Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (41,071)

Search Parameters:
Keywords = treatment process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 849 KB  
Article
Gender-Based Analysis of Patients Undergoing Mitral Valve Surgery
by Shekhar Saha, Sophie Meerfeld, Konstanze Maria Horke, Martina Steinmauer, Ahmad Ali, Gerd Juchem, Sven Peterss, Christian Hagl and Dominik Joskowiak
J. Clin. Med. 2025, 14(19), 7072; https://doi.org/10.3390/jcm14197072 (registering DOI) - 7 Oct 2025
Abstract
Objectives: To optimise surgical treatment of mitral valve disease (MVD), a better understanding of gender-based differences is required. In this study, we analyse the gender-based differences among patients undergoing mitral valve surgery. Methods: Between January 2019 and December 2024, 809 consecutive [...] Read more.
Objectives: To optimise surgical treatment of mitral valve disease (MVD), a better understanding of gender-based differences is required. In this study, we analyse the gender-based differences among patients undergoing mitral valve surgery. Methods: Between January 2019 and December 2024, 809 consecutive patients were admitted to our centre for surgery for MVD. We analysed the patient characteristics, surgical details, postoperative and short-term outcomes of these patients. Results: Females (31.8%) undergoing mitral valve (MV) surgery were older (p < 0.001). Females had a higher rate of atrial fibrillation (p < 0.001), Rheumatoid arthritis (RA) (p = 0.002) and malignancy (p = 0.030). Furthermore, females were more often admitted to the intensive care unit (ICU) preoperatively (p = 0.037). Among these patients, 419 patients underwent isolated MV surgery. Furthermore, males underwent minimally invasive MV surgery more often (p = 0.004). Females had higher rates of combined MVD (p < 0.001) and combined MS (p < 0.001). Males had higher rates of severe mitral regurgitation (MR) (p = 0.041) and Left Atrium (LA) dilation (p = 0.004). Females exhibited higher rates of severe Tricuspid Regurgitation (TR) (p = 0.032) and pulmonary hypertension (p < 0.001). males had higher rates of posterior mitral leaflet (PML) prolapse (p < 0.001) and Flail leaflets (p < 0.001). Males underwent mitral valve repair (MVr) more often (p = 0.002). Early MACCE were reported in 5.1% of the patients. Freedom from major adverse cardiac and cerebrovascular events (MACCE) was comparable at 1 year and three years (p = 0.548). Prognosis and freedom from events were comparable between genders. Conclusions: Mitral valve disease presents differently across genders. There exist fundamental differences in the pathophysiological processes and presentation of mitral valve disease. Mitral valve surgery can be carried out with low mortality and morbidity rates irrespective of gender. Full article
(This article belongs to the Special Issue Clinical Therapeutic Advances of Mitral Regurgitation)
Show Figures

Figure 1

17 pages, 1651 KB  
Article
Iron -Doped Mesoporous Nano-Sludge Biochar via Ball Milling for 3D Electro-Fenton Degradation of Brewery Wastewater
by Ju Guo, Wei Liu, Tianzhu Shi, Wei Shi, Fuyong Wu and Yi Xie
Nanomaterials 2025, 15(19), 1530; https://doi.org/10.3390/nano15191530 (registering DOI) - 7 Oct 2025
Abstract
To address the challenges of complex composition, high chemical oxygen demand (COD) content, and the difficulty of treating organic wastewater from brewery wastewater, as well as the limitations of traditional Fenton technology, including low catalytic activity and high material costs, this study proposes [...] Read more.
To address the challenges of complex composition, high chemical oxygen demand (COD) content, and the difficulty of treating organic wastewater from brewery wastewater, as well as the limitations of traditional Fenton technology, including low catalytic activity and high material costs, this study proposes the use of biochemical sludge as a raw material. Coupled with iron salt activation and mechanical ball milling technology, a low-cost, high-performance iron-doped mesoporous nano-sludge biochar material is prepared. This material was employed as a particle electrode to construct a three-dimensional electro-Fenton system for the degradation of organic wastewater from sauce-flavor liquor brewing. The results demonstrate that the sludge-based biochar produced through this approach possesses a mesoporous structure, with an average particle size of 187 nm, a specific surface area of 386.28 m2/g, and an average pore size of 4.635 nm. Iron is present in the material as multivalent iron ions, which provide more electrochemical reaction sites. Utilizing response surface methodology, the optimized treatment process achieves a maximum COD degradation rate of 71.12%. Compared to the control sample, the average particle size decreases from 287 μm to 187 nm, the specific surface area increases from 44.89 m2/g to 386.28 m2/g, and the COD degradation rate improves by 61.1%. Preliminary investigations suggest that the iron valence cycle (Fe2+/Fe3+) and the mass transfer enhancement effect of the mesoporous nano-structure are keys to efficient degradation. The Fe-O-Si structure enhances material stability, with a degradation capacity retention rate of 88.74% after 30 cycles of use. When used as a particle electrode to construct a three-dimensional electro-Fenton system, this material demonstrates highly efficiency in organic matter degradation and shows promising potential for application in the treatment of organic wastewater from sauce-flavor liquor brewing. Full article
Show Figures

