Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,634)

Search Parameters:
Keywords = tissue injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3817 KB  
Article
Melatonin Protects Intact Rat Ovarian Transplantation via the MT1/Nrf2/ARE Pathway
by Lingyun Xie, Shanshan Wang, Yuling Wu, Xuyin Zhang and Yan Ding
Cells 2025, 14(20), 1588; https://doi.org/10.3390/cells14201588 (registering DOI) - 13 Oct 2025
Abstract
Cryopreservation and transplantation of intact ovaries offer a promising approach to fertility restoration in cancer patients. However, ischemia–reperfusion injury following transplantation significantly impairs graft function. This study aimed to evaluate the protective effects of melatonin and elucidate its underlying mechanisms of action, including [...] Read more.
Cryopreservation and transplantation of intact ovaries offer a promising approach to fertility restoration in cancer patients. However, ischemia–reperfusion injury following transplantation significantly impairs graft function. This study aimed to evaluate the protective effects of melatonin and elucidate its underlying mechanisms of action, including antioxidant and anti-inflammatory properties. Intact ovaries from 8 to 12-week-old LEWIS rats were cryopreserved and subsequently transplanted. Melatonin (25 mg/kg and 50 mg/kg) was administered daily from day 1 to day 4 postoperatively. Estrous cycle recovery and ovarian histology were examined, along with measurements of hormone concentrations, antioxidant activity, and inflammatory mediators. The oxidative stress response, particularly the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway—including Nrf2, Kelch-like ECH-associated protein 1 (Keap1), and sMafg—was investigated to elucidate melatonin’s protective mechanisms. The roles of melatonin receptors and Nrf2 were investigated using specific receptor antagonists (Luzindole, 4P-PDOT) and an inhibitor (ML385) to confirm the involvement of the MT1/Nrf2/ARE pathway. As a result, rats treated with high-dose melatonin (50 mg/kg) exhibited accelerated estrous cycle recovery, reduced follicular loss, improved serum hormone levels, enhanced antioxidant capacity in serum and ovarian tissue, and decreased levels of inflammatory cytokines. Furthermore, melatonin exerted its antioxidant and anti-inflammatory effects through activation of the Nrf2/ARE signaling pathway via the MT1 receptor. These protective effects were abolished by the inhibition of either Nrf2 or MT1 receptor. In conclusion, these findings demonstrate that melatonin mitigates oxidative stress and inflammatory damage in intact transplanted ovaries through the MT1/Nrf2/ARE signaling axis, thereby preserving ovarian function post-transplantation. Full article
Show Figures

Figure 1

20 pages, 41724 KB  
Article
TRIC-A Facilitates Sarcoplasmic Reticulum–Mitochondrial Ca2+ Signaling Crosstalk in Cardiomyocytes
by Ang Li, Xinyu Zhou, Ki Ho Park, Jianxun Yi, Xuejun Li, Jae-Kyun Ko, Yuchen Chen, Miyuki Nishi, Daiju Yamazaki, Hiroshi Takeshima, Jingsong Zhou and Jianjie Ma
Cells 2025, 14(20), 1579; https://doi.org/10.3390/cells14201579 (registering DOI) - 11 Oct 2025
Viewed by 34
Abstract
TRIC-A is an intracellular cation channel enriched in excitable tissues that is recently identified as a key modulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis through direct interaction with type 2 ryanodine receptors (RyR2). Given the intimate anatomical and functional coupling [...] Read more.
TRIC-A is an intracellular cation channel enriched in excitable tissues that is recently identified as a key modulator of sarcoplasmic reticulum (SR) Ca2+ homeostasis through direct interaction with type 2 ryanodine receptors (RyR2). Given the intimate anatomical and functional coupling between the SR and mitochondria, we investigated whether TRIC-A contributes to SR–mitochondrial crosstalk under cardiac stress conditions. Using a transverse aortic constriction (TAC) model, we found that TRIC-A−/− mice developed more severe cardiac hypertrophy, underwent maladaptive remodeling, and activated apoptotic pathways compared with wild-type littermates. At the cellular level, TRIC-A-deficient cardiomyocytes were more susceptible to H2O2-induced mitochondrial injury and displayed abnormal mitochondrial morphology. Live-cell imaging revealed exaggerated mitochondrial Ca2+ uptake during caffeine stimulation and increased propensity for store-overload-induced Ca2+ release (SOICR). Complementary studies in HEK293 cells expressing RyR2 demonstrated that exogenous TRIC-A expression attenuates RyR2-mediated mitochondrial Ca2+ overload, preserves respiratory function, and suppresses superoxide generation. Together, these findings identify TRIC-A as a critical regulator of SR–mitochondrial Ca2+ signaling. By constraining mitochondrial Ca2+ influx and limiting oxidative stress, TRIC-A safeguards cardiomyocytes against SOICR-driven injury and confers protection against pressure overload-induced cardiac dysfunction. Full article
Show Figures

Figure 1

14 pages, 7102 KB  
Article
Tumor-Derived Microvesicles Promote Kidney Regeneration and Cytoprotective Immunomodulation
by Galina V. Seledtsova, Victor I. Seledtsov, Ayana B. Dorzhieva, Elena A. Blinova, Adas Darinskas, Elena A. Prokopyeva and Alexei A. von Delwig
Pharmaceuticals 2025, 18(10), 1520; https://doi.org/10.3390/ph18101520 - 10 Oct 2025
Viewed by 86
Abstract
Background: A comparative study was conducted to evaluate the potential of extracellular, tumor-derived microvesicles (MVs)s in promoting kidney regeneration. Methods: MVs were collected from L929 sarcoma, LLC, and B16 melanoma cells, and mesenchymal stem cells (MSCs). The regenerative activity of MVs was evaluated [...] Read more.
Background: A comparative study was conducted to evaluate the potential of extracellular, tumor-derived microvesicles (MVs)s in promoting kidney regeneration. Methods: MVs were collected from L929 sarcoma, LLC, and B16 melanoma cells, and mesenchymal stem cells (MSCs). The regenerative activity of MVs was evaluated in an experimental murine model of chronic kidney injury (CKI). Results: Both tumor-derived MVs (T-MVs) and MSC-derived MVs (MSC-MVs) significantly improved kidney function and histological structure. Specifically, the height of collecting tubules in the middle third of the renal medulla returned to normal levels following MV treatment. Both T-MVs and MSC-MVs reduced the proportion of pro-inflammatory CD4+CD44+ T cells in renal cell infiltrates and spleens of CKI mice. Furthermore, treatment with these MVs increased the number of natural CD4+CD25+FoxP3+ regulatory T cells in the spleen, indicating their immunomodulatory effects. Conclusions: These findings suggest that T-MVs, similar to MSC-MVs, possess a universal capacity to promote kidney tissue regeneration and exert anti-inflammatory immunomodulatory effects. Full article
Show Figures

Figure 1

22 pages, 1049 KB  
Review
Traumatic Brain Injury: Advances in Diagnostic Techniques and Treatment Modalities
by Lori Zarmer, Maaz S. Khan, Glenn Islat, Hanan Alameddin, Maria Massey, Saki Kazui and Rabail Chaudhry
J. Clin. Med. 2025, 14(20), 7145; https://doi.org/10.3390/jcm14207145 - 10 Oct 2025
Viewed by 163
Abstract
Background/Objectives: Traumatic brain injury (TBI) is a major global cause of death and disability, with long-term cognitive, behavioral, and functional consequences. Despite its high burden, management is complicated by heterogeneous presentations and limited evidence. This review summarizes recent advances in monitoring, therapeutic strategies, [...] Read more.
Background/Objectives: Traumatic brain injury (TBI) is a major global cause of death and disability, with long-term cognitive, behavioral, and functional consequences. Despite its high burden, management is complicated by heterogeneous presentations and limited evidence. This review summarizes recent advances in monitoring, therapeutic strategies, neuroprotection, and rehabilitation, while highlighting future directions toward individualized and globalized care. Methods: This paper is a narrative review of clinical trials, systematic reviews, and observational studies, focusing on invasive and non-invasive monitoring, pharmacologic and non-pharmacologic interventions, neuroprotective agents, stem cell therapy, and advanced rehabilitation modalities. Results/Findings: Our review focuses on emerging monitoring techniques, including brain tissue oxygenation, cerebral microdialysis, and multimodal strategies, that provide detailed insights but lack standardized application. Interventions such as anti-inflammatory agents, hypothermia, hyperosmolar therapies, and metabolic suppression show mixed efficacy, with few therapies supported by high-level evidence. Novel agents like erythropoietin and progesterone demonstrate neuroprotective potential in preclinical models but remain inconclusive in clinical trials. Stem cell therapies and extracellular vesicle approaches are promising in early studies. Rehabilitation is expanding with virtual reality, robotics, and neurostimulation to promote neuroplasticity. Personalized medicine approaches incorporating biomarkers and machine learning may refine prognostication and guide therapy. Global inequities persist, particularly in low-resource settings. Conclusions: TBI care is shifting toward individualized, multimodal, and technology-driven strategies. While emerging therapies show promise, high-quality randomized trials and global implementation strategies are needed to improve outcomes and reduce disparities. Full article
(This article belongs to the Special Issue Clinical Advances in Therapy of Trauma and Surgical Critical Care)
Show Figures

Figure 1

10 pages, 3509 KB  
Case Report
Dual Origin of the Cephalic Vein with Double Fenestration: A Case Report
by José Aderval Aragão, Guilherme Felício Matos, Gustavo Henrique Silva da Matta, Iapunira Catarina Sant’Anna Aragão, Felipe Matheus Sant’Anna Aragão, Rudvan Cicotti, Francisco Prado Reis and Deise Maria Furtado de Mendonça
Anatomia 2025, 4(4), 15; https://doi.org/10.3390/anatomia4040015 - 9 Oct 2025
Viewed by 106
Abstract
Background/Objectives: This article discusses the clinical–surgical relevance of vascular anatomical variations, such as fenestrations—the division of a vessel into multiple channels that subsequently rejoin distally. Although rare in peripheral veins, these variations, which originate from the incomplete condensation of the embryonic capillary plexus, [...] Read more.
Background/Objectives: This article discusses the clinical–surgical relevance of vascular anatomical variations, such as fenestrations—the division of a vessel into multiple channels that subsequently rejoin distally. Although rare in peripheral veins, these variations, which originate from the incomplete condensation of the embryonic capillary plexus, can predispose thrombosis and necessitate preoperative recognition to avert complications during routine procedures. This study aims to report a rare case of dual origin and double fenestration of the cephalic vein. Methods: During a cadaveric dissection, a variation of the cephalic vein was identified. Results: In this case, an origin of the cephalic vein was observed arising from the dorsal venous network of the hand. It exhibited a double fenestration in the forearm, where a branch of the medial cutaneous nerve of the forearm perforated it before draining into the brachial vein. The second, a proximal origin, arose from the convergence of two tributaries—one originating from the subcutaneous tissue lateral to the brachial muscle and the other from the biceps brachii muscle, forming a single trunk that drained into the subclavian vein. Conclusions: This rare variation of the cephalic vein (dual origin and fenestration) carries significant hemodynamic implications, including an increased risk of turbulence and thrombosis. The atypical anatomical relationship between the nerve and the fenestrated vein also heightens the potential for iatrogenic injuries. In-depth knowledge of such anomalies is crucial for healthcare professionals to minimize complications and optimize the success of procedures like venous access and arteriovenous fistulas, ultimately ensuring patient safety. Full article
Show Figures

Figure 1

21 pages, 564 KB  
Review
Tracing Inflammation in Ischemic Stroke: Biomarkers and Clinical Insight
by Gaetano Pacinella, Mariarita Margherita Bona, Federica Todaro, Anna Maria Ciaccio, Mario Daidone and Antonino Tuttolomondo
Int. J. Mol. Sci. 2025, 26(19), 9801; https://doi.org/10.3390/ijms26199801 - 8 Oct 2025
Viewed by 345
Abstract
Ischemic stroke is now widely recognized as a disease with a strong inflammatory profile. Cerebral vascular damage is both preceded and followed by a chain of molecular events involving immune cells and inflammatory markers, irrespective of the etiology of the ischemic injury. Over [...] Read more.
Ischemic stroke is now widely recognized as a disease with a strong inflammatory profile. Cerebral vascular damage is both preceded and followed by a chain of molecular events involving immune cells and inflammatory markers, irrespective of the etiology of the ischemic injury. Over time, an increasingly comprehensive understanding of these markers has led to a better insight into the mechanisms behind the vascular event and recovery following ischemic stroke. However, to date, there are still no available circulating or tissue biomarkers for early diagnosis or prognostic stratification, making ischemic stroke diagnosis contingent on clinical and instrumental investigations. However, neurological and internal medicine research is progressing in identifying markers that could potentially take on this role. This manuscript, therefore, aims to review the most recent and innovative results of medical advances, summarising the current state of the art and future perspectives. If ischaemic stroke is an inflammatory disease, it is also true that it is not just a singular condition, but a group of entities with their own neuroinflammatory features. Thus, given that, in ischemic cerebral vascular damage, “time is brain,” tracking increasingly accurate markers in the diagnosis of ischemic stroke is a valuable tool that will potentially enable earlier recognition of this disease and, hopefully, make it less disabling and more widely treated. Full article
(This article belongs to the Special Issue Inflammatory Biomarkers in Ischemic Stroke)
Show Figures

Figure 1

22 pages, 3210 KB  
Article
Absorption and Tissue Distribution of Environmental Pollutant HFPO-DA, and Its Effect on Hepatic Lipid Metabolism Reprogramming in Mice
by Jie Peng, Wei Jiang, Zi Long, Yueying Cui, Guizhen Zhu, Rui Liu, Deqin Kong, Weihua Yu, Yuliang Li and Chunxu Hai
Toxics 2025, 13(10), 850; https://doi.org/10.3390/toxics13100850 - 8 Oct 2025
Viewed by 252
Abstract
Objective: Hexafluoropropylene oxide dimer acid (HFPO-DA), also known as GenX, is widely used globally, raising concerns about its safety and public health implications. However, its toxicity mechanism remains unclear. The purpose of this study was to develop a reliable method for detecting HFPO-DA [...] Read more.
Objective: Hexafluoropropylene oxide dimer acid (HFPO-DA), also known as GenX, is widely used globally, raising concerns about its safety and public health implications. However, its toxicity mechanism remains unclear. The purpose of this study was to develop a reliable method for detecting HFPO-DA in mice and to investigate its absorption, distribution, and impact on hepatic lipid metabolism. Method: HFPO-DA levels were measured in the serum and eight tissues of C57BL/6J mice after oral administration using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Lipid metabolites in the liver were also detected and analyzed. Results: HFPO-DA was rapidly absorbed into the bloodstream and widely distributed throughout all tested tissues. It penetrated the blood–brain barrier, with the highest concentration in the liver; however, long-term effects on the lungs also warrant attention. HFPO-DA disrupted liver lipid metabolism, leading to acylcarnitine accumulation while lowering triglycerides and cholesterol. Conclusion: This study on the pharmacokinetics and tissue distribution of HFPO-DA in mice following oral exposure revealed that HFPO-DA exacerbates liver injury by altering hepatic lipid metabolism. These findings provide theoretical support for toxicological studies on the emerging environmental pollutant HFPO-DA. Full article
Show Figures

Graphical abstract

21 pages, 12223 KB  
Article
Long Non-Coding RNA 1810026B05Rik Mediates Cerebral Ischemia/Reperfusion-Induced Neuronal Injury Through NF-κB Pathway Activation
by Hao Zhang, Meng Li, Jiayu Yao, Xuan Jiang, Junxiao Feng, Xingjuan Shi and Xiaoou Sun
Int. J. Mol. Sci. 2025, 26(19), 9756; https://doi.org/10.3390/ijms26199756 - 7 Oct 2025
Viewed by 215
Abstract
Cerebral ischemia/reperfusion (I/R) injury remains a significant contributor to adult neurological morbidity, primarily due to exacerbated neuroinflammation and cell apoptosis. These processes amplify brain damage through the release of various pro-inflammatory cytokines and pro-apoptotic mediators. Although long non-coding RNAs (lncRNAs) are increasingly recognized [...] Read more.
Cerebral ischemia/reperfusion (I/R) injury remains a significant contributor to adult neurological morbidity, primarily due to exacerbated neuroinflammation and cell apoptosis. These processes amplify brain damage through the release of various pro-inflammatory cytokines and pro-apoptotic mediators. Although long non-coding RNAs (lncRNAs) are increasingly recognized for their involvement in regulating diverse biological pathways, their precise role in cerebral I/R injury has not been fully elucidated. In the current study, transcriptomic profiling was conducted using a rat model of focal cerebral I/R, leading to the identification of lncRNA-1810026B05Rik—also referred to as CHASERR—as a novel lncRNA responsive to ischemic conditions. The elevated expression of this lncRNA was observed in mouse brain tissues subjected to middle cerebral artery occlusion followed by reperfusion (MCAO/R), as well as in primary cortical neurons derived from rats exposed to oxygen-glucose deprivation and subsequent reoxygenation (OGD/R). The results suggested that lncRNA-1810026B05RiK mediates the activation of the nuclear factor-kappaB (NF-κB) signaling pathway by physically binding to NF-kappa-B inhibitor alpha (IκBα) and promoting its phosphorylation, thus leading to neuroinflammation and neuronal apoptosis during cerebral ischemia/reperfusion. In addition, lncRNA-1810026B05Rik knockdown acts as an NF-κB inhibitor in the OGD/R and MCAO/R pathological processes, suggesting that lncRNA-1810026B05Rik downregulation exerts a protective effect on cerebral I/R injury. In summary, the lncRNA-1810026B05Rik has been identified as a critical regulator of neuronal apoptosis and inflammation through the activation of the NF-κB signaling cascade. This discovery uncovers a previously unrecognized role of 1810026B05Rik in the molecular mechanisms underlying ischemic stroke, offering valuable insights into disease pathology. Moreover, its involvement highlights its potential as a novel therapeutic target, paving the way for innovative treatment strategies for stroke patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 6412 KB  
Review
Eosinophil ETosis and Cancer: Ultrastructural Evidence and Oncological Implications
by Rosario Caruso, Valerio Caruso and Luciana Rigoli
Cancers 2025, 17(19), 3250; https://doi.org/10.3390/cancers17193250 - 7 Oct 2025
Viewed by 237
Abstract
Eosinophils are innate immune cells that infiltrate tissues in response to cell proliferation and necrosis, which occurs during normal injury repair, parasitic infections, allergies, and cancer. Their involvement in cancer is controversial particularly with regard to tumor-associated tissue eosinophilia (TATE) and a recently [...] Read more.
Eosinophils are innate immune cells that infiltrate tissues in response to cell proliferation and necrosis, which occurs during normal injury repair, parasitic infections, allergies, and cancer. Their involvement in cancer is controversial particularly with regard to tumor-associated tissue eosinophilia (TATE) and a recently defined mechanism of extracellular trap cell death (ETosis), a particular type of eosinophil cell death that is distinct from both apoptosis and necrosis. This narrative review synthesizes the literature regarding the prognostic significance of TATE, focusing on eosinophil ETosis and the important role of transmission electron microscopy (TEM) in its detection and morphological characterization. The prognostic role of TATE is contradictory: in certain tumors, it is a favorable prognostic marker, while in others, it is unfavorable. However, recent research reveals that TATE is associated with a better prognosis in non-viral neoplasms, but it may correlate with a poor prognosis in virus-related neoplasms, such as human T-lymphotropic virus type 1 (HTLV-1)-associated lymphomas and HPV-positive carcinomas. Our ultrastructural investigations revealed distinct phases of eosinophil ETosis in gastric cancer, which were defined by chromatin decondensation, plasma membrane disruption, granule discharge, and development of extracellular traps. We observed synapse-like interactions between eosinophils, exhibiting ETosis or compound exocytosis, and tumor cells, which showed various degrees of cellular damage, ultimately leading to colloid-osmotic tumor cell death. TEM provides important insights into eosinophil-mediated cytotoxicity, requiring further investigation as potential immune effector mechanisms in non-viral tumors. TATE evaluation, together with the viral status of the neoplasia, may be useful to confirm its prognostic significance and consequently its therapeutic implication in specific cancers. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

7 pages, 6135 KB  
Case Report
Clinical Experience Using a Dual-Layer Amniotic Membrane Allograft on a Posterior Upper-Thigh Pressure Ulcer
by Kirk Mitchell
Reports 2025, 8(4), 199; https://doi.org/10.3390/reports8040199 - 6 Oct 2025
Viewed by 275
Abstract
Background and Clinical Significance: The objective of this case study is to report on the clinical outcomes of a hard-to-heal posterior upper-thigh pressure ulcer when managed with a sterile human amniotic membrane tissue allograft. Case Presentation: Retrospective case data of a [...] Read more.
Background and Clinical Significance: The objective of this case study is to report on the clinical outcomes of a hard-to-heal posterior upper-thigh pressure ulcer when managed with a sterile human amniotic membrane tissue allograft. Case Presentation: Retrospective case data of a patient who received five applications of barreraTM between February 2024 and April 2024 as part of their care regimen for a chronic pressure ulcer was obtained from a single wound care group. Data evaluated consisted of past patient medical history, concomitant medications, previous wound care treatments, wound type, wound size, adjunctive wound therapies and wound outcomes post allograft. The chronic pressure ulcer, measuring at 10.5 cm2 prior to allograft application, achieved complete closure at the last observation post the final, fifth application. Wound size attenuation was seen as early as 1 week post initial allograft application. No adverse events or complications related to barreraTM were observed. Conclusions: Results suggest that the application of dual-layer allografts in the context of chronic ulcers may represent a safe and effective wound management utility. Full article
Show Figures

Figure 1

17 pages, 6046 KB  
Article
Oral Treatment with the Vimentin-Targeting Compound ALD-R491 Mitigates Hyperinflammation, Multi-Organ Injury, and Mortality in CLP-Induced Septic Mice
by Jianping Wu, Shuaishuai Wang, Kuai Yu, Zijing Xu, Xueting Wu, Deebie Symmes, Lian Mo, Chun Cheng, Ruihuan Chen and Junfeng Zhang
Life 2025, 15(10), 1563; https://doi.org/10.3390/life15101563 - 6 Oct 2025
Viewed by 373
Abstract
Sepsis is a life-threatening condition driven by a dysregulated host response to infection, with high mortality and few treatment options. Decades of failed drug development underscore the urgent need for therapies with novel mechanisms of action. Vimentin, an intermediate filament protein, acts as [...] Read more.
Sepsis is a life-threatening condition driven by a dysregulated host response to infection, with high mortality and few treatment options. Decades of failed drug development underscore the urgent need for therapies with novel mechanisms of action. Vimentin, an intermediate filament protein, acts as a network hub that senses and integrates cellular signals. Its involvement in key sepsis pathologies, including infection, hyperinflammation, immunosuppression, coagulopathy and metabolic dysregulation, positions it as a potential therapeutic target. This study evaluated the efficacy of ALD-R491, a novel small-molecule vimentin modulator, in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Mice received ALD-R491 prophylactically or therapeutically, alone or with ceftriaxone. The treatment significantly reduced serum levels of key biomarkers of sepsis, including C-reactive protein (CRP), lactate (Lac), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and dose-dependently improved the survival of septic mice. Organ-specific analysis confirmed the effects of ALD-R491 in mitigating hyperinflammation and multi-organ injury. The treatment reduced pulmonary edema and inflammation; preserved liver tissue architecture and improved hepatic function with lowered alanine aminotransferase/aspartate aminotransferase (ALT/AST); decreased kidney tubular damage; and improved renal function with lowered creatinine/blood urea nitrogen (BUN). These preclinical findings indicate that the vimentin-targeting agent ALD-R491 represents a promising therapeutic candidate for sepsis and merits further clinical investigation. Full article
Show Figures

Graphical abstract

26 pages, 2711 KB  
Review
Organ-Specific Extracellular Vesicles in the Treatment of Ischemic Acute Organ Injury: Mechanisms, Successes, and Prospects
by Irina B. Pevzner, Nadezda V. Andrianova, Anna K. Lomakina, Kseniia S. Cherkesova, Elizaveta D. Semenchenko and Egor Y. Plotnikov
Int. J. Mol. Sci. 2025, 26(19), 9709; https://doi.org/10.3390/ijms26199709 - 6 Oct 2025
Viewed by 394
Abstract
Ischemia–reperfusion (I/R) injury is a complex pathological process underlying numerous acute organ failures and is a significant cause of morbidity and mortality in diseases such as myocardial infarction, stroke, thrombosis, and organ transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have demonstrated considerable [...] Read more.
Ischemia–reperfusion (I/R) injury is a complex pathological process underlying numerous acute organ failures and is a significant cause of morbidity and mortality in diseases such as myocardial infarction, stroke, thrombosis, and organ transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have demonstrated considerable therapeutic potential, but their broad tropism and general repair signaling may limit their efficacy. This review addresses the emerging paradigm of using organ-specific EVs for the treatment of I/R injury in the respective organs. We summarize the existing studies performed on experimental animals showing that these native EVs could possess tissue tropism and carry a specialized cargo of proteins, miRNAs, and lipids tailored to the unique regenerative needs of their organ of origin, enabling them to precisely modulate key processes, including inflammation, apoptosis, oxidative stress, and angiogenesis. However, their clinical translation faces challenges related to scalable production, standardization, and the dualistic nature of their effects, which can be either protective or detrimental, depending on the cellular source and pathophysiological context. Future developments need to focus on overcoming these obstacles through rigorous isolation protocols, engineering strategies such as cargo enrichment and hybrid vesicle creation, and validation in large-animal models. Overall, organ-specific EVs offer a novel, cell-free therapeutic strategy with the potential to significantly improve outcomes in I/R injury. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

32 pages, 927 KB  
Review
Environmental Nephrotoxicity Across the Life Course: Oxidative Stress Mechanisms and Opportunities for Early Intervention
by Chien-Ning Hsu, Chih-Yao Hou, Yu-Wei Chen, Guo-Ping Chang-Chien, Shu-Fen Lin and You-Lin Tain
Antioxidants 2025, 14(10), 1205; https://doi.org/10.3390/antiox14101205 - 4 Oct 2025
Viewed by 676
Abstract
Chronic kidney disease (CKD) affects nearly 10% of the global population, ranks among the top ten causes of death, and often progresses silently to end-stage disease without timely intervention. Increasing evidence indicates that many adult-onset cases originate in early life through adverse influences [...] Read more.
Chronic kidney disease (CKD) affects nearly 10% of the global population, ranks among the top ten causes of death, and often progresses silently to end-stage disease without timely intervention. Increasing evidence indicates that many adult-onset cases originate in early life through adverse influences on kidney development, a process termed kidney programming within the Developmental Origins of Health and Disease (DOHaD) framework. Environmental pollutants are now recognized as key drivers of kidney injury across the life course. Heavy metals, air pollutants, plastic contaminants such as bisphenol A, phthalates, and micro/nanoplastics—as well as biocontaminants like mycotoxins and aristolochic acid—and chronic light pollution can accumulate in kidney tissue or act systemically to impair function. These exposures promote oxidative stress, inflammation, and endothelial and circadian disruption, culminating in tubular injury, glomerular damage, and fibrosis. Notably, early-life exposures can induce epigenetic modifications that program lifelong susceptibility to CKD and related complications. Oxidative stress is central to these effects, mediating DNA, lipid, and protein damage while influencing developmental reprogramming during gestation. Preclinical studies demonstrate that antioxidant-based interventions may mitigate these processes, providing both renoprotective and reprogramming benefits. This review explores the mechanistic links between environmental pollutants, oxidative stress, and kidney disease and highlights antioxidant strategies as promising avenues for prevention and intervention in vulnerable populations. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Environmental Toxicity—2nd Edition)
Show Figures

Figure 1

29 pages, 15230 KB  
Article
Harpagide Confers Protection Against Acute Lung Injury Through Multi-Omics Dissection of Immune–Microenvironmental Crosstalk and Convergent Therapeutic Mechanisms
by Hong Wang, Jicheng Yang, Yusheng Zhang, Jie Wang, Shaoqi Song, Longhui Gao, Mei Liu, Zhiliang Chen and Xianyu Li
Pharmaceuticals 2025, 18(10), 1494; https://doi.org/10.3390/ph18101494 - 4 Oct 2025
Viewed by 423
Abstract
Background: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), remain major causes of morbidity and mortality, yet no targeted pharmacological therapy is available. Excessive neutrophil and macrophage infiltration drives reactive oxygen species (ROS) production and cytokine release, leading [...] Read more.
Background: Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), remain major causes of morbidity and mortality, yet no targeted pharmacological therapy is available. Excessive neutrophil and macrophage infiltration drives reactive oxygen species (ROS) production and cytokine release, leading to alveolar–capillary barrier disruption and fatal respiratory failure. Methods: We applied an integrative multi-omics strategy combining single-cell transcriptomics, peripheral blood proteomics, and lung tissue proteomics in a lipopolysaccharide (LPS, 10 mg/kg)-induced mouse ALI model to identify key signaling pathways. Harpagide, an iridoid glycoside identified from our natural compound screen, was evaluated in vivo (40 and 80 mg/kg) and in vitro (0.1–1 mg/mL). Histopathology, oxidative stress markers (SOD, GSH, and MDA), cytokine levels (IL-6 and IL-1β), and signaling proteins (HIF-1α, p-PI3K, p-AKT, Nrf2, and HO-1) were quantitatively assessed. Direct target engagement was probed using surface plasmon resonance (SPR), the cellular thermal shift assay (CETSA), and 100 ns molecular dynamics (MD) simulations. Results: Multi-omics profiling revealed robust activation of HIF-1, PI3K/AKT, and glutathione-metabolism pathways following the LPS challenge, with HIF-1α, VEGFA, and AKT as core regulators. Harpagide treatment significantly reduced lung injury scores by ~45% (p < 0.01), collagen deposition by ~50%, and ROS accumulation by >60% relative to LPS (n = 6). The pro-inflammatory cytokines IL-6 and IL-1β were reduced by 55–70% at the protein level (p < 0.01). Harpagide dose-dependently suppressed HIF-1α and p-AKT expression while enhancing Nrf2 and HO-1 levels (p < 0.05). SPR confirmed direct binding of Harpagide to HIF-1α (KD = 8.73 µM), and the CETSA demonstrated enhanced thermal stability of HIF-1α. MD simulations revealed a stable binding conformation within the inhibitory/C-TAD region after 50 ns. Conclusions: This study reveals convergent immune–microenvironmental regulatory mechanisms across cellular and tissue levels in ALI and demonstrates the protective effects of Harpagide through multi-pathway modulation. These findings offer new insights into the pathogenesis of ALI and support the development of “one-drug, multilayer co-regulation” strategies for systemic inflammatory diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

24 pages, 6712 KB  
Article
Biomarkers Characterizing the Onset of Dietary-Induced Hepatocellular Injury and Visceral Obesity in a Rat Experimental Model: Possible Anti-Inflammatory Effects of Steviol Glycosides
by Krastina Trifonova, Penka Yonkova and Petko Dzhelebov
Metabolites 2025, 15(10), 656; https://doi.org/10.3390/metabo15100656 - 4 Oct 2025
Viewed by 306
Abstract
Background: The aim of the present study is to compare the potential of a high-fat diet, a high-carbohydrate diet, and a high-fat, high-carbohydrate diet to induce liver injury and visceral obesity within a period of five weeks, identify the pattern and degree of [...] Read more.
Background: The aim of the present study is to compare the potential of a high-fat diet, a high-carbohydrate diet, and a high-fat, high-carbohydrate diet to induce liver injury and visceral obesity within a period of five weeks, identify the pattern and degree of hepatic changes at the tissue level, identify the earliest metabolic markers of specific liver changes induced by each type of diet, and to test the possible beneficial effects of steviol glycosides in a rat experimental model. Methods: Wistar rats (n = 56) were divided into seven groups as follows: group BD (before diet), group SD (standard diet), group HFD (high-fat diet), group HCHD (high-carbohydrate diet), group HFHCHD (high-fat high-carbohydrate diet), group SDS (standard diet supplemented with Stevia extract), and group HFDS (high-fat diet supplemented with Stevia extract). Results: Total cholesterol concentrations (2.02 ± 0.22 mmol/L) increased in the HFD group (2.56 ± 0.82 mmol/L) and in the HFDS group (2.89 ± 0.48 mmol/L). The VLDL values before diets were 0.27 ± 0.11 mmol/L and increased most significantly in the HFHCHD group—1.14 ± 0.62 mmol/L. The baseline ALT values (88.4 ± 10.6 U/L) increased in the HFD group (128.13 ± 19.5 U/L) and the HFDS group (127.00 ± 17.74 U/L). Similar increases were registered in the AST/ALT ratio and ALP. Total bilirubin (7.10 ± 1.39 μmol/L) increased in HFD group (27.86 ± 17.01 μmol/L). Serum NO had the lowest values in groups fed diets supplemented with steviol glycosides. All high-calorie diets induced hepatocellular injury. The mass of the perirenal fat depot and cross-sectional area of adipocytes were highest in HFD, HFHCHD, and HFDS groups. Conclusion: High-calorie diets have the potential to induce visceral obesity and hepatocellular injury within a very short period of time, which produces characteristic histological changes and specific biochemical profile. Steviol glycosides may alleviate some aspects of the inflammatory response, but findings about lipid profile parameters and liver enzymes are controversial. Full article
(This article belongs to the Special Issue Metabolic Changes in Diet-Mediated Inflammatory Diseases)
Show Figures

Figure 1

Back to TopTop