Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = tunnel evacuation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6989 KB  
Article
Evaluation of Passenger Train Safety in the Event of a Liquid Hydrogen Release from a Freight Train in a Tunnel Along an Italian High-Speed/High-Capacity Rail Line
by Ciro Caliendo, Isidoro Russo and Gianluca Genovese
Appl. Sci. 2025, 15(19), 10660; https://doi.org/10.3390/app151910660 - 2 Oct 2025
Viewed by 203
Abstract
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available, Liquid Hydrogen (LH2) offers high energy density and efficient storage, making it suitable for large-scale [...] Read more.
The global shift towards cleaner energy sources is driving the adoption of hydrogen as an environmentally friendly alternative to fossil fuels. Among the forms currently available, Liquid Hydrogen (LH2) offers high energy density and efficient storage, making it suitable for large-scale transport by rail. However, the flammability of hydrogen poses serious safety concerns, especially when transported through confined spaces such as railway tunnels. In case of an accidental LH2 release from a freight train, the rapid accumulation and potential ignition of hydrogen could cause catastrophic consequences, especially if freight and passenger trains are present simultaneously in the same tunnel tube. In this study, a three-dimensional computational fluid dynamics model was developed to simulate the dispersion and explosion of LH2 following an accidental leak from a freight train’s cryo-container in a single-tube double-track railway tunnel, when a passenger train queues behind it on the same track. The overpressure results were analyzed using probit functions to estimate the fatality probabilities for the passenger train’s occupants. The analysis suggests that a significant number of fatalities could be expected among the passengers. However, shorter users’ evacuation times from the passenger train’s wagons and/or longer distances between the two types of trains might reduce the number of potential fatalities. The findings, by providing additional insight into the risks associated with LH2 transport in railway tunnels, indicate the need for risk mitigation measures and/or traffic management strategies. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 3475 KB  
Article
Validation of Subway Environmental Simulation (SES) for Longitudinal Ventilation: A Comparison with Memorial Tunnel Experimental Data
by Manuel J. Barros-Daza
Fire 2025, 8(8), 314; https://doi.org/10.3390/fire8080314 - 7 Aug 2025
Viewed by 859
Abstract
Ventilation in subway and railway tunnels is a critical safety component, especially during fire emergencies, where effective smoke and heat management is essential for successful evacuation and firefighting efforts. The Subway Environmental Simulation (SES, Version 4.1) model is widely used for predicting airflow [...] Read more.
Ventilation in subway and railway tunnels is a critical safety component, especially during fire emergencies, where effective smoke and heat management is essential for successful evacuation and firefighting efforts. The Subway Environmental Simulation (SES, Version 4.1) model is widely used for predicting airflow and thermal conditions during fire events, but its accuracy in real-world applications requires validation. This study compares SES predictions with experimental data from the Memorial Tunnel fire ventilation tests to evaluate its performance in simulating the effects of jet fans on longitudinal ventilation. The analysis focuses on SES’s ability to predict flow rate and temperature distributions. Results showed reasonable agreement between SES-predicted airflows and temperatures. However, SES tended to underpredict temperatures upstream and near the fire source, indicating a limitation in simulating thermal behavior close to the fire. These findings suggest that SES can be a reliable tool for tunnel ventilation design if certain safety margins, based on the error values identified in this study, are considered. Nonetheless, further improvements are necessary to enhance its accuracy, particularly in modeling heat transfer dynamics and the impact of fire-induced temperature changes. Future work should focus on conducting additional full-scale test validations and model refinements to improve SES’s predictive capabilities for fire safety planning. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

