Article
Synthesis and Strong Solvatochromism of Push-Pull Thienylthiazole Boron Complexes
by Martijn J. Wildervanck, Reinhard Hecht and Agnieszka Nowak-Król
Molecules 2022, 27(17), 5510; https://doi.org/10.3390/molecules27175510 - 27 Aug 2022
Cited by 5 | Viewed by 2607
Abstract
The solvatochromic behavior of two donor-π bridge-acceptor (D-π-A) compounds based on the 2-(3-boryl-2-thienyl)thiazole π-linker and indandione acceptor moiety are investigated. DFT/TD-DFT calculations were performed in combination with steady-state absorption and emission measurements, along with electrochemical studies, to elucidate the effect of two different [...] Read more.
The solvatochromic behavior of two donor-π bridge-acceptor (D-π-A) compounds based on the 2-(3-boryl-2-thienyl)thiazole π-linker and indandione acceptor moiety are investigated. DFT/TD-DFT calculations were performed in combination with steady-state absorption and emission measurements, along with electrochemical studies, to elucidate the effect of two different strongly electron-donating hydrazonyl units on the solvatochromic and fluorescence behavior of these compounds. The Lippert–Mataga equation was used to estimate the change in dipole moments (Δµ) between ground and excited states based on the measured spectroscopic properties in solvents of varying polarity with the data being supported by theoretical studies. The two asymmetrical D-π-A molecules feature strong solvatochromic shifts in fluorescence of up to ~4300 cm1 and a concomitant change of the emission color from yellow to red. These changes were accompanied by an increase in Stokes shift to reach values as large as ~5700–5800 cm1. Quantum yields of ca. 0.75 could be observed for the N,N-dimethylhydrazonyl derivative in nonpolar solvents, which gradually decreased along with increasing solvent polarity, as opposed to the consistently reduced values obtained for the N,N-diphenylhydrazonyl derivative of up to ca. 0.20 in nonpolar solvents. These two push–pull molecules are contrasted with a structurally similar acceptor-π bridge-acceptor (A-π-A) compound. Full article
(This article belongs to the Special Issue New Boron Chemistry: Current Advances and Future Prospects)
Show Figures

Figure 1

13 pages, 3637 KiB  
Article
Nucleophilic Substitution at a Coordinatively Saturated Five-Membered NHC∙Haloborane Centre
by Gargi Kundu, Srinu Tothadi and Sakya S. Sen
Inorganics 2022, 10(7), 97; https://doi.org/10.3390/inorganics10070097 - 7 Jul 2022
Cited by 6 | Viewed by 2782
Abstract
In this paper, we have used a saturated five-membered N-Heterocyclic carbene (5SIDipp = 1,3-bis-(2,6-diisopropylphenyl)imidazolin-2-ylidine) for the synthesis of SNHC-haloboranes adducts and their further nucleophilic substitutions to put unusual functional groups at the central boron atom. The reaction of 5-SIDipp with RBCl2 yields [...] Read more.
In this paper, we have used a saturated five-membered N-Heterocyclic carbene (5SIDipp = 1,3-bis-(2,6-diisopropylphenyl)imidazolin-2-ylidine) for the synthesis of SNHC-haloboranes adducts and their further nucleophilic substitutions to put unusual functional groups at the central boron atom. The reaction of 5-SIDipp with RBCl2 yields Lewis-base adducts, 5-SIDipp·RBCl2 [R = H (1), Ph (2)]. The hydrolysis of 1 gives the NHC stabilized boric acid, 5-SIDipp·B(OH)3 (3), selectively. Replacement of chlorine atoms from 1 and 2 with one equivalent of AgOTf led to the formation of 5-SIDipp·HBCl(OTf) (4) and 5-SIDipp·PhBCl(OTf) (5a), where all the substituents on the boron atoms are different. The addition of two equivalents of AgNO3 to 2 leads to the formation of rare di-nitro substituted 5-SIDipp·BPh(NO3)2 (6). Further, the reaction of 5-SIDipp with B(C6F5)3 in tetrahydrofuran and diethyl ether shows a frustrated Lewis pair type small molecule activated products, 7 and 8. Full article
(This article belongs to the Special Issue Fifth Element: The Current State of Boron Chemistry)
Show Figures

