Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = titanium aluminide powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3297 KB  
Article
Effect of High-Temperature Isothermal Annealing on the Structure and Properties of Multicomponent Compact Ti-Al(Nb,Mo,B)-Based Materials Fabricated via Free SHS-Compression
by Pavel Bazhin, Ivan Nazarko, Arina Bazhina, Andrey Chizhikov, Alexander Konstantinov, Artem Ivanov, Mikhail Antipov, Pavel Stolin, Svetlana Agasieva and Varvara Avdeeva
Metals 2025, 15(10), 1088; https://doi.org/10.3390/met15101088 - 29 Sep 2025
Viewed by 221
Abstract
This study investigates TNM-type titanium aluminide alloys, representing the third generation of β-stabilized γ-TiAl heat-resistant materials. The aim of this work is to study the combustion characteristics and to produce compact materials via the free SHS compaction method from initial powder reagents taken [...] Read more.
This study investigates TNM-type titanium aluminide alloys, representing the third generation of β-stabilized γ-TiAl heat-resistant materials. The aim of this work is to study the combustion characteristics and to produce compact materials via the free SHS compaction method from initial powder reagents taken in the following ratio (wt%): 51.85Ti–43Al–4Nb–1Mo–0.15B, as well as to determine the effect of high-temperature isothermal annealing at 1000 °C on the structure and properties of the obtained materials. Using free SHS compression (self-propagating high-temperature synthesis), we synthesized compact materials from a 51.85Ti–43Al–4Nb–1Mo–0.15B (wt%) powder blend. Key combustion parameters were optimized to maximize the synthesis temperature, employing a chemical ignition system. The as-fabricated materials exhibit a layered macrostructure with wavy interfaces, aligned parallel to material flow during compression. Post-synthesis isothermal annealing at 1000 °C for 3 h promoted further phase transformations, enhancing mechanical properties including microhardness (up to 7.4 GPa), Young’s modulus (up to 200 GPa) and elastic recovery (up to 31.8%). X-ray powder diffraction, SEM, and EDS analyses confirmed solid-state diffusion as the primary mechanism for element interaction during synthesis and annealing. The developed materials show promise as PVD targets for depositing heat-resistant coatings. Full article
Show Figures

Figure 1

21 pages, 534 KB  
Review
A Review of the State of Art of Fabrication Technologies of Titanium Aluminide (Ti-Al) Based on US Patents
by Shawdon Huang, Yu-Chien Lin and Ren-Jei Chung
Metals 2024, 14(4), 418; https://doi.org/10.3390/met14040418 - 1 Apr 2024
Cited by 6 | Viewed by 3908
Abstract
This article evaluates the fabrication technologies of titanium aluminide (Ti-Al) and its practical applications by comparing it with the well-known Ti-Al binary phase diagram and US patents. Meanwhile, by analyzing and discussing the various patented Ti-Al fabrication technologies and applications, this article discusses [...] Read more.
This article evaluates the fabrication technologies of titanium aluminide (Ti-Al) and its practical applications by comparing it with the well-known Ti-Al binary phase diagram and US patents. Meanwhile, by analyzing and discussing the various patented Ti-Al fabrication technologies and applications, this article discusses the applications of Ti-Al-based alloys, mainly in the aircraft field. The improved fabrication processes and new application technologies are under patent protection. These technologies are classified into six categories: basic research on Ti-Al-based alloys, powder metallurgy of Ti-Al-based alloys, casting and melting of Ti-Al-based alloys, PM and AM manufacturing methods for aircraft applications, other fabrication technologies by Ti-Al-based alloys, and self-propagating high-temperature synthesis (SHS) of Ti-Al-based alloys. By comparing the principles and characteristics of the above techniques, the advantages, disadvantages, and application fields of each are analyzed and their developments are discussed. Based on the characteristics of Ti-Al, new fabrication and application technologies can be developed, which can overcome the existing disadvantages and be used to form new aircraft components. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys)
Show Figures

Figure 1

13 pages, 3841 KB  
Article
Pressing and Sintering of Titanium Aluminide Powder after Ball Milling in Silane-Doped Atmosphere
by Bernd-Arno Behrens, Kai Brunotte, Julius Peddinghaus, Jonathan Ursinus, Sebastian Döring, Wolfgang Maus-Friedrichs, René Gustus and Maik Szafarska
J. Manuf. Mater. Process. 2023, 7(5), 171; https://doi.org/10.3390/jmmp7050171 - 19 Sep 2023
Cited by 3 | Viewed by 2471
Abstract
Due to the high specific surface area of titanium aluminide powders, significant and unavoidable surface oxidation takes place during processing. The resulting oxides disrupt the conventional powder metallurgical process route (pressing and sintering) by reducing the green strength and sintered properties. Oxide-free particle [...] Read more.
Due to the high specific surface area of titanium aluminide powders, significant and unavoidable surface oxidation takes place during processing. The resulting oxides disrupt the conventional powder metallurgical process route (pressing and sintering) by reducing the green strength and sintered properties. Oxide-free particle surfaces offer the potential to significantly increase particle bond strength and enable the processing of difficult-to-press material powders. In this work, the effect of milling titanium aluminide powder in a silane-doped atmosphere on the component properties after pressing and the subsequent sintering was investigated. Ball milling was used to break up the oxide layers and create bare metal surfaces on the particles. With the help of silane-doped inert gas, the oxygen partial pressure was greatly reduced during processing. It was investigated whether oxide-free surfaces could be produced and maintained by milling in silane-doped atmospheres. Furthermore, the resulting material properties after pressing and sintering were analysed using density measurements, hardness tests, EDX measurements, and micrographs. It was concluded that ball milling in a silane-doped atmosphere produces and maintains oxide-free particle surfaces. These oxide-free surfaces and smaller particle sizes improve the component properties after pressing and sintering. Full article
(This article belongs to the Special Issue Advances in Metal Forming and Thermomechanical Processing)
Show Figures

Figure 1

13 pages, 4388 KB  
Article
Robust γ-TiAl Dual Microstructure Concept by Advanced Electron Beam Powder Bed Fusion Technology
by Marcel Reith, Martin Franke and Carolin Körner
Crystals 2023, 13(9), 1348; https://doi.org/10.3390/cryst13091348 - 5 Sep 2023
Cited by 1 | Viewed by 2164
Abstract
The dual microstructure concept for gamma titanium aluminides (γ-TiAl) processed via electron beam–powder bed fusion (PBF-EB) provides a huge potential for more efficient jet turbine engines. While the concept is feasible and the mechanical properties are promising, there are still some challenges. For [...] Read more.
The dual microstructure concept for gamma titanium aluminides (γ-TiAl) processed via electron beam–powder bed fusion (PBF-EB) provides a huge potential for more efficient jet turbine engines. While the concept is feasible and the mechanical properties are promising, there are still some challenges. For an industrial application, the heat treatment window has to match the conditions in industrial furnaces. This study shows how the required heat treatment window can be achieved via advanced PBF-EB technology. Through using an electron beam with 150 kV acceleration voltage, the difference in aluminum between the designed aluminum-rich and aluminum-lean regions of the part is increased. Moreover, the aluminum content within each of these regions, respectively, is more homogenous compared to the 60 kV acceleration voltage. This combination provides a heat treatment window of 25 °C, enabling the industrial application of the dual microstructure concept for γ-TiAl. Full article
(This article belongs to the Special Issue Additive Manufacturing of Metallic Alloys)
Show Figures

Figure 1

13 pages, 4252 KB  
Article
Microstructure of TiAl Capsules Processed by Electron Beam Powder Bed Fusion Followed by Post-Hot Isostatic Pressing
by Hanieh Bakhshi Farkoush, Giulio Marchese, Emilio Bassini, Alberta Aversa and Sara Biamino
Materials 2023, 16(16), 5510; https://doi.org/10.3390/ma16165510 - 8 Aug 2023
Cited by 2 | Viewed by 1764
Abstract
The microstructures of intermetallic γ-titanium aluminide (TiAl) alloys are subjected to a certain degree of Al evaporation when processed by electron beam powder bed fusion (EB-PBF). The magnitude of the Al-loss is mainly correlated with the process parameters, and highly energetic parameters produce [...] Read more.
The microstructures of intermetallic γ-titanium aluminide (TiAl) alloys are subjected to a certain degree of Al evaporation when processed by electron beam powder bed fusion (EB-PBF). The magnitude of the Al-loss is mainly correlated with the process parameters, and highly energetic parameters produce significant Al evaporation. The Al-loss leads to different microstructures, including the formation of inhomogeneous banded structures, thus negatively affecting its mechanical performance. For this reason, the current work deals with creating EB-PBFed TiAl capsules with the inner part produced using only the pre-heating step and melting parameters with low energetic parameters applying high beam speed from 5000 to 3000 mm/s. This approach is investigated to reduce the Al-loss and microstructure inhomogeneity after hot isostatic pressing (HIP). The results showed that the HIP treatment effectively densified the capsules obtaining a relative density of around 100%. After HIP, the capsules produced with the inner part melted at 3000 mm/s presented a lower area shrinkage (around 6.6%) compared to the capsules produced using only the pre-heating step in the core part (around 20.7%). The different magnitudes of shrinkage derived from different levels of residual porosity consolidated during the HIP process. The HIPed capsules exhibited the presence of previous particle boundaries (PPBs), covered by α2 phases. Notably, applying low energetic parameters to melt the core partially eliminates the particles’ surface, thus reducing the PPBs formation. In this case, the capsules melted with low energetic parameters (3000 mm/s) exhibited α2 concentration of 3.5% and an average size of 13 µm compared to the capsules produced with the pre-heating step in the inner part with an α2 around 5.7% and an average size around 23 µm. Moreover, the Al-loss of the capsules was drastically limited, as determined by X-ray fluorescence (XRF) analysis. More in detail, the capsules produced with the pre-heating step reported an atomic percentage of Al of 48.75, while using low energetic melting parameters led to 48.36. This result was interesting, considering that the massive samples produced with standard parameters (so more energetic ones) revealed atomic Al percentage from 48.04 to 47.70. Finally, the recycled small particles showed a higher fraction of α2 phases with respect to the coarse particles, as determined by X-ray diffraction (XRD). Full article
(This article belongs to the Special Issue Recent Application of Powder Metallurgy Materials)
Show Figures

Figure 1

28 pages, 20513 KB  
Article
Influence of Combined Heat Treatment and Hot Isostatic Pressure (HT-HIP) on Titanium Aluminide Processed by L-PBF
by Hatem A. Soliman, James Pineault and Mohamed Elbestawi
Materials 2023, 16(14), 5071; https://doi.org/10.3390/ma16145071 - 18 Jul 2023
Cited by 7 | Viewed by 2971
Abstract
Postprocessing is essential for improving titanium aluminide (TiAl) microstructure and part quality after using the laser powder bed fusion (L-PBF) method. It has been reported that Ti-48Al-2Cr-2Nb (%at) processed by L-PBF has internal defects and low fracture toughness. Microstructure control by heat treatment [...] Read more.
Postprocessing is essential for improving titanium aluminide (TiAl) microstructure and part quality after using the laser powder bed fusion (L-PBF) method. It has been reported that Ti-48Al-2Cr-2Nb (%at) processed by L-PBF has internal defects and low fracture toughness. Microstructure control by heat treatment (HT) showed a significant improvement in the ductility of the material. Alternatively, hot isostatic pressing (HIPing) could be applied to reduce the residual stresses and internal defects formed during the L-PBF. Combining the benefits of these two subsequent processes into a single predetermined process is appealing for Ti-48Al-2Cr-2Nb (%at) to minimize cost. This work presents a novel strategy to postprocess L-PBF TiAl by applying combined heat treatment and hot isostatic pressing in one process, namely HT-HIP. The process includes three cycles with different conditions (i.e., temperature, time, and pressure). These conditions were determined to achieve improved part quality and microstructure. The results show that the tensile residual stresses decreased from a peak of 249 MPa in the as-built sample to compressive stresses that peaked at −90 MPa after the HT-HIP process. The number and size of internal defects could be greatly reduced. The defects were transformed into a regular spherical shape, which is good in terms of fatigue strength. Additionally, a duplex microstructure with lamellar α2/γ colonies could be introduced for better ductility. Different levels of duplex microstructure could be achieved along with the process cycles. The grain structure using EBSD analysis showed refined equiaxed grains, which demonstrate better strength after the HT-HIP process. Twinning boundaries were also observed in the HT-HIP sample. The grain orientation tendency to the build direction significantly reduced after the HT-HIP process. The nanoindentation test was applied to evaluate the nanohardness of the as-built and HT-HIP samples. It could be demonstrated that the nanohardness is dependent on the formed phases and lamellar density inside the grains. The mean hardness value was 8.19 GPa for the as-built sample, while it was 5.48 GPa for the HT-HIP sample. Full article
Show Figures

Figure 1

30 pages, 5481 KB  
Review
A Review—Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti2AlNb
by Anatoliy G. Illarionov, Stepan I. Stepanov, Inna A. Naschetnikova, Artemiy A. Popov, Prasanth Soundappan, K. H. Thulasi Raman and Satyam Suwas
Materials 2023, 16(3), 991; https://doi.org/10.3390/ma16030991 - 20 Jan 2023
Cited by 28 | Viewed by 5616
Abstract
Titanium alloys based on orthorhombic titanium aluminide Ti2AlNb are promising refractory materials for aircraft engine parts in the operating temperature range from 600–700 °C. Parts made of Ti2AlNb-based alloys by traditional technologies, such as casting and metal forming, have [...] Read more.
Titanium alloys based on orthorhombic titanium aluminide Ti2AlNb are promising refractory materials for aircraft engine parts in the operating temperature range from 600–700 °C. Parts made of Ti2AlNb-based alloys by traditional technologies, such as casting and metal forming, have not yet found wide application due to the sensitivity of processability and mechanical properties in chemical composition and microstructure compared with commercial solid-solution-based titanium alloys. In the last three decades, metal additive manufacturing (MAM) has attracted the attention of scientists and engineers for the production of intermetallic alloys based on Ti2AlNb. This review summarizes the recent achievements in the production of O-phase-based Ti alloys using MAM, including the analysis of the feedstock materials, technological processes, machines, microstructure, phase composition and mechanical properties. Powder bed fusion (PBF) and direct energy deposition (DED) are the most widely employed MAM processes to produce O-phase alloys. MAM provides fully dense, fine-grained material with a superior combination of mechanical properties at room temperature. Further research on MAM for the production of critical parts made of Ti2AlNb-based alloys can be focused on a detailed study of the influence of post-processing and chemical composition on the formation of the structure and mechanical properties, including cyclic loading, fracture toughness, and creep resistance. Full article
Show Figures

Figure 1

23 pages, 4649 KB  
Article
Laser Powder Bed Fusion of Intermetallic Titanium Aluminide Alloys Using a Novel Process Chamber Heating System: A Study on Feasibility and Microstructural Optimization for Creep Performance
by Reinhold Wartbichler, Tobias Maiwald-Immer, Fabian Pürstl and Helmut Clemens
Metals 2022, 12(12), 2087; https://doi.org/10.3390/met12122087 - 5 Dec 2022
Cited by 4 | Viewed by 3130
Abstract
A laser powder bed fusion process operating at elevated temperatures is introduced capable of fabricating crack-free and dense intermetallic titanium aluminide alloy specimens as well as demonstrator components using a base plate heating up to 900 °C and a unique heating system of [...] Read more.
A laser powder bed fusion process operating at elevated temperatures is introduced capable of fabricating crack-free and dense intermetallic titanium aluminide alloy specimens as well as demonstrator components using a base plate heating up to 900 °C and a unique heating system of the uppermost powder bed layer up to 1200 °C. Two so-called 4th generation alloys, TNM and TNM+, were used for this study. The microstructure and its evolution during subsequent heat treatments were investigated and explained by employing scanning electron microscopy, hardness testing, X-ray diffraction, differential scanning calorimetry and thermodynamic equilibrium calculation. Selected specimens were subjected to creep tests at 750 °C. The microstructures after processing consist of extraordinarily fine lamellar γ-TiAl/α2-Ti3Al-colonies with globular γ and βo-TiAl grains for both the TNM and TNM+ alloy, exhibiting a microstructure gradient from the last consolidated powder layer down to the starting layer due to cellular reaction, which increases the amount of globular γ and βo at the boundaries of the γ/α2-colonies. During annealing in proximity to the γ-solvus temperature, banded microstructures might form, as the α-grain size is only partially controlled by heterogeneously distributed γ/β-phase, which stems from the process-related Al loss. Additionally, the occurrence of thermally-induced porosity is investigated. Optimizing the microstructure to a homogenized, almost fully lamellar microstructure, involved annealing in the β-single phase field region and led to improved creep properties. Finally, TNM demonstrator components with complex geometries, such as aero engine blades and turbocharger turbine wheels, are fabricated by employing the novel laser powder bed fusion process. Full article
(This article belongs to the Special Issue Intermetallics for Structural Applications)
Show Figures

Figure 1

13 pages, 3145 KB  
Article
Impact of the Power-Dependent Beam Diameter during Electron Beam Additive Manufacturing: A Case Study with γ-TiAl
by Marcel Reith, Christoph Breuning, Martin Franke and Carolin Körner
Appl. Sci. 2022, 12(21), 11300; https://doi.org/10.3390/app122111300 - 7 Nov 2022
Cited by 13 | Viewed by 3596
Abstract
The development of process parameters for electron beam powder bed fusion (PBF-EB) is usually made with simple geometries and uniform scan lengths. The transfer to complex parts with various scan lengths can be achieved by adapting beam parameters such as beam power and [...] Read more.
The development of process parameters for electron beam powder bed fusion (PBF-EB) is usually made with simple geometries and uniform scan lengths. The transfer to complex parts with various scan lengths can be achieved by adapting beam parameters such as beam power and scan speed. Under ideal conditions, this adaption results in a constant energy input into the powder bed despite of the local scan length. However, numerous PBF-EB machines show deviations from the ideal situation because the beam diameter is subject to significant changes if the beam power is changed. This study aims to demonstrate typical scaling issues when applying process parameters to scan lengths up to 45 mm using a fourth generation γ-TiAl alloy. Line energy, area energy, return time, and lateral velocity are kept constant during the additive manufacturing process by adjusting beam power and beam velocity to various scan lengths. Samples produced in this way are examined by light microscopy regarding lateral melt pool extension, melt pool depth, porosity, and microstructure. The process-induced aluminum evaporation is measured by electron probe microanalysis. The experiments reveal undesired changes in melt pool geometry, gas porosity, and aluminum evaporation by increasing the beam power. In detail, beam widening is identified as the reason for the change in melt pool dimensions and microstructure. This finding is supported by numerical calculations from a semi-analytic heat conduction model. This study demonstrates that in-depth knowledge of the electron beam diameter is required to thoroughly control the PBF-EB process, especially when scaling process parameters from simply shaped geometries to complex parts with various scan lengths. Full article
(This article belongs to the Special Issue The Physics of Joining and Additive Manufacturing)
Show Figures

Figure 1

17 pages, 6150 KB  
Article
Processing, Microstructure, and Mechanical Properties of Laser Additive Manufactured Ti2AlNb-Based Alloy with Carbon, Boron, and Yttrium Microalloying
by Igor Polozov, Anna Gracheva and Anatoly Popovich
Metals 2022, 12(8), 1304; https://doi.org/10.3390/met12081304 - 3 Aug 2022
Cited by 11 | Viewed by 2994
Abstract
In this work, Ti-22Al-23Nb-0.8Mo-0.3Si-0.4C-0.1B-0.2Y (at. %) alloy powder was used to fabricate the Ti2AlNb-based alloy samples using Laser powder bed fusion (L-PBF) Additive Manufacturing with a high-temperature substrate preheating. L-PBF process parameters, including laser power, scan speed, hatching distance, and preheating [...] Read more.
In this work, Ti-22Al-23Nb-0.8Mo-0.3Si-0.4C-0.1B-0.2Y (at. %) alloy powder was used to fabricate the Ti2AlNb-based alloy samples using Laser powder bed fusion (L-PBF) Additive Manufacturing with a high-temperature substrate preheating. L-PBF process parameters, including laser power, scan speed, hatching distance, and preheating temperature, allowing for obtaining fully dense (99.9% relative density) crack-free samples, were determined. The effects of substrate preheating temperature during the L-PBF process on microstructure, phase composition, and properties of the obtained Ti2AlNb-based alloy were investigated using X-ray diffraction, scanning electron microscopy, electron backscatter diffraction analysis, and microhardness testing. The results obtained for the material with C, B, and Y microalloying were compared to the Ti2AlNb-based alloy fabricated by L-PBF from the powder not alloyed with C, B, and Y. The results revealed that the microalloying reduced the number of solidification cracks; however, no significant microstructural changes were observed, and high-temperature substrate preheating was still necessary to suppress cold cracking of the alloy. The microstructure of the alloy varied from fully-β/B2, B2 + O, to fully-O depending on the preheating temperature. Effects of hot isostatic pressing and heat treatment conditions on microstructure and mechanical properties were investigated. Full article
(This article belongs to the Special Issue Advanced Manufacturing of Novel Metallic Related Materials)
Show Figures

Figure 1

23 pages, 4009 KB  
Article
Some Aspects of Oxidation and Reduction Processes in Ti–Al and Ti–Al–Nb Systems
by Marzena Mitoraj-Królikowska and Ewa Drożdż
Materials 2022, 15(5), 1640; https://doi.org/10.3390/ma15051640 - 22 Feb 2022
Cited by 7 | Viewed by 2409
Abstract
The oxidation of titanium and titanium aluminides has attracted the attention of scientists for many years because of their high-temperature application. The most popular method to investigate oxidation behavior is the measurement of alloy mass changes during exposure to elevated-temperature under isothermal or [...] Read more.
The oxidation of titanium and titanium aluminides has attracted the attention of scientists for many years because of their high-temperature application. The most popular method to investigate oxidation behavior is the measurement of alloy mass changes during exposure to elevated-temperature under isothermal or thermal cycling conditions. However, the thermogravimetric method is not enough to establish an oxidation mechanism. In this paper, the temperature-programmed oxidation (TPOx) and reduction (TPR) were applied for the Ti–Al and Ti–Al–Nb systems, which was a new experimental concept which revealed interesting phenomena. Although oxidation of titanium alloys is well-described in the literature, not many papers present at the same time reduction of oxidized alloys. The results presented in the paper concentrated on the first stages of oxidation, which are scarcely described in the literature, but are important to understand the oxidation mechanism. Comparison between powder and bulk samples with similar compositions revealed essential differences in the oxidation mechanism. Full article
Show Figures

Figure 1

14 pages, 15588 KB  
Article
Influence of Dwell Time and Pressure on SPS Process with Titanium Aluminides
by Bernd-Arno Behrens, Kai Brunotte, Julius Peddinghaus and Adrian Heymann
Metals 2022, 12(1), 83; https://doi.org/10.3390/met12010083 - 4 Jan 2022
Cited by 9 | Viewed by 3245
Abstract
Spark plasma sintering (SPS) or the field-assisted sintering technique (FAST) is commonly used to process powders that are difficult to consolidate, more efficiently than in the conventional powder metallurgy process route. During the process, holding time and applied holding pressure influence the product’s [...] Read more.
Spark plasma sintering (SPS) or the field-assisted sintering technique (FAST) is commonly used to process powders that are difficult to consolidate, more efficiently than in the conventional powder metallurgy process route. During the process, holding time and applied holding pressure influence the product’s microstructure and subsequently its properties. In this study, in addition to the temperature impact, the influence of pressure and dwell time on the consolidation behaviour of titanium aluminide (TiAl) powders during the SPS process is investigated. Commercially available pre-alloyed TiAl48-2Cr-2Nb (GE48) and TiAl44-4Nb-0.7Mo-0.1B (TNM) powders were used, which have a high application potential in, for example, the aerospace industry. The results were evaluated based on microstructural analyses, hardness measurements and relative density calculations. It was shown that the investigated parameters significantly influence the sintering results, especially in the low temperature range. Depending on the temperature field in the sample, complete sintering is not achieved if the dwell time is too short in combination with too low a pressure. Above a certain temperature, the impact of holding pressure and holding time is significantly lower. Full article
(This article belongs to the Special Issue Spark Plasma Sintering on Metals and Alloys)
Show Figures

Figure 1

13 pages, 6934 KB  
Article
Improving the Tensile Properties of Additively Manufactured β-Containing TiAl Alloys via Microstructure Control Focusing on Cellular Precipitation Reaction
by Ken Cho, Hirotaka Odo, Keisuke Okamoto, Hiroyuki Y. Yasuda, Hirotoyo Nakashima, Masao Takeyama and Takayoshi Nakano
Crystals 2021, 11(7), 809; https://doi.org/10.3390/cryst11070809 - 12 Jul 2021
Cited by 14 | Viewed by 3229
Abstract
The effect of a two-step heat treatment on the microstructure and high-temperature tensile properties of β-containing Ti-44Al-4Cr (at%) alloys fabricated by electron beam powder bed fusion were examined by focusing on the morphology of α2/γ lamellar grains and β/γ cells precipitated [...] Read more.
The effect of a two-step heat treatment on the microstructure and high-temperature tensile properties of β-containing Ti-44Al-4Cr (at%) alloys fabricated by electron beam powder bed fusion were examined by focusing on the morphology of α2/γ lamellar grains and β/γ cells precipitated at the lamellar grain boundaries by a cellular precipitation reaction. The alloys subjected to the first heat treatment step at 1573 K in the α + β two-phase region exhibit a non-equilibrium microstructure consisting of the α2/γ lamellar grains with a fine lamellar spacing and a β/γ duplex structure located at the grain boundaries. In the second step of heat treatment, i.e., aging at 1273 K in the β + γ two-phase region, the β/γ cells are discontinuously precipitated from the lamellar grain boundaries due to excess Cr supersaturation in the lamellae. The volume fraction of the cells and lamellar spacing increase with increasing aging time and affect the tensile properties of the alloys. The aged alloys exhibit higher strength and comparable elongation at 1023 K when compared to the as-built alloys. The strength of these alloys is strongly dependent on the volume fraction and lamellar spacing of the α2/γ lamellae. In addition, the morphology of the β/γ cells is also an important factor controlling the fracture mode and ductility of these alloys. Full article
Show Figures

Figure 1

19 pages, 5109 KB  
Article
Electron Beam Powder Bed Fusion of γ-Titanium Aluminide: Effect of Processing Parameters on Part Density, Surface Characteristics, and Aluminum Content
by Juliane Moritz, Mirko Teschke, Axel Marquardt, Lukas Stepien, Elena López, Frank Brückner, Marina Macias Barrientos, Frank Walther and Christoph Leyens
Metals 2021, 11(7), 1093; https://doi.org/10.3390/met11071093 - 9 Jul 2021
Cited by 15 | Viewed by 4088
Abstract
Gamma titanium aluminides are very interesting for their use in high-performance applications such as aircraft engines due to their low density, high stiffness and favorable high-temperature properties. However, the pronounced brittleness of these intermetallic alloys is a major challenge for their processing through [...] Read more.
Gamma titanium aluminides are very interesting for their use in high-performance applications such as aircraft engines due to their low density, high stiffness and favorable high-temperature properties. However, the pronounced brittleness of these intermetallic alloys is a major challenge for their processing through conventional fabrication methods. Additive manufacturing by means of electron beam powder bed fusion (EB-PBF) significantly improves the processability of titanium aluminides due to the high preheating temperatures and facilitates complex components. The objective of this study was to determine a suitable processing window for EB-PBF of the TNM-B1 alloy (Ti-43.5Al-4Nb-1Mo-0.1B), using an increased aluminum content in the powder raw material to compensate for evaporation losses during the process. Design of experiments was used to evaluate the effect of beam current, scan speed, focus offset, line offset and layer thickness on porosity. Top surface roughness was assessed through laser scanning confocal microscopy. Scanning electron microscopy, electron backscatter diffraction (EBSD) and energy-dispersive X-ray spectroscopy (EDX) were used for microstructural investigation and to analyze aluminum loss depending on the volumetric energy density used in EB-PBF. An optimized process parameter set for achieving part densities of 99.9% and smooth top surfaces was derived. The results regarding microstructures and aluminum evaporation suggest a solidification via the β-phase. Full article
(This article belongs to the Special Issue TiAl-Based Alloys and Their Applications)
Show Figures

Figure 1

21 pages, 6293 KB  
Review
Development of TiAl–Si Alloys—A Review
by Anna Knaislová, Pavel Novák, Marcello Cabibbo, Lucyna Jaworska and Dalibor Vojtěch
Materials 2021, 14(4), 1030; https://doi.org/10.3390/ma14041030 - 22 Feb 2021
Cited by 30 | Viewed by 5636
Abstract
This paper describes the effect of silicon on the manufacturing process, structure, phase composition, and selected properties of titanium aluminide alloys. The experimental generation of TiAl–Si alloys is composed of titanium aluminide (TiAl, Ti3Al or TiAl3) matrix reinforced by [...] Read more.
This paper describes the effect of silicon on the manufacturing process, structure, phase composition, and selected properties of titanium aluminide alloys. The experimental generation of TiAl–Si alloys is composed of titanium aluminide (TiAl, Ti3Al or TiAl3) matrix reinforced by hard and heat-resistant titanium silicides (especially Ti5Si3). The alloys are characterized by wear resistance comparable with tool steels, high hardness, and very good resistance to oxidation at high temperatures (up to 1000 °C), but also low room-temperature ductility, as is typical also for other intermetallic materials. These alloys had been successfully prepared by the means of powder metallurgical routes and melting metallurgy methods. Full article
Show Figures

Figure 1

Back to TopTop