17 pages, 4478 KB  
Article
Numerical Study on Smoke Characteristics in Ultra-Long Tunnels with Multi-Train Fire Scenarios
by Jiaming Zhao, Cheng Zhang, Saiya Feng, Shiyi Chen, Guanhong He, Yanlong Li, Zhisheng Xu and Wenbin Wei
Fire 2025, 8(7), 265; https://doi.org/10.3390/fire8070265 - 3 Jul 2025
Viewed by 766
Abstract
Metropolitan city express line tunnels are fully enclosed and often span long distances between stations, allowing multiple trains within a single interval. Traditional segmented ventilation ensures only one train per section, but ultra-long tunnels with shaftless designs introduce new challenges under fire conditions. [...] Read more.
Metropolitan city express line tunnels are fully enclosed and often span long distances between stations, allowing multiple trains within a single interval. Traditional segmented ventilation ensures only one train per section, but ultra-long tunnels with shaftless designs introduce new challenges under fire conditions. This study investigates smoke behavior in an ultra-long inter-district tunnel during multi-train blockage scenarios. A numerical model evaluates the effects of train spacing, fire source location, and receding spacing on smoke back-layering, temperature distribution, and flow velocity. Results indicate that when train spacing exceeds 200 m and longitudinal wind speed is above 1.2 m/s, the impact of train spacing on smoke back-layering becomes negligible. Larger train spacing increases back-layering under constant wind speed, while higher wind speeds reduce it. Fire source location and evacuation spacing affect the extent and pattern of smoke spread and high-temperature zones, especially under reverse ventilation conditions. These findings provide quantitative insights into fire-induced smoke dynamics in ultra-long tunnels, offering theoretical support for optimizing ventilation control and evacuation strategies in urban express systems. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

13 pages, 1476 KB  
Article
Development of a Fire Risk Assessment Program for Submerged Tunnels
by Suk-Min Kong, Hyo-Gyu Kim, Ho-Hyeong Lee and Seong-Won Lee
Appl. Sci. 2025, 15(12), 6798; https://doi.org/10.3390/app15126798 - 17 Jun 2025
Cited by 1 | Viewed by 578
Abstract
Submerged tunnels are an innovative infrastructure solution for connecting roads and railways, especially in areas where conventional bridge or overland tunnel construction is limited by deep waterways, narrow straits, or dense urban development. In such regions, submerged tunnels offer an efficient and less [...] Read more.
Submerged tunnels are an innovative infrastructure solution for connecting roads and railways, especially in areas where conventional bridge or overland tunnel construction is limited by deep waterways, narrow straits, or dense urban development. In such regions, submerged tunnels offer an efficient and less intrusive alternative that overcomes geographical constraints. However, unlike conventional ground-level or subsea tunnels, submerged tunnels have unique structural and environmental characteristics, which necessitate the development of a dedicated evaluation system for responding to fire and other disasters. In this study, a quantitative fire risk assessment program (SFT_QRA) was developed by reflecting the specific characteristics of submerged tunnels. The program was applied to both road and railway tunnels to obtain evaluation results. First, to more realistically reflect the fire risk within submerged tunnels, the latest statistical data were used to update fire occurrence probabilities and the proportion of vulnerable users. In addition, the optimal smoke control mode for structural stop zones in ultra-long tunnels was analyzed to derive strategies for establishing a safe evacuation environment. Second, an Excel VBA-based assessment program was developed to improve user convenience and was structured to enable fire analysis and evacuation simulations. Third, in order to verify the accuracy and reliability of the developed program, a comparative analysis was conducted against commercial quantitative risk assessment programs. As a result, the total risk error rate was 0.4% for road tunnels and within 5.0% for railway tunnels, showing similar levels of results. This study advances quantitative risk assessment methods by incorporating the unique features of submerged tunnels and implementing them in a validated program. Through this approach, it presents a practical solution that can contribute to the advancement of tunnel fire safety technologies and the overall enhancement of tunnel safety. Full article
Show Figures