Figure 1

24 pages, 3360 KB  
Article
A Modern Ultrasonic Cleaning Tank Developed for the Jewelry Manufacturing Process and Its Cleaning Efficiency
by Chatchapat Chaiaiad, Pawantree Borthai and Jatuporn Thongsri
Inventions 2025, 10(5), 90; https://doi.org/10.3390/inventions10050090 (registering DOI) - 7 Oct 2025
Abstract
This research details the development and evaluation of a Modern Ultrasonic Cleaning Tank (MUCT) designed to enhance cleaning efficiency in jewelry manufacturing, particularly for silver jewelry, replacing the traditional method, which was less efficient and had higher operating costs. The MUCT offers capabilities [...] Read more.
This research details the development and evaluation of a Modern Ultrasonic Cleaning Tank (MUCT) designed to enhance cleaning efficiency in jewelry manufacturing, particularly for silver jewelry, replacing the traditional method, which was less efficient and had higher operating costs. The MUCT offers capabilities of single- or dual-frequency ultrasonic operation (28 kHz and 40 kHz) and adjustable transducer positioning. An advanced method involving computer simulations, utilizing harmonic response analysis and transient dynamic analysis, was employed to determine the acoustic pressure inside the MUCT, thereby indicating the cavitation intensity required to achieve high cleaning efficiency. Simulation results confirm that this design can distribute acoustic pressure throughout the MUCT, as intended. A prototype MUCT was assembled, and its operation was validated through foil corrosion tests, ultrasonic power concentration (UPC) measurements, and jewelry cleaning tests. The results revealed that the MUCT’s center provided the maximum UPC of 28 W/L and an acoustic pressure of 30.43 MPa, effectively operating at single and dual frequencies, and achieving superior dirt removal. The highest cleaning efficiency of 100% was achieved using dual frequency with a 97% water and 3% dishwashing liquid mixture at 60 °C, exceeding the 23.52% obtained with water at 27 °C without ultrasonic treatment. The MUCT, successfully integrated into the manufacturing process, offers customizable features to meet various cleaning needs, providing flexibility, improved performance, and cost savings. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
46 pages, 2724 KB  
Review
From Diabetes to Degenerative Diseases: The Multifaceted Action of Metformin
by Lucrezia Irene Maria Campagnoli, Angelica Varesi, Foroogh Fahmideh, Reza Hakimizad, Petra Petkovic, Annalisa Barbieri, Nicoletta Marchesi and Alessia Pascale
Int. J. Mol. Sci. 2025, 26(19), 9748; https://doi.org/10.3390/ijms26199748 (registering DOI) - 7 Oct 2025
Abstract
Metformin, an oral antihyperglycemic drug, represents the cornerstone of pharmacological treatment for type 2 diabetes mellitus (T2DM). Its primary glucose-lowering effects are well established, predominantly mediated through the activation of AMP-activated protein kinase (AMPK). This activation leads to a reduction in hepatic glucose [...] Read more.
Metformin, an oral antihyperglycemic drug, represents the cornerstone of pharmacological treatment for type 2 diabetes mellitus (T2DM). Its primary glucose-lowering effects are well established, predominantly mediated through the activation of AMP-activated protein kinase (AMPK). This activation leads to a reduction in hepatic glucose production (primarily by inhibiting gluconeogenesis and glycogenolysis) and an increase in peripheral glucose uptake and utilization. Beyond its direct impact on glucose metabolism, metformin also improves insulin sensitivity and has beneficial effects on lipid profiles. Increasingly, research shows that metformin has pleiotropic effects. In addition to its recognized antihyperglycemic action, metformin is emerging as a regulator of cellular processes implicated in aging. Indeed, emerging evidence suggests a potential role of metformin in modulating pathways associated with longevity and ameliorating the symptoms of age-related diseases, including neurodegenerative disorders (such as Alzheimer’s and Parkinson’s diseases), cardiovascular diseases, age-related macular degeneration, and osteoporosis. The proposed mechanisms for these broader effects involve AMPK activation, modulation of the mTOR pathway, reduction of oxidative stress, and promotion of autophagy. After exploring the established role of metformin in T2D, this review provides a comprehensive investigation of its promising applications in the context of age-related diseases, offering valuable insights into its multifaceted therapeutic potential beyond glycemic control. Full article
Show Figures