Graphical abstract

21 pages, 10014 KiB  
Article
BAl4Mg−/0/+: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom
by Maya Khatun, Saikat Roy, Sandip Giri, Sasanka Sankhar Reddy CH, Anakuthil Anoop and Venkatesan S. Thimmakondu
Atoms 2021, 9(4), 89; https://doi.org/10.3390/atoms9040089 - 27 Oct 2021
Cited by 9 | Viewed by 4313
Abstract
We have explored the chemical space of BAl4Mg/0/+ for the first time and theoretically characterized several isomers with interesting bonding patterns. We have used chemical intuition and a cluster building method based on the tabu-search algorithm [...] Read more.
We have explored the chemical space of BAl4Mg/0/+ for the first time and theoretically characterized several isomers with interesting bonding patterns. We have used chemical intuition and a cluster building method based on the tabu-search algorithm implemented in the Python program for aggregation and reaction (PyAR) to obtain the maximum number of possible stationary points. The global minimum geometries for the anion (1a) and cation (1c) contain a planar tetracoordinate boron (ptB) atom, whereas the global minimum geometry for the neutral (1n) exhibits a planar pentacoordinate boron (ppB) atom. The low-lying isomers of the anion (2a) and cation (3c) also contain a ppB atom. The low-lying isomer of the neutral (2n) exhibits a ptB atom. Ab initio molecular dynamics simulations carried out at 298 K for 2000 fs suggest that all isomers are kinetically stable, except the cation 3c. Simulations carried out at low temperatures (100 and 200 K) for 2000 fs predict that even 3c is kinetically stable, which contains a ppB atom. Various bonding analyses (NBO, AdNDP, AIM, etc.) are carried out for these six different geometries of BAl4Mg/0/+ to understand the bonding patterns. Based on these results, we conclude that ptB/ppB scenarios are prevalent in these systems. Compared to the carbon counter-part, CAl4Mg, here the anion (BAl4Mg) obeys the 18 valence electron rule, as B has one electron fewer than C. However, the neutral and cation species break the rule with 17 and 16 valence electrons, respectively. The electron affinity (EA) of BAl4Mg is slightly higher (2.15 eV) than the electron affinity of CAl4Mg (2.05 eV). Based on the EA value, it is believed that these molecules can be identified in the gas phase. All the ptB/ppB isomers exhibit π/σ double aromaticity. Energy decomposition analysis predicts that the interaction between BAl/0/+4 and Mg is ionic in all these six systems. Full article
(This article belongs to the Special Issue Planar Tetracoordinate Carbon—Fifty Years and Beyond)
Show Figures

Figure 1

10 pages, 1210 KiB  
Communication
Imine Reduction with Me2S-BH3
by Mohammad M. Kamal, Zhizhou Liu, Siyuan Zhai and Dragoslav Vidović
Molecules 2021, 26(18), 5443; https://doi.org/10.3390/molecules26185443 - 7 Sep 2021
Cited by 8 | Viewed by 4516
Abstract
Although there exists a variety of different catalysts for hydroboration of organic substrates such as aldehydes, ketones, imines, nitriles etc., recent evidence suggests that tetra-coordinate borohydride species, formed by activation, redistribution, or decomposition of boron reagents, are the true hydride donors. We then [...] Read more.
Although there exists a variety of different catalysts for hydroboration of organic substrates such as aldehydes, ketones, imines, nitriles etc., recent evidence suggests that tetra-coordinate borohydride species, formed by activation, redistribution, or decomposition of boron reagents, are the true hydride donors. We then proposed that Me2S-BH3 could also act as a hydride donor for the reduction of various imines, as similar compounds have been observed to reduce carbonyl substrates. This boron reagent was shown to be an effective and chemoselective hydroboration reagent for a wide variety of imines. Full article
(This article belongs to the Special Issue A Thematic Issue in Honor of Prof. Dr. Alan H. Cowley)
Show Figures

Figure 1

9 pages, 1613 KiB  
Article
Sulphur-Bridged BAl5S5+ with 17 Counting Electrons: A Regular Planar Pentacoordinate Boron System
by Yuhan Ye, Yiqiao Wang, Min Zhang, Yun Geng and Zhongmin Su
Molecules 2021, 26(17), 5205; https://doi.org/10.3390/molecules26175205 - 27 Aug 2021
Cited by 4 | Viewed by 2418
Abstract
At present, most of the reported planar pentacoordinate clusters are similar to the isoelectronic substitution of CAl5+, with 18 counting electrons. Meanwhile, the regular planar pentacoordinate boron systems are rarely reported. Hereby, a sulphur-bridged BAl5S5+ system [...] Read more.
At present, most of the reported planar pentacoordinate clusters are similar to the isoelectronic substitution of CAl5+, with 18 counting electrons. Meanwhile, the regular planar pentacoordinate boron systems are rarely reported. Hereby, a sulphur-bridged BAl5S5+ system with a five-pointed star configuration and 17 counting electrons is identified at the global energy minimum through the particle-swarm optimization method, based on the previous recognition on bridged sulphur as the peripheral tactics to the stable planar tetracoordinate carbon and boron. Its outstanding stability has been demonstrated by thermodynamic analysis at 900 K, electronic properties and chemical bonding analysis. This study provides adequately theoretical basis and referable data for its experimental capture and testing. Full article
Show Figures

Graphical abstract

22 pages, 4661 KiB  
Review
Recent Advances in π-Conjugated N^C-Chelate Organoboron Materials
by Ashanul Haque, Rayya A. Al-Balushi, Paul R. Raithby and Muhammad S. Khan
Molecules 2020, 25(11), 2645; https://doi.org/10.3390/molecules25112645 - 6 Jun 2020
Cited by 33 | Viewed by 5175
Abstract
Boron-containing π-conjugated materials are archetypical candidates for a variety of molecular scale applications. The incorporation of boron into the π-conjugated frameworks significantly modifies the nature of the parent π-conjugated systems. Several novel boron-bridged π-conjugated materials with intriguing structural, photo-physical and electrochemical properties have [...] Read more.
Boron-containing π-conjugated materials are archetypical candidates for a variety of molecular scale applications. The incorporation of boron into the π-conjugated frameworks significantly modifies the nature of the parent π-conjugated systems. Several novel boron-bridged π-conjugated materials with intriguing structural, photo-physical and electrochemical properties have been reported over the last few years. In this paper, we review the properties and multi-dimensional applications of the boron-bridged fused-ring π-conjugated systems. We critically highlight the properties of π-conjugated N^C-chelate organoboron materials. This is followed by a discussion on the potential applications of the new materials in opto-electronics (O-E) and other areas. Finally, attempts will be made to predict the future direction/outlook for this class of materials. Full article
Show Figures

Graphical abstract

Back to TopTop