Figure 1

17 pages, 1851 KB  
Article
Fire Characteristics and Water Mist Cooling Measures in the Coal Transportation Process of a Heavy-Haul Railway Tunnel in Shanxi Province
by Wenjin He, Maohai Fu, Lv Xiong and Shiqi Zheng
Processes 2025, 13(6), 1789; https://doi.org/10.3390/pr13061789 - 5 Jun 2025
Viewed by 556
Abstract
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The [...] Read more.
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The research employs theoretical derivations and numerical simulations to achieve its objectives. It was discovered that, during a fire in a heavy-haul railway tunnel, the temperature inside the tunnel can exceed 500 °C. Furthermore, depending on the nature of the goods transported by the train and under specific wind speed conditions, the fire source has the potential to spread to other carriages, resulting in a multi-source fire. Using the numerical simulation software Pyrosim 2022, various wind speed conditions were simulated. The results revealed that at lower wind speeds, the smoke demonstrates a reverse flow phenomenon. Concurrently, when the adjacent carriage on the leeward side of the fire is ignited, the high-temperature reverse flow smoke, along with the thermal radiation from the flames, ignites combustible materials in the adjacent carriage on the windward side of the burning carriage. Through theoretical derivation and numerical simulation, the critical wind speed for the working conditions was determined to be 2.14 m/s. It was found that while a higher wind speed can lead to a decrease in temperature, it also increases the flame deflection angle. When the wind speed exceeds 2.4 m/s, although the temperature significantly drops in a short period, the proximity of combustible materials on the leeward side of the carriage becomes a concern. At this wind speed, the flame deflection angle causes heat radiation on the leeward side, specifically between 0.5 m and 3 m, to ignite the combustible materials on the carriage surface, resulting in fire spread and multiple fire incidents. The relationship between wind speed and the angle of deflection from the fire source was determined using relevant physics principles. Additionally, the relationship between wind speed and the trajectory of water mist spraying was established. It was proposed to optimize the position of the water mist based on its deviation, and the results indicated that under critical wind speed conditions, when the water mist spraying is offset approximately 5 m towards the upwind side of the fire source, it can act more directly on the surface of the fire source. Numerical simulation results show a significant reduction in the maximum temperature and effective control of fire spread. Under critical wind speed conditions, the localized average temperature of the fire decreased by approximately 140 °C when spraying was applied, compared to the conditions without spraying, and the peak temperature decreased by about 190 °C. This modification scheme can effectively suppress the threat of fire to personnel evacuation under simulated working conditions, reflecting effective control over fires. Additionally, it provides theoretical support for the study of fire patterns in tunnels and emergency response measures. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