Figure 1

13 pages, 256 KB  
Article
Effect of Artificial Diet Modification with Dextrose on the Growth and Fatty Acid Composition of Tenebrio molitor Larvae for Biodiesel Production
by Miguel Alejandro Flores-Sánchez, Amanda Kim Rico-Chávez, Marco Martín González-Chávez, Rodolfo Figueroa-Brito, Juan Campos-Guillen, Carlos Eduardo Zavala-Gómez, Aldo Amaro-Reyes, Joel de Jesús Barba-Franco and Miguel Angel Ramos-López
Appl. Sci. 2025, 15(19), 10777; https://doi.org/10.3390/app151910777 (registering DOI) - 7 Oct 2025
Abstract
Tenebrio molitor larvae are a promising source for the next generation of liquid biofuels. However, the conditions and processes required for rearing this insect for biodiesel production need to be investigated. In this study, the effect of dextrose addition to an artificial diet [...] Read more.
Tenebrio molitor larvae are a promising source for the next generation of liquid biofuels. However, the conditions and processes required for rearing this insect for biodiesel production need to be investigated. In this study, the effect of dextrose addition to an artificial diet in the oil and biodiesel yield was evaluated. Larvae were fed artificial diets modified with 3, 6, 9, and 15% dextrose. Survival rate, mean dry weight, and oil yield were registered. The 15% dextrose addition resulted in 75% survival, 25 mg individual dry weight, and 29% oil yield. The main components of this oil were palmitic acid (14%), oleic acid (37%), and linoleic acid (20%). With the addition of dextrose, the total saturated fatty acids increased 13% and the polyunsaturated fatty acids decreased 16% compared to the control. However, with the transesterification reaction, the fatty acid methyl esters remained similar for both treatments, with methyl oleate, methyl linoleate, and methyl linolenate as major components. This suggest that the transesterification reaction was incomplete, due to the oil/methanol ratio or the catalyst. Thus, even though a more balanced saturated/unsaturated fatty acid profile can be achieved through dextrose addition, another transesterification method should be tested to obtain a complete reaction. Full article
29 pages, 3544 KB  
Review
Modern Trends in the Application of Electronic Nose Systems: A Review
by Stefan Ivanov, Jacek Łukasz Wilk-Jakubowski, Leszek Ciopiński, Łukasz Pawlik, Grzegorz Wilk-Jakubowski and Georgi Mihalev
Appl. Sci. 2025, 15(19), 10776; https://doi.org/10.3390/app151910776 (registering DOI) - 7 Oct 2025
Abstract
Electronic nose (e-nose) systems have emerged as transformative tools for odor and gas analysis, leveraging advances in nanomaterials, sensor arrays, and machine learning (ML) to mimic biological olfaction. This review synthesizes recent developments in e-nose technology, focusing on innovations in sensor design (e.g., [...] Read more.
Electronic nose (e-nose) systems have emerged as transformative tools for odor and gas analysis, leveraging advances in nanomaterials, sensor arrays, and machine learning (ML) to mimic biological olfaction. This review synthesizes recent developments in e-nose technology, focusing on innovations in sensor design (e.g., graphene-based nanomaterials, MEMS, and optical sensors), drift compensation techniques, and AI-driven data processing. We highlight key applications across healthcare (e.g., non-invasive disease diagnostics via breath analysis), food quality monitoring (e.g., spoilage detection and authenticity verification), and environmental management (e.g., pollution tracking and wastewater treatment). Despite progress, challenges such as sensor selectivity, long-term stability, and standardization persist. The paper underscores the potential of e-noses to replace conventional analytical methods, offering portability, real-time operation, and cost-effectiveness. Future directions include scalable fabrication, robust ML models, and IoT integration to expand their practical adoption. Full article
(This article belongs to the Special Issue Gas Sensors: Optimization and Applications)
Show Figures

Figure 1

29 pages, 1463 KB  
Review
AI-Enabled Membrane Bioreactors: A Review of Control Architectures and Operating-Parameter Optimization for Nitrogen and Phosphorus Removal
by Mingze Xu and Di Liu
Water 2025, 17(19), 2899; https://doi.org/10.3390/w17192899 (registering DOI) - 7 Oct 2025
Abstract
Stricter requirements on nutrient removal in wastewater treatment are being imposed by rapid urbanization and tightening water-quality standards. Despite their excellent solid–liquid separation and effective biological treatment, MBRs in conventional operation remain hindered by membrane fouling, limited robustness to influent variability, and elevated [...] Read more.
Stricter requirements on nutrient removal in wastewater treatment are being imposed by rapid urbanization and tightening water-quality standards. Despite their excellent solid–liquid separation and effective biological treatment, MBRs in conventional operation remain hindered by membrane fouling, limited robustness to influent variability, and elevated energy consumption. In recent years, precise process control and resource-oriented operation have been enabled by the integration of artificial intelligence (AI) with MBRs. Advances in four areas are synthesized in this review: optimization of MBR control architectures, intelligent adaptation to multi-source wastewater, regulation of membrane operating parameters, and enhancement of nitrogen and phosphorus removal. According to reported studies, increases in total nitrogen and total phosphorus removal have been achieved by AI-driven strategies while energy use and operating costs have been reduced; under heterogeneous influent and dynamic operating conditions, stronger generalization and more effective real-time regulation have been demonstrated relative to traditional approaches. For large-scale deployment, key challenges are identified as improvements in model interpretability and applicability, the overcoming of data silos, and the realization of multi-objective collaborative optimization. Addressing these challenges is regarded as central to the realization of robust, scalable, and low-carbon intelligent wastewater treatment. Full article
Show Figures

Figure 1

11 pages, 3893 KB  
Article
Investigation of Aqueous Delamination Processes for Lithium-Ion Battery Anodes
by Eric Trebeck, Anting Grams, Jan Talkenberger, Sricharana Prakash, Julius Eik Grimmenstein, Thomas Krampitz, Holger Lieberwirth and Adrian Valenas
Recycling 2025, 10(5), 189; https://doi.org/10.3390/recycling10050189 (registering DOI) - 7 Oct 2025
Abstract
Recycling of lithium-ion batteries (LIBs) requires efficient separation of active material from current collectors to enable high-quality recovery of both the coating and the metal foil. In this study, a water-based delamination process for anode foils was systematically investigated under variations in temperature, [...] Read more.
Recycling of lithium-ion batteries (LIBs) requires efficient separation of active material from current collectors to enable high-quality recovery of both the coating and the metal foil. In this study, a water-based delamination process for anode foils was systematically investigated under variations in temperature, particle size, ultrasonic power, and prior mechanical stressing of the particles. Mechanically cut and pre-folded foil pieces were treated in a batch setup at different temperatures (room temperature to 100 °C) and ultrasonic power levels (50 and 100%). Results show that higher temperatures strongly promote delamination, with 100% removal of the active layer achieved on the smooth foil side at 80 °C without ultrasonic treatment. Ultrasonic treatment at moderate power (50%) yielded greater delamination than at full power (100%), likely due to more effective cavitation dynamics at moderate intensity. Mechanical pre-stressing by folding significantly reduced delamination, with three folds effectively preventing separation. In comparison, mechanically comminuted particles from a granulator achieved similar delamination to three-folded particles after 5 min treatment, and higher delamination after 30 min. These findings highlight the importance of process parameters in achieving efficient aqueous delamination, providing insights for scaling low-energy recycling processes for LIB production scrap. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

21 pages, 6242 KB  
Article
Motor Imagery Acquisition Paradigms: In the Search to Improve Classification Accuracy
by David Reyes, Sebastian Sieghartsleitner, Humberto Loaiza and Christoph Guger
Sensors 2025, 25(19), 6204; https://doi.org/10.3390/s25196204 - 7 Oct 2025
Abstract
In recent years, advances in medicine have been evident thanks to technological growth and interdisciplinary research, which has allowed the integration of knowledge, for example, of engineering into medical fields. This integration has generated developments and new methods that can be applied in [...] Read more.
In recent years, advances in medicine have been evident thanks to technological growth and interdisciplinary research, which has allowed the integration of knowledge, for example, of engineering into medical fields. This integration has generated developments and new methods that can be applied in alternative situations, highlighting, for example, aspects related to post-stroke therapies, Multiple Sclerosis (MS), or Spinal Cord Injury (SCI) treatments. One of the methods that has stood out and is gaining more acceptance every day is Brain–Computer Interfaces (BCIs), through the acquisition and processing of brain electrical activity, researchers, doctors, and scientists manage to transform this activity into control signals. In turn, there are several methods for operating a BCI, this work will focus on motor imagery (MI)-based BCI and three types of acquisition paradigms (traditional arrow, picture, and video), seeking to improve the accuracy in the classification of motor imagination tasks for naive subjects, which correspond to a MI task for both the left and the right hand. A pipeline and methodology were implemented using the CAR+CSP algorithm to extract the features and simple standard and widely used models such as LDA and SVM for classification. The methodology was tested with post-stroke (PS) subject data with BCI experience, obtaining 96.25% accuracy for the best performance, and with the novel paradigm proposed for the naive subjects, 97.5% was obtained. Several statistical tests were carried out in order to find differences between paradigms within the collected data. In conclusion, it was found that the classification accuracy could be improved by using different strategies in the acquisition stage. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

18 pages, 1627 KB  
Review
The Role of Growth Factors and Signaling Pathways in Ovarian Angiogenesis
by Hanna Jankowska-Ziemak, Magdalena Kulus, Aleksandra Partynska, Jakub Kulus, Krzysztof Piotr Data, Dominika Domagala, Julia Niebora, Aleksandra Gorska, Marta Podralska, Marzenna Podhorska-Okolow, Piotr Chmielewski, Paweł Antosik, Dorota Bukowska, Adam Kaminski, Hanna Piotrowska-Kempisty, Maciej Zabel, Paul Mozdziak, Piotr Dziegiel and Bartosz Kempisty
Cells 2025, 14(19), 1555; https://doi.org/10.3390/cells14191555 - 7 Oct 2025
Abstract
Angiogenesis, the formation of new blood vessels from existing vasculature, is regulated by a balance between pro- and anti-angiogenic factors. In adults, this process typically occurs in response to inflammation, wound healing, and neoplastic growth. Uniquely, the female reproductive system undergoes cyclical and [...] Read more.
Angiogenesis, the formation of new blood vessels from existing vasculature, is regulated by a balance between pro- and anti-angiogenic factors. In adults, this process typically occurs in response to inflammation, wound healing, and neoplastic growth. Uniquely, the female reproductive system undergoes cyclical and repetitive angiogenesis with folliculogenesis, decidualization, implantation, and embryo development throughout the reproductive cycle. Ovarian angiogenesis involves a coordinated network of signaling pathways and molecular factors. Vascular endothelial growth factor (VEGF) is the primary driver of this process, supported by other regulators such as fibroblast growth factor (FGF) and hypoxia-inducible factor (HIF). Understanding the molecular mechanisms that govern ovarian angiogenesis is essential for developing new diagnostic and therapeutic approaches in reproductive medicine. Vascular dysfunction and impaired angiogenesis are key contributors to various ovarian disorders and infertility, including polycystic ovary syndrome (PCOS). Therefore, in-depth studies of ovarian vascularization are crucial for identifying the pathophysiology of these conditions and guiding the development of effective treatments. Advancing knowledge in this area holds significant potential for innovation in both medicine and biotechnology. Full article
Show Figures

Figure 1

14 pages, 1024 KB  
Article
Modulation of Paraoxonase 1 Activity and Asymmetric Dimethylarginine by Immunomodulatory Therapies in Multiple Sclerosis
by Lilla Racz, Hajnalka Lorincz, Ildiko Seres, Laszlo Kardos, Gyorgy Paragh and Tunde Csepany
Int. J. Mol. Sci. 2025, 26(19), 9728; https://doi.org/10.3390/ijms26199728 - 6 Oct 2025
Abstract
Background: Neurodegeneration is present from the earliest stages of multiple sclerosis [MS], and oxidative stress together with mitochondrial dysfunction are key contributors to neuronal injury and disease progression. Objective: To investigate the role of the antioxidant enzyme paraoxonase 1 (PON1) and serum asymmetric [...] Read more.
Background: Neurodegeneration is present from the earliest stages of multiple sclerosis [MS], and oxidative stress together with mitochondrial dysfunction are key contributors to neuronal injury and disease progression. Objective: To investigate the role of the antioxidant enzyme paraoxonase 1 (PON1) and serum asymmetric dimethylarginine (ADMA) levels in MS across different disease subtypes and immunomodulatory treatments. Methods: Serum lipid levels and PON1 activity were measured and compared by disease subtype and treatment in a single-center MS cohort (N = 262; CIS = 10, RRMS = 208, PPMS = 19, SPMS = 25; 110 untreated, 152 treated) and in 91 healthy controls. ADMA levels were assessed in sera from 79 MS patients (19 untreated, 60 treated) and 31 age-matched controls. Results: Median serum paraoxonase (PON) and arylesterase (ARE) activity levels were 83.8 and 127.2 IU/L in MS patients versus 85.9 and 136.9 IU/L in controls, with no significant difference for PON (p = 0.191) but a significant reduction in ARE [p = 0.003]. PON activity differed significantly among disease subtypes (p = 0.023), with the highest levels in CIS. PON and ARE activity also varied across treatment groups (p = 0.038 and p = 0.034, respectively), with longitudinal analysis indicating a measurable effect of immunomodulatory therapy on PON activity at 10 years (p = 0.0136). Significant differences in enzyme activity were observed between untreated and interferon-treated patients (PON p = 0.0055, ARE p = 0.0001), with trends toward differences in ARE under natalizumab and fingolimod. ADMA levels were lower in MS patients than controls (p < 0.0001) and differed among treatment subgroups (natalizumab, dimethyl fumarate, glatiramer acetate, untreated RRMS). Conclusions: PON1 activity and ADMA levels differ between MS subgroups and under immunomodulatory treatments. Long-term therapy was associated with increased PON1 activity, while highly effective immunomodulators reduced ADMA levels. These changes may contribute to the treatment-related reduction in disease activity and attenuation of neurodegenerative processes in MS. Full article
(This article belongs to the Special Issue Insights in Multiple Sclerosis (MS) and Neuroimmunology: 2nd Edition)
Show Figures

Figure 1

15 pages, 4909 KB  
Article
Acid Adaptation Leads to Sensitization of Salmonella Challenge Cultures During Processing of Air-Dried Beef (Biltong, Droëwors)
by Pratikchhya Adhikari, Cailtin E. Karolenko, Jade Wilkinson and Peter M. Muriana
Appl. Microbiol. 2025, 5(4), 106; https://doi.org/10.3390/applmicrobiol5040106 - 6 Oct 2025
Abstract
US food regulatory agencies have adopted a preference for researchers and testing labs to use ‘acid adapted challenge cultures’ when performing inoculated validation studies of food processes that involve acidic treatments to accustom the cultures to acidic pH so that they will not [...] Read more.
US food regulatory agencies have adopted a preference for researchers and testing labs to use ‘acid adapted challenge cultures’ when performing inoculated validation studies of food processes that involve acidic treatments to accustom the cultures to acidic pH so that they will not be easily affected during processing. We evaluated acid adaptation in regard to the processing of South African style air-dried beef, notably biltong and droëwors, using a mixture of five serovars of Salmonella as well as a unique serovar isolated from dried beef (Salmonella Typhimurium 1,4,[5],12:i:-). Acid adaptation was obtained by growing cultures in tryptic soy (TS) broth containing 1% glucose. Non adapted cultures were obtained by growth in TS broth without glucose or in TS broth with 1% glucose but buffered with 0.2 M phosphate buffer. Processes included biltong (dried solid beef) and droëwors (ground, sausage-style). Each trial was performed twice and triplicate samples were examined at each sampling point (i.e., n = 6). Statistical analysis was applied using analysis of variance (ANOVA) or one-way repeated measures (RM-ANOVA) and the Holm–Sidak test for pairwise multiple comparisons to determine significant differences (p < 0.05). We observed that in all processes examined (eight trials), treatments using acid adapted cultures were more sensitive to the biltong and droëwors processes, giving greater reductions (5.3-log reduction) than when non-adapted cultures were used (3.8-log reduction). Acid adaptation leads to stressed conditions in Salmonella resulting in sensitization to the multiple hurdles found in biltong and droëwors processing (acid/vinegar, salt, desiccation). Based on our data, the use of non adapted Salmonella cultures to achieve desired challenge culture process lethality could result in more robust processing conditions and a greater level of safety in these products as intended by US regulatory guidance. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 3rd Edition)
Show Figures

Figure 1

16 pages, 2036 KB  
Article
High Proportion of Blue Light Contributes to Product Quality and Resistance to Phytophthora Infestans in Tomato Seedlings
by Chengyao Jiang, Yue Ma, Kexin Zhang, Yu Song, Zixi Liu, Mengyao Li, Yangxia Zheng, Sang Ge, Tonghua Pan, Junhua Xie and Wei Lu
Agriculture 2025, 15(19), 2082; https://doi.org/10.3390/agriculture15192082 - 6 Oct 2025
Abstract
Plant seedlings are sensitive to cultivation environment factors and highly susceptible to pathogenic infections under adverse conditions such as inappropriate light environment. In this study, five kinds of LED lighting sources with different red (R) and blue (B) light combinations were set up: [...] Read more.
Plant seedlings are sensitive to cultivation environment factors and highly susceptible to pathogenic infections under adverse conditions such as inappropriate light environment. In this study, five kinds of LED lighting sources with different red (R) and blue (B) light combinations were set up: R10B0, R7B3, R5B5, R2B8 and R0B10 (with R:B ratios of 10:0, 7:3, 5:5, 2:8 and 0:10, respectively) to explore their effects on tomato seedlings’ growth, AsA-GSH cycle, endogenous hormones, and resistance to Phytophthora infestans, providing a basis for factory seedling light-quality selection. The results showed that with the increase in the proportion of blue light in the composite light, the growth indicators, photosynthetic characteristic parameters and enzyme activities of tomato seedlings generally increased. The contents of AsA, reduced glutathione, and oxidized glutathione all reached the maximum under high-proportion blue-light treatments (R2B8 and R0B10). The high-blue-light groups (R2B8 and R0B10) had the highest AsA and glutathione contents. The red–blue combinations reduced inhibitory ABA and increased growth-promoting hormones (e.g., melatonin), while monochromatic light increased ABA to inhibit growth. After inoculation with P. infestans, the apoplastic glucose content was the highest under the red–blue-combined treatments (R5B5 and R2B8), while the total glucose content in leaves was the highest under the combined light R2B8 treatment. In conclusion, high-proportion blue-light treatment can greatly promote the photosynthetic process of tomato, enhance the AsA-GSH cycle, and achieve the best effect in improving the resistance of tomatoes to P. infestans. Given these, the optimal light environment setting was R:B = 2:8. Full article
Show Figures

