Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = transcranial focused ultrasound stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1028 KB  
Review
Focused Modulation of Brain Activity: A Narrative Review
by Aisha Zhantleuova, Altynay Karimova, Anna P. Andreou, Almira M. Kustubayeva, Rashid Giniatullin and Bazbek Davletov
Biomedicines 2025, 13(8), 1889; https://doi.org/10.3390/biomedicines13081889 - 3 Aug 2025
Viewed by 754
Abstract
A wide range of strategies have been developed to modulate dysfunctional brain activities. This narrative review provides a comparative analysis of biophysical, genetic, and biological neuromodulation approaches with an emphasis on their known or unknown molecular targets and translational potential. The review incorporates [...] Read more.
A wide range of strategies have been developed to modulate dysfunctional brain activities. This narrative review provides a comparative analysis of biophysical, genetic, and biological neuromodulation approaches with an emphasis on their known or unknown molecular targets and translational potential. The review incorporates data from both preclinical and clinical studies covering deep brain stimulation, transcranial electrical and magnetic stimulation, focused ultrasound, chemogenetics, optogenetics, magnetogenetics, and toxin-based neuromodulation. Each method was assessed based on specificity, safety, reversibility, and mechanistic clarity. Biophysical methods are widely used in clinical practice but often rely on empirical outcomes due to undefined molecular targets. Genetic tools offer cell-type precision in experimental systems but face translational barriers related to delivery and safety. Biological agents, such as botulinum neurotoxins, provide long-lasting yet reversible inhibition via well-characterized molecular pathways. However, they require stereotaxic injections and remain invasive. To overcome individual limitations and improve targeting, delivery, and efficacy, there is a growing interest in the synthesis of multiple approaches. This review highlights a critical gap in the mechanistic understanding of commonly used methods. Addressing this gap by identifying molecular targets may help to improve therapeutic precision. This concise review could be valuable for researchers looking to enter the evolving field of the neuromodulation of brain function. Full article
(This article belongs to the Collection Feature Papers in Neuromodulation and Brain Stimulation)
Show Figures

Figure 1

16 pages, 3676 KB  
Article
Design and Structure of a Non-Coaxial Multi-Focal Composite Fresnel Acoustic Lens for Synergistic Ultrasound Stimulation of Multiple Brain Regions
by Ruiqi Wu, Fangfang Shi, Juan Tao, Jiajia Zhao, Jinying Zhang, Xianmei Wu and Jingjing Xu
Sensors 2025, 25(11), 3299; https://doi.org/10.3390/s25113299 - 24 May 2025
Viewed by 714
Abstract
Transcranial focused ultrasound (TcFUS) neuromodulation is hindered by skull-induced acoustic limitations. To enable synergistic multi-region brain stimulation, we designed non-coaxial multi-focal composite Fresnel acoustic lenses, including an overlapping Fresnel lens (OFL) and an alternating-segmented Fresnel lens (ASFL). These lenses convert planar ultrasound into [...] Read more.
Transcranial focused ultrasound (TcFUS) neuromodulation is hindered by skull-induced acoustic limitations. To enable synergistic multi-region brain stimulation, we designed non-coaxial multi-focal composite Fresnel acoustic lenses, including an overlapping Fresnel lens (OFL) and an alternating-segmented Fresnel lens (ASFL). These lenses convert planar ultrasound into multiple foci. Based on Fresnel theory, acoustic fields were analyzed via simulations and experiments, validating the generation of four non-coaxial foci (10/30 mm focal lengths) from a 1 MHz planar wave using both OFL and ASFL. The influence of lens parameters on focal pressure distribution was investigated, and morphology was quantified using a linear least-squares method. Significant differences in focal morphology and intensity between OFL and ASFL provide crucial guidance for optimizing multi-target TcFUS strategies. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