27 pages, 9007 KB  
Article
Middle Rock Pillar Stability Criteria for a Bifurcated Small Clear-Distance Tunnel
by Jianxiu Wang, Yanxia Long, Ansheng Cao, Tao Cui, Luyu Lin, Yuanbo Gao, Xuezeng Liu and Huboqiang Li
Appl. Sci. 2025, 15(10), 5634; https://doi.org/10.3390/app15105634 - 18 May 2025
Viewed by 582
Abstract
Middle rock pillars (MRPs) play a crucial role in the stability of bifurcated small clear-distance tunnels. Assessing the stability of the MRP is a key challenge in design and construction. This study focuses on the bifurcated small clear-distance section of the Xiamen Haicang [...] Read more.
Middle rock pillars (MRPs) play a crucial role in the stability of bifurcated small clear-distance tunnels. Assessing the stability of the MRP is a key challenge in design and construction. This study focuses on the bifurcated small clear-distance section of the Xiamen Haicang Shugang evacuation channel underground interchange tunnels. The stability criteria for the MRP during both the early design and later construction stages were analyzed by using the strength reduction method (SRM) via numerical simulations. In the design stage, the SRM was applied to determine the stability limit state of the MRP. Relationships between rock mass density, cohesion, and elastic modulus were identified, and these parameters were combined with basic cohesion values for an initial stability assessment. During the construction stage, the full excavation process was analyzed by examining the distribution and changes in the plastic zone of the rock mass. Two key construction stages, a 10 m excavation on the main line upper step and a 10 m excavation on the ramp upper step, were identified as points where the plastic zone of the MRP began to form on the sidewall and the center, respectively. Multiple linear regression was used to determine the displacement, stress, and plasticity criteria for MRP stability. A comprehensive criteria formula incorporating the width–span ratio, tunnel vault settlement, and horizontal clearance convergence was developed, providing technical guidance and a scientific basis for similar projects. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 4675 KB  
Article
A Numerical Simulation Study on the Spread of Mine Water Inrush in Complex Roadways
by Donglin Fan, Shoubiao Li, Peidong He, Sushe Chen, Xin Zou and Yang Wu
Water 2025, 17(10), 1434; https://doi.org/10.3390/w17101434 - 9 May 2025
Viewed by 757
Abstract
Emergency water release from underground reservoirs is characterized by its suddenness and significant harm. The quantitative prediction of water spreading processes in mine tunnels is crucial for enhancing underground safety. The study focuses on an underground roadway in a coal mine, constructing a [...] Read more.
Emergency water release from underground reservoirs is characterized by its suddenness and significant harm. The quantitative prediction of water spreading processes in mine tunnels is crucial for enhancing underground safety. The study focuses on an underground roadway in a coal mine, constructing a three-dimensional physical model of the complex tunnel network to explore the spatiotemporal characteristics of water flow spreading after water release in coal mine tunnels. The Volume of Fluid (VOF) model of the Eulerian multiphase flow was adopted to simulate the flow state of water in the roadway. The results indicate that after water release from the reservoir, water flows along the tunnel network towards locations with relatively lower altitude terrain. During the initial stage of water release, sloping tunnels act as barriers to water spreading. The water level height at each point in the tunnel network generally experiences three developmental stages: rapid rise, slow increase, and stable equilibrium. The water level height in the tunnel area near the water release outlet rises sharply within a time range of 550 s; tunnels farther from the water release outlet experience a rapid rise in water level height only after 13,200 s. The final stable equilibrium water level in the tunnel depends on the location of the water release outlet and the relative height of the terrain, with a water level height ranging from 0.3 to 3.3 m. The maximum safe evacuation time for personnel within a radius of 300 m from the drainage outlet is only 1 h. In contrast, areas farther away from the drainage location benefit from the water storage capacity of the complex tunnel network and have significantly extended evacuation opportunities. Full article
Show Figures

Figure 1

19 pages, 8152 KB  
Article
Experimental Investigation of Pollutant—Luminous Environment Relation Under Tunnel Fire Condition Based on Spectral Analysis
by Yani Quan, Peng Xue, Junwei Chen, Shaofeng Wang, Yuwei Zhang, Zhikai Ni, Yanfeng Li, Junmei Li, Nan Zhang and Jingchao Xie
Sustainability 2024, 16(24), 11162; https://doi.org/10.3390/su162411162 - 19 Dec 2024
Viewed by 944
Abstract
The mature theory of safety assessment and system operation is crucial to ensure the safety and property of commuters under the tunnel fire condition, but the relationship between pollutants and the quality of the luminous environment is still the weakest link in this [...] Read more.
The mature theory of safety assessment and system operation is crucial to ensure the safety and property of commuters under the tunnel fire condition, but the relationship between pollutants and the quality of the luminous environment is still the weakest link in this research area. To establish this close relation, this study adopted three different scaled experiments to investigate the pollutant-visibility model based on spectral analysis. The first scaled tunnel model fire experiment, conducted on a 20.5-m-long experimental platform, utilized three combustion sources to analyze the light attenuation of natural gas, PVC-insulated cables, and smoke cakes based on the APE index. Then the spectrum selective contrast experiment collected several typical spectral data from coloured transparent panels, and the compared results advocated that there is no much different impact on luminous environment with these combustion sources under smoky conditions. At last, the acrylic box pollutant experiment was conducted with different CO/NO2 concentrations, and the results provided quantitative relationship between the light average attenuation rate and CO/NO2 concentrations. The findings of this study could be able to further establish the connection between pollutants and safety evacuation, as well as ventilation and luminous environment by combining the relatively mature research of tunnel fire. Full article
Show Figures