Figure 1

19 pages, 6583 KB  
Article
Compromised Regeneration, Damage to Blood Vessels and the Endomysium Underpin Permanent Muscle Damage Induced by Puff Adder (Bitis arietans) Venom
by Sodiq Opeyemi Adeyemi, Nicholas John Richards, Ali Alqallaf, Husain Bin Haidar, Mustafa Jawad Jalil Al-Asady, Jarred Williams, José R. Almeida and Ketan Patel
Toxins 2025, 17(10), 496; https://doi.org/10.3390/toxins17100496 - 6 Oct 2025
Abstract
The puff adder (Bitis arietans) is a clinically relevant viper species found throughout Africa, and it is responsible for a greater incidence of health-related envenomations than all other snake species on the continent combined. Unresolved skeletal muscle damage is a common [...] Read more.
The puff adder (Bitis arietans) is a clinically relevant viper species found throughout Africa, and it is responsible for a greater incidence of health-related envenomations than all other snake species on the continent combined. Unresolved skeletal muscle damage is a common consequence of B. arietans envenomation that can result in long-term morbidity and even death. Antivenom treatment can mitigate the systemic effects of the venom but offers little protection against local tissue damage. Identifying the mechanisms through which B. arietans venom induces tissue damage and impedes skeletal muscle regeneration could identify possible treatment alternatives that could help alleviate the long-term consequences of envenomation. Skeletal muscle has an innate ability to regenerate, but constituents within the venom can impede multiple stages of this regeneration process. In this study, we employed a combination of biochemical analyses, cell-based assays, and in vivo experiments to assess the toxicological implications of B. arietans envenomation and its impacts on key processes of regeneration. Our findings demonstrate that the pathological characteristics of permanent muscle damage resulting from B. arietans envenomation may be attributed to the venom’s effects on muscle stem cell precursors, the extracellular matrix (ECM), and the influence of blood-borne proteins that promote fibrosis. Full article
(This article belongs to the Special Issue Snake Bite and Related Injury)
Show Figures

Figure 1

15 pages, 2901 KB  
Article
Enhanced Nitrification Potential Soil from a Warm-Temperate Shrub Tussock Ecosystem Under Nitrogen Deposition and Warming Is Driven by Increased Nitrosospira Abundance
by Baihui Ren, Longzhen Ma, Tianyue Xu, Haoyan Li, Jiahuan Li, Jiyun Yang and Long Bai
Agronomy 2025, 15(10), 2347; https://doi.org/10.3390/agronomy15102347 - 6 Oct 2025
Abstract
Atmospheric nitrogen (N) deposition and climate warming significantly influence soil nitrogen transformation processes. Nitrification, a key step in the N cycle, is primarily driven by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their responses to environmental changes in warm-temperate shrub tussock grasslands—a [...] Read more.
Atmospheric nitrogen (N) deposition and climate warming significantly influence soil nitrogen transformation processes. Nitrification, a key step in the N cycle, is primarily driven by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, their responses to environmental changes in warm-temperate shrub tussock grasslands—a major grassland type in China—remain poorly understood. In this study, we examined the effects of N addition and warming on the community composition of ammonia oxidizers and soil nitrification potential (NP) through pot experiments simulating field conditions. Our results demonstrated that (1) the AOB community was more responsive to N addition and warming than AOA, with the genus Nitrosospira increasing by 6.30–21.75% under treatments; (2) soil pH increased significantly under warming (from 6.53 to 6.86) but remained unchanged under N addition; (3) NP increased significantly under all treatment conditions, most markedly under warming alone (2.83-fold increase compared to the control); and (4) NP was positively correlated with both soil pH and the relative abundance of Nitrosospira. These findings suggest that warming and N deposition enhance nitrification in shrub tussock soil by altering AOB community structure and increasing soil pH. This study provides new insights into the microbial mechanisms driving N cycling in warm-temperate grasslands under global change. Full article
Show Figures

Figure 1

Back to TopTop