34 pages, 2164 KB  
Review
Non-Drug and Non-Invasive Therapeutic Options in Alzheimer’s Disease
by Alina Simona Șovrea, Adina Bianca Boșca, Eleonora Dronca, Anne-Marie Constantin, Andreea Crintea, Rada Suflețel, Roxana Adelina Ștefan, Paul Andrei Ștefan, Mădălin Mihai Onofrei, Christoph Tschall and Carmen-Bianca Crivii
Biomedicines 2025, 13(1), 84; https://doi.org/10.3390/biomedicines13010084 - 1 Jan 2025
Cited by 2 | Viewed by 3940
Abstract
Despite the massive efforts of modern medicine to stop the evolution of Alzheimer’s disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of [...] Read more.
Despite the massive efforts of modern medicine to stop the evolution of Alzheimer’s disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches. Singly or as an applied technique to change the permeability of the blood–brain–barrier (BBB), FUS and TPS have demonstrated the benefits of use in treating AD in animal and human studies. Adipose-derived stem Cells (ADSCs), gene therapy, and many other alternative methods (diet, sleep pattern, physical exercise, nanoparticle delivery) are also new potential treatments since multimodal approaches represent the modern trend in this disorder research therapies. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

26 pages, 1809 KB  
Review
Brain Stimulation Techniques in Research and Clinical Practice: A Comprehensive Review of Applications and Therapeutic Potential in Parkinson’s Disease
by Ata Jahangir Moshayedi, Tahmineh Mokhtari and Mehran Emadi Andani
Brain Sci. 2025, 15(1), 20; https://doi.org/10.3390/brainsci15010020 - 27 Dec 2024
Cited by 1 | Viewed by 4266
Abstract
Parkinson’s Disease (PD) is a progressive neurodegenerative disorder characterized by a range of motor and non-motor symptoms (NMSs) that significantly impact patients’ quality of life. This review aims to synthesize the current literature on the application of brain stimulation techniques, including non-invasive methods [...] Read more.
Parkinson’s Disease (PD) is a progressive neurodegenerative disorder characterized by a range of motor and non-motor symptoms (NMSs) that significantly impact patients’ quality of life. This review aims to synthesize the current literature on the application of brain stimulation techniques, including non-invasive methods such as transcranial magnetic stimulation (TMS), transcranial electrical stimulation (tES), transcranial focused ultrasound stimulation (tFUS), and transcutaneous vagus nerve stimulation (tVNS), as well as invasive approaches like deep brain stimulation (DBS). We explore the efficacy and safety profiles of these techniques in alleviating both motor impairments, such as bradykinesia and rigidity, and non-motor symptoms, including cognitive decline, depression, and impulse control disorders. Current findings indicate that while non-invasive techniques present a favorable safety profile and are effective for milder symptoms, invasive methods like DBS provide significant relief for severe cases that are unresponsive to other treatments. Future research is needed to optimize stimulation parameters, establish robust clinical protocols, and expand the application of these technologies across various stages of PD. This review underscores the potential of brain stimulation as a vital therapeutic tool in managing PD, paving the way for enhanced treatment strategies and improved patient outcomes. Full article
(This article belongs to the Special Issue Noninvasive Neuromodulation Applications in Research and Clinics)
Show Figures