Figure 1

13 pages, 3709 KB  
Article
Simulations on Evacuation Strategy and Evacuation Process of the Subway Train Under the Fire
by Xingji Wang, Bin Liu, Weilian Ma, Yuehai Feng, Qiang Li and Ting Sun
Fire 2024, 7(12), 464; https://doi.org/10.3390/fire7120464 - 6 Dec 2024
Cited by 4 | Viewed by 2352
Abstract
This study focuses on the safe evacuation strategy and evacuation process in the subway train under the fires. The subway station evacuation mode should be adopted if the power system of a subway train is normal on fire. While, the tunnel evacuation mode [...] Read more.
This study focuses on the safe evacuation strategy and evacuation process in the subway train under the fires. The subway station evacuation mode should be adopted if the power system of a subway train is normal on fire. While, the tunnel evacuation mode should be adopted if the power system of the train fails because of the effects of fire. Under the tunnel evacuation mode, the direction of tunnel smoke should be opposite to that of most passengers, and passengers should be evacuated toward the fresh wind. By using the numerical simulation software Pathfinder and PyroSim, the passenger evacuation time under different conditions is calculated, and the safety of the evacuation process is evaluated. The results show that the evacuation time of the station evacuation mode is obviously shorter than that of the tunnel evacuation mode. With the same conditions, the evacuation time of the tunnel evacuation mode is 2193 s, which is about four times as much as the evacuation time of the station evacuation mode (526 s). The total evacuation time increases with the total number of passengers and the proportion of older people and children. Under an oil pool fire, which is an extreme fire condition, the fire environment inside the train may reach a level threatening the passengers’ safety before the evacuation is complete, even before the door opens; therefore, special attention should be paid to the safety issues in stage from the fire begins to the evacuation complete. Full article
(This article belongs to the Special Issue Fire Numerical Simulation, Second Volume)
Show Figures

Figure 1

19 pages, 4373 KB  
Article
Study on Public Perceptions and Disaster Prevention Framework of Tunnel Fires Based on Social Media and Artificial Intelligence
by Chuyao Lai, Yuxin Zhang, Xiaofan Tang and Chao Guo
Fire 2024, 7(12), 462; https://doi.org/10.3390/fire7120462 - 6 Dec 2024
Viewed by 1533
Abstract
To investigate public perceptions regarding tunnel fire disasters and optimize the tunnel fire disaster prevention framework, this study takes the emerging social media platform Douyin as a case study, conducting an in-depth analysis of 2133 short videos related to tunnel fires on the [...] Read more.
To investigate public perceptions regarding tunnel fire disasters and optimize the tunnel fire disaster prevention framework, this study takes the emerging social media platform Douyin as a case study, conducting an in-depth analysis of 2133 short videos related to tunnel fires on the platform. A computational communication method was used for analysis, Latent Dirichlet Allocation was used to cluster the discussion topics of these tunnel fire short videos, and a spatiotemporal evolution analysis of the number of videos posted, user comments, and emotional inclinations across different topics was performed. The findings reveal that there is a noticeable divergence in public opinion regarding emergency decision making in tunnel fires, related to the complexity of tunnel fire incidents, ethical dilemmas in tunnel fire escape scenarios, and insufficient knowledge popularization of fire safety practices. The study elucidates the public’s actual needs during tunnel fire incidents, and a dynamic disaster prevention framework for tunnel fires based on social media and artificial intelligence is proposed on this basis to enhance emergency response capabilities. Utilizing short videos on social media, the study constructs a critical target dataset under real tunnel fire scenarios. It proposes a computer vision-based model for identifying critical targets in tunnel fires. This model can accurately and in real-time identify key targets such as fires, smoke, vehicles, emergency exits, and people in real tunnel fire environments, achieving an average detection precision of 77.3%. This research bridges the cognitive differences between the general public and professionally knowledgeable tunnel engineers regarding tunnel fire evacuation, guiding tunnel fire emergency responses and personnel evacuation. Full article
(This article belongs to the Section Fire Social Science)
Show Figures

Figure 1

12 pages, 4206 KB  
Article
Full-Scale Experimental Study on Influence of Smoke on Pedestrian Movement During Evacuation in Road Tunnel
by Natalia Schmidt-Polończyk
Buildings 2024, 14(11), 3654; https://doi.org/10.3390/buildings14113654 - 17 Nov 2024
Cited by 1 | Viewed by 1077
Abstract
The article presents the results of experimental studies of evacuation of 50 people from a road tunnel in various smoke conditions. Calculations of total evacuation times, pre-movement times and movement speeds were carried out and the impact of smoke on the speed of [...] Read more.
The article presents the results of experimental studies of evacuation of 50 people from a road tunnel in various smoke conditions. Calculations of total evacuation times, pre-movement times and movement speeds were carried out and the impact of smoke on the speed of movement was analyzed. The pre-movement times, the alarm realization and response times for the subsequent experiments (1, 2 and 3) were 36, 7 and 5 s, respectively. The total evacuation times for 3 experiments were 340, 301 and 215 s. It has been shown that the speed of movement in smoke depends not only on the density of smoke, but also on the very attitude of the experiment participants and knowledge of the tunnel. It has also been shown that the adverse impact of low visibility on the evacuation time and movement speed is as important as the motivation of the evacuees and the effect of learning. In order to collect the observations of the participants, as well as assess potential aspects which might have influenced the process of evacuation, a survey was conducted after both experiments. The answers show that the two main reasons that prompted the evacuation were smoke in the tunnel and the fire drill. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 3704 KB  
Article
Enhancing Fire Safety Knowledge among Underwater Road Tunnel Users: A Survey in China
by Chunling Lu, Dingli Liu, Yao Huang, Ying Li, Shanbin Chen, Weijun Liu and Jingya Wang
Fire 2024, 7(9), 333; https://doi.org/10.3390/fire7090333 - 23 Sep 2024
Cited by 1 | Viewed by 1600
Abstract
In recent years, the number of underwater road tunnels in Chinese cities has increased. However, the current situation of personal fire safety literacy as it pertains to these tunnels remains unclear. To address this gap, a questionnaire survey was conducted to investigate people’s [...] Read more.
In recent years, the number of underwater road tunnels in Chinese cities has increased. However, the current situation of personal fire safety literacy as it pertains to these tunnels remains unclear. To address this gap, a questionnaire survey was conducted to investigate people’s awareness of escape slides, evacuation signs, and the correct evacuation paths for fire escape. A total of 1049 respondents in Changsha, China, were surveyed, with 791 valid questionnaires collected and analyzed. The findings revealed that a significant proportion of respondents (81.80%) were unaware of the presence of escape slides in underwater road tunnels, while 87.86% could not recognize them and 93.05% could not use them. Only 42.04% of respondents could identify evacuation signs in underwater road tunnels. In the event of a fire, just half of the respondents could select the appropriate escape or evacuation path. Additionally, demographic differences among respondents also influenced their level of fire safety literacy. Based on these findings, it is recommended that the government and relevant organizations should enhance the dissemination of knowledge regarding escape slides and evacuation signs in underwater road tunnels. Full article
(This article belongs to the Special Issue Evacuation Design and Smoke Control in Fire Safety Management)
Show Figures