Figure 1

18 pages, 4868 KB  
Article
A Simulation Study of Low-Intensity Focused Ultrasound for Modulating Rotational Sense Through Acoustic Streaming in Semicircular Canal: A Pilot Study
by Sion Cha and Wooksung Kim
Appl. Sci. 2024, 14(23), 11432; https://doi.org/10.3390/app142311432 - 9 Dec 2024
Viewed by 1221
Abstract
This study explores the feasibility of using low-intensity focused ultrasound (LIFU) to induce rotational sensations in the human semicircular canal (SCC) through the acoustic streaming effect. Existing vestibular stimulation methods, such as galvanic vestibular stimulation (GVS), caloric vestibular stimulation (CVS), and magnetic vestibular [...] Read more.
This study explores the feasibility of using low-intensity focused ultrasound (LIFU) to induce rotational sensations in the human semicircular canal (SCC) through the acoustic streaming effect. Existing vestibular stimulation methods, such as galvanic vestibular stimulation (GVS), caloric vestibular stimulation (CVS), and magnetic vestibular stimulation (MVS), face limitations in spatial and temporal resolution, with unclear mechanisms. This study investigates whether LIFU can overcome these limitations by modulating endolymph motion within SCC. A 3D finite element model was constructed to simulate the effects of LIFU-induced acoustic streaming on SCC (particularly the endolymph), with thermal effects evaluated to ensure safety. Fluid–structure interaction (FSI) was used to analyze the relationship between endolymph flow and cupula deformation. By adjusting the focal point of the ultrasound transducer, we were able to alter fluid flow pattern, which resulted in variations in cupula displacement. The results demonstrated that LIFU successfully induces fluid motion in SCC without exceeding thermal safety limits (<1 °C), suggesting its potential for controlling rotational sensations, with cupula displacement exceeding 1 μm. This novel approach enhances the understanding of LIFU’s thermal and neuromodulatory effects on the vestibular system, and thereby offers promising implications for future therapeutic applications. Full article
Show Figures

Figure 1

9 pages, 1071 KB  
Article
Preliminary Examination of the Effects of Focused Ultrasound on Living Skin and Temperature at the Skin–Transducer Interface
by Andrew A. E. D. Bishay, Andrew J. Swenson, Norman M. Spivak, Samantha Schafer, Brendan P. Bych, Spencer D. Gilles, Christopher Dorobczynski, Alexander S. Korb, Mark E. Schafer, Taylor P. Kuhn, Martin M. Monti and Alexander Bystritsky
Bioengineering 2024, 11(11), 1126; https://doi.org/10.3390/bioengineering11111126 - 8 Nov 2024
Cited by 1 | Viewed by 1538
Abstract
Transcranial Focused Ultrasound Stimulation (tFUS) is a new, rapidly growing field related to the study and treatment of brain circuits. Establishing safety cutoffs for focused ultrasound is crucial for non-ablative neurological ultrasound experiments. In addition to potential focal heating, there is concern about [...] Read more.
Transcranial Focused Ultrasound Stimulation (tFUS) is a new, rapidly growing field related to the study and treatment of brain circuits. Establishing safety cutoffs for focused ultrasound is crucial for non-ablative neurological ultrasound experiments. In addition to potential focal heating, there is concern about temperature elevation at the skin surface. Much work has been performed at or near the FDA guideline of ISPTA.3 = 720 mW/cm2, which technically only applies to diagnostic, not therapeutic, ultrasound. Furthermore, evidence of brain tissue damage on histology in the focal region has been shown not to occur until ISPTA.3 > 14 W/cm2. Therefore, this study was conducted across a range of intensities between these two values, evaluating both subjective and objective side effects. Subjective side effects encompassed any discomfort experienced during and after focused ultrasound stimulation, while objective side effects included clinical findings of skin irritation, such as erythema, edema, or burns. This study also examined how the skin temperature at the skin–transducer interface would change in order to assess whether there would be significant heating. The subjects did not experience any unpleasant sensation at the point of stimulation, including heat or pain, and no objective findings of skin irritation were observed following stimulation and the removal of the transducer. In addition, there was no intensity-dependent effect on temperature, and the maximal rise in temperature was 1.45 °C, suggesting that these parameters do not result in the heating of the skin at the interface in such a way that poses a risk to subjects when operating at or below the intensities tested in this experiment. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

23 pages, 5435 KB  
Review
Transcranial Focused Ultrasound Neuromodulation in Psychiatry: Main Characteristics, Current Evidence, and Future Directions
by Ahmadreza Keihani, Claudio Sanguineti, Omeed Chaichian, Chloe A. Huston, Caitlin Moore, Cynthia Cheng, Sabine A. Janssen, Francesco L. Donati, Ahmad Mayeli, Khaled Moussawi, Mary L. Phillips and Fabio Ferrarelli
Brain Sci. 2024, 14(11), 1095; https://doi.org/10.3390/brainsci14111095 - 30 Oct 2024
Cited by 1 | Viewed by 6619
Abstract
Non-invasive brain stimulation (NIBS) techniques are designed to precisely and selectively target specific brain regions, thus enabling focused modulation of neural activity. Among NIBS technologies, low-intensity transcranial focused ultrasound (tFUS) has emerged as a promising new modality. The application of tFUS can safely [...] Read more.
Non-invasive brain stimulation (NIBS) techniques are designed to precisely and selectively target specific brain regions, thus enabling focused modulation of neural activity. Among NIBS technologies, low-intensity transcranial focused ultrasound (tFUS) has emerged as a promising new modality. The application of tFUS can safely and non-invasively stimulate deep brain structures with millimetric precision, offering distinct advantages in terms of accessibility to non-cortical regions over other NIBS methods. However, to date, several tFUS aspects still need to be characterized; furthermore, there are only a handful of studies that have utilized tFUS in psychiatric populations. This narrative review provides an up-to-date overview of key aspects of this NIBS technique, including the main components of a tFUS system, the neuronavigational tools used to precisely target deep brain regions, the simulations utilized to optimize the stimulation parameters and delivery of tFUS, and the experimental protocols employed to evaluate the efficacy of tFUS in psychiatric disorders. The main findings from studies in psychiatric populations are presented and discussed, and future directions are highlighted. Full article
Show Figures

Figure 1

14 pages, 18962 KB  
Article
Neuromodulatory Responses Elicited by Intermittent versus Continuous Transcranial Focused Ultrasound Stimulation of the Motor Cortex in Rats
by Tsung-Hsun Hsieh, Po-Chun Chu, Thi Xuan Dieu Nguyen, Chi-Wei Kuo, Pi-Kai Chang, Kai-Hsiang Stanley Chen and Hao-Li Liu
Int. J. Mol. Sci. 2024, 25(11), 5687; https://doi.org/10.3390/ijms25115687 - 23 May 2024
Cited by 1 | Viewed by 2422
Abstract
Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising neuromodulation technique that delivers acoustic energy with high spatial resolution for inducing long-term potentiation (LTP)- or depression (LTD)-like plasticity. The variability in the primary effects of tFUS-induced plasticity could be due to different [...] Read more.
Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising neuromodulation technique that delivers acoustic energy with high spatial resolution for inducing long-term potentiation (LTP)- or depression (LTD)-like plasticity. The variability in the primary effects of tFUS-induced plasticity could be due to different stimulation patterns, such as intermittent versus continuous, and is an aspect that requires further detailed exploration. In this study, we developed a platform to evaluate the neuromodulatory effects of intermittent and continuous tFUS on motor cortical plasticity before and after tFUS application. Three groups of rats were exposed to either intermittent, continuous, or sham tFUS. We analyzed the neuromodulatory effects on motor cortical excitability by examining changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). We also investigated the effects of different stimulation patterns on excitatory and inhibitory neural biomarkers, examining c-Fos and glutamic acid decarboxylase (GAD-65) expression using immunohistochemistry staining. Additionally, we evaluated the safety of tFUS by analyzing glial fibrillary acidic protein (GFAP) expression. The current results indicated that intermittent tFUS produced a facilitation effect on motor excitability, while continuous tFUS significantly inhibited motor excitability. Furthermore, neither tFUS approach caused injury to the stimulation sites in rats. Immunohistochemistry staining revealed increased c-Fos and decreased GAD-65 expression following intermittent tFUS. Conversely, continuous tFUS downregulated c-Fos and upregulated GAD-65 expression. In conclusion, our findings demonstrate that both intermittent and continuous tFUS effectively modulate cortical excitability. The neuromodulatory effects may result from the activation or deactivation of cortical neurons following tFUS intervention. These effects are considered safe and well-tolerated, highlighting the potential for using different patterns of tFUS in future clinical neuromodulatory applications. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 1055 KB  
Review
Clinical Potential of Transcranial Focused Ultrasound for Neurorehabilitation in Pediatric Cancer Survivors
by Paul VanGilder, Justin Tanner, Kevin R. Krull and Ranganatha Sitaram
Brain Sci. 2024, 14(3), 218; https://doi.org/10.3390/brainsci14030218 - 27 Feb 2024
Cited by 4 | Viewed by 3222
Abstract
Cancer survivors are at a high risk for treatment-related late effects, particularly neurocognitive impairment in the attention and executive function domains. These can be compounded in pediatric populations still undergoing neural development, which has increased interest in survivorship studies and neurorehabilitation approaches to [...] Read more.
Cancer survivors are at a high risk for treatment-related late effects, particularly neurocognitive impairment in the attention and executive function domains. These can be compounded in pediatric populations still undergoing neural development, which has increased interest in survivorship studies and neurorehabilitation approaches to mitigate these effects. Cognitive training regimens have shown promise as a therapeutic intervention for improving cognitive function. Therapist-guided and computerized training programs with adaptive paradigms have been successfully implemented in pediatric populations, with positive outcomes on attention and working memory. Another interventional approach is neuromodulation to alter plasticity. Transcranial electrical stimulation can modulate cortical surface activity, and cranial nerve stimulation alters autonomic activity in afferent brainstem pathways. However, they are more systemic in nature and have diffuse spatial targeting. Transcranial focused ultrasound (tFUS) modulation overcomes these limitations with high spatial specificity and the ability to target deeper brain regions. In this review, we discuss the efficacy of tFUS for modulating specific brain regions and its potential utility to augment cognitive training programs as a complementary intervention. Full article
(This article belongs to the Special Issue Advances in Restorative Neurotherapeutic Technologies)
Show Figures

Figure 1

14 pages, 2315 KB  
Article
Low-Energy Transcranial Navigation-Guided Focused Ultrasound for Neuropathic Pain: An Exploratory Study
by Dong Hoon Shin, Seong Son and Eun Young Kim
Brain Sci. 2023, 13(10), 1433; https://doi.org/10.3390/brainsci13101433 - 8 Oct 2023
Cited by 11 | Viewed by 3228
Abstract
Neuromodulation using high-energy focused ultrasound (FUS) has recently been developed for various neurological disorders, including tremors, epilepsy, and neuropathic pain. We investigated the safety and efficacy of low-energy FUS for patients with chronic neuropathic pain. We conducted a prospective single-arm trial with 3-month [...] Read more.
Neuromodulation using high-energy focused ultrasound (FUS) has recently been developed for various neurological disorders, including tremors, epilepsy, and neuropathic pain. We investigated the safety and efficacy of low-energy FUS for patients with chronic neuropathic pain. We conducted a prospective single-arm trial with 3-month follow-up using new transcranial, navigation-guided, focused ultrasound (tcNgFUS) technology to stimulate the anterior cingulate cortex. Eleven patients underwent FUS with a frequency of 250 kHz and spatial-peak temporal-average intensity of 0.72 W/cm2. A clinical survey based on the visual analog scale of pain and a brief pain inventory (BPI) was performed during the study period. The average age was 60.55 ± 13.18 years-old with a male-to-female ratio of 6:5. The median current pain decreased from 10.0 to 7.0 (p = 0.021), median average pain decreased from 8.5 to 6.0 (p = 0.027), and median maximum pain decreased from 10.0 to 8.0 (p = 0.008) at 4 weeks after treatment. Additionally, the sum of daily life interference based on BPI was improved from 59.00 ± 11.66 to 51.91 ± 9.18 (p = 0.021). There were no side effects such as burns, headaches, or seizures, and no significant changes in follow-up brain magnetic resonance imaging. Low-energy tcNgFUS could be a safe and noninvasive neuromodulation technique for the treatment of chronic neuropathic pain Full article
(This article belongs to the Special Issue Recent Advances in Pain Research)
Show Figures

Graphical abstract

42 pages, 844 KB  
Review
Noninvasive Neuromodulation in Parkinson’s Disease: Insights from Animal Models
by Katherine Muksuris, David M. Scarisbrick, James J. Mahoney and Mariya V. Cherkasova
J. Clin. Med. 2023, 12(17), 5448; https://doi.org/10.3390/jcm12175448 - 22 Aug 2023
Cited by 6 | Viewed by 3435
Abstract
The mainstay treatments for Parkinson’s Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), [...] Read more.
The mainstay treatments for Parkinson’s Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings. Full article
Show Figures

Figure 1

22 pages, 448 KB  
Review
Noninvasive Brain Stimulation for Neurorehabilitation in Post-Stroke Patients
by Kun-Peng Li, Jia-Jia Wu, Zong-Lei Zhou, Dong-Sheng Xu, Mou-Xiong Zheng, Xu-Yun Hua and Jian-Guang Xu
Brain Sci. 2023, 13(3), 451; https://doi.org/10.3390/brainsci13030451 - 6 Mar 2023
Cited by 36 | Viewed by 9988
Abstract
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional [...] Read more.
Characterized by high morbidity, mortality, and disability, stroke usually causes symptoms of cerebral hypoxia due to a sudden blockage or rupture of brain vessels, and it seriously threatens human life and health. Rehabilitation is the essential treatment for post-stroke patients suffering from functional impairments, through which hemiparesis, aphasia, dysphagia, unilateral neglect, depression, and cognitive dysfunction can be restored to various degrees. Noninvasive brain stimulation (NIBS) is a popular neuromodulatory technology of rehabilitation focusing on the local cerebral cortex, which can improve clinical functions by regulating the excitability of corresponding neurons. Increasing evidence has been obtained from the clinical application of NIBS, especially repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS). However, without a standardized protocol, existing studies on NIBS show a wide variation in terms of stimulation site, frequency, intensity, dosage, and other parameters. Its application for neurorehabilitation in post-stroke patients is still limited. With advances in neuronavigation technologies, functional near-infrared spectroscopy, and functional MRI, specific brain regions can be precisely located for stimulation. On the basis of our further understanding on neural circuits, neuromodulation in post-stroke rehabilitation has also evolved from single-target stimulation to co-stimulation of two or more targets, even circuits and the network. The present study aims to review the findings of current research, discuss future directions of NIBS application, and finally promote the use of NIBS in post-stroke rehabilitation. Full article
(This article belongs to the Section Neurorehabilitation)
16 pages, 3440 KB  
Article
Weak Ultrasound Contributes to Neuromodulatory Effects in the Rat Motor Cortex
by Po-Chun Chu, Chen-Syuan Huang, Pi-Kai Chang, Rou-Shayn Chen, Ko-Ting Chen, Tsung-Hsun Hsieh and Hao-Li Liu
Int. J. Mol. Sci. 2023, 24(3), 2578; https://doi.org/10.3390/ijms24032578 - 30 Jan 2023
Cited by 17 | Viewed by 4226
Abstract
Transcranial focused ultrasound (tFUS) is a novel neuromodulating technique. It has been demonstrated that the neuromodulatory effects can be induced by weak ultrasound exposure levels (spatial-peak temporal average intensity, ISPTA < 10 mW/cm2) in vitro. However, fewer studies have examined [...] Read more.
Transcranial focused ultrasound (tFUS) is a novel neuromodulating technique. It has been demonstrated that the neuromodulatory effects can be induced by weak ultrasound exposure levels (spatial-peak temporal average intensity, ISPTA < 10 mW/cm2) in vitro. However, fewer studies have examined the use of weak tFUS to potentially induce long-lasting neuromodulatory responses in vivo. The purpose of this study was to determine the lower-bound threshold of tFUS stimulation for inducing neuromodulation in the motor cortex of rats. A total of 94 Sprague–Dawley rats were used. The sonication region aimed at the motor cortex under weak tFUS exposure (ISPTA of 0.338–12.15 mW/cm2). The neuromodulatory effects of tFUS on the motor cortex were evaluated by the changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). In addition to histology analysis, the in vitro cell culture was used to confirm the neuromodulatory mechanisms following tFUS stimulation. In the results, the dose-dependent inhibitory effects of tFUS were found, showing increased intensities of tFUS suppressed MEPs and lasted for 30 min. Weak tFUS significantly decreased the expression of excitatory neurons and increased the expression of inhibitory GABAergic neurons. The PIEZO-1 proteins of GABAergic neurons were found to involve in the inhibitory neuromodulation. In conclusion, we show the use of weak ultrasound to induce long-lasting neuromodulatory effects and explore the potential use of weak ultrasound for future clinical neuromodulatory applications. Full article
Show Figures

Figure 1

33 pages, 2133 KB  
Review
Disease-Modifying Effects of Non-Invasive Electroceuticals on β-Amyloid Plaques and Tau Tangles for Alzheimer’s Disease
by Junsoo Bok, Juchan Ha, Bum Ju Ahn and Yongwoo Jang
Int. J. Mol. Sci. 2023, 24(1), 679; https://doi.org/10.3390/ijms24010679 - 30 Dec 2022
Cited by 15 | Viewed by 5245
Abstract
Electroceuticals refer to various forms of electronic neurostimulators used for therapy. Interdisciplinary advances in medical engineering and science have led to the development of the electroceutical approach, which involves therapeutic agents that specifically target neural circuits, to realize precision therapy for Alzheimer’s disease [...] Read more.
Electroceuticals refer to various forms of electronic neurostimulators used for therapy. Interdisciplinary advances in medical engineering and science have led to the development of the electroceutical approach, which involves therapeutic agents that specifically target neural circuits, to realize precision therapy for Alzheimer’s disease (AD). To date, extensive studies have attempted to elucidate the disease-modifying effects of electroceuticals on areas in the brain of a patient with AD by the use of various physical stimuli, including electric, magnetic, and electromagnetic waves as well as ultrasound. Herein, we review non-invasive stimulatory systems and their effects on β-amyloid plaques and tau tangles, which are pathological molecular markers of AD. Therefore, this review will aid in better understanding the recent technological developments, applicable methods, and therapeutic effects of electronic stimulatory systems, including transcranial direct current stimulation, 40-Hz gamma oscillations, transcranial magnetic stimulation, electromagnetic field stimulation, infrared light stimulation and ionizing radiation therapy, and focused ultrasound for AD. Full article
Show Figures

Figure 1

10 pages, 1238 KB  
Review
Safety of Clinical Ultrasound Neuromodulation
by Sonja Radjenovic, Gregor Dörl, Martin Gaal and Roland Beisteiner
Brain Sci. 2022, 12(10), 1277; https://doi.org/10.3390/brainsci12101277 - 22 Sep 2022
Cited by 21 | Viewed by 4233
Abstract
Transcranial ultrasound holds much potential as a safe, non-invasive modality for navigated neuromodulation, with low-intensity focused ultrasound (FUS) and transcranial pulse stimulation (TPS) representing the two main modalities. While neuroscientific and preclinical applications have received much interest, clinical applications are still relatively scarce. [...] Read more.
Transcranial ultrasound holds much potential as a safe, non-invasive modality for navigated neuromodulation, with low-intensity focused ultrasound (FUS) and transcranial pulse stimulation (TPS) representing the two main modalities. While neuroscientific and preclinical applications have received much interest, clinical applications are still relatively scarce. For safety considerations, the current literature is largely based on guidelines for ultrasound imaging that uses various physical parameters to describe the ultrasound pulse form and expected bioeffects. However, the safety situation for neuromodulation is inherently different. This article provides an overview of relevant ultrasound parameters with a focus on bioeffects relevant for safe clinical applications. Further, a retrospective analysis of safety data for clinical TPS applications in patients is presented. Full article
(This article belongs to the Collection Human Ultrasound Neuromodulation: State of the Art)
Show Figures

Figure 1

Back to TopTop