Figure 1

20 pages, 6935 KB  
Article
Efficiency Comparison between Simplified and Advanced Evacuation Analysis Models: A Case Study of Guryong Station, Republic of Korea
by Hyuncheol Kim, Seunghyun Lee and Jaemin Lee
Buildings 2024, 14(9), 2859; https://doi.org/10.3390/buildings14092859 - 10 Sep 2024
Cited by 2 | Viewed by 1772
Abstract
Modern subway systems have increased in size and complexity, and this growth presents significant challenges for planners of emergency evacuations. In this study, the effectiveness of the simplified and advanced evacuation analysis methods recommended by the International Maritime Organization (IMO) are evaluated for [...] Read more.
Modern subway systems have increased in size and complexity, and this growth presents significant challenges for planners of emergency evacuations. In this study, the effectiveness of the simplified and advanced evacuation analysis methods recommended by the International Maritime Organization (IMO) are evaluated for Guryong Station in Seoul, South Korea. The simplified evacuation analysis method facilitates rapid assessments by using general parameters, while the advanced evacuation analysis entails performing detailed simulations of human behavior and physical interactions. Our findings indicate that the results of the simplified evacuation analysis method are reasonably close to those of the more time-consuming advanced evacuation analysis method, thereby demonstrating the practical applicability of the former method for conducting initial evacuation safety assessments. Specifically, both the simplified and advanced methods showed a 20% reduction in Total Evacuation Time when tunnel evacuation routes were utilized. This finding demonstrates that the simplified method can produce results comparable to the advanced method, making it a reliable tool for initial assessments and for evaluating alternative strategies to reduce evacuation time. By demonstrating that the simplified evacuation analysis method can yield reliable results, we provide valuable insights for developing smart, resilient cities with efficient emergency-response capabilities. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

19 pages, 4270 KB  
Article
Design of Adits for People Passing Spacing in High Altitude Highway Tunnels in Cold Regions
by Yuang Cui and Zhiqiang Liu
Appl. Sci. 2024, 14(17), 7573; https://doi.org/10.3390/app14177573 - 27 Aug 2024
Cited by 3 | Viewed by 1021
Abstract
Existing research into this topic primarily focuses on low-altitude areas, neglecting the impact of extreme environmental conditions such as low temperature, low oxygen level, and low pressure in high-altitude regions. Based on the smoke diffusion theory, a series of CFD numerical simulations were [...] Read more.
Existing research into this topic primarily focuses on low-altitude areas, neglecting the impact of extreme environmental conditions such as low temperature, low oxygen level, and low pressure in high-altitude regions. Based on the smoke diffusion theory, a series of CFD numerical simulations were conducted in order to investigate the characteristics of smoke diffusion in the highway tunnel at high altitude. The results indicated that the increase in altitude would enhance the longitudinal propagation velocity of smoke, leading to a more pronounced impact on temperature, CO concentration, and visibility at characteristic heights. Meanwhile, the altitude intensifies the inhibitory impact of longitudinal ventilation on smoke diffusion upwind of the fire source and augments the acceleration effect on smoke diffusion downwind, thereby impeding personnel evacuation on the downwind side. By taking the hazardous range at a characteristic height under the impact of wind velocity and the deceleration of evacuation velocity due to altitude into consideration, a new recommended reduction factor was deduced to design adits for people passing spacing in highway tunnels at high altitude. The findings can serve as a valuable reference for the personal evacuation in high-altitude highway tunnel fires and the design of spacing between adits for people passing within such tunnels. Full article
Show Figures

Figure 1

18 pages, 2880 KB  
Article
Study on Fire Smoke Movement Characteristics and Their Impact on Personal Evacuation in Curved Highway Tunnels
by Yuang Cui and Zhiqiang Liu
Appl. Sci. 2024, 14(14), 6339; https://doi.org/10.3390/app14146339 - 20 Jul 2024
Cited by 3 | Viewed by 1852
Abstract
In the existing research on tunnel fires, researchers primarily focus on straight tunnels, neglecting the impact of curved sidewalls in curved tunnels. Based on the theory of smoke diffusion, a series of CFD numerical simulations was conducted using the Fire Dynamics Simulator to [...] Read more.
In the existing research on tunnel fires, researchers primarily focus on straight tunnels, neglecting the impact of curved sidewalls in curved tunnels. Based on the theory of smoke diffusion, a series of CFD numerical simulations was conducted using the Fire Dynamics Simulator to investigate the characteristics of smoke distribution in a curved highway tunnel. The results indicated that distinct smoke distribution characteristics were observed when a fire occurred in a curved tunnel compared with those observed in straight tunnels, with significant differences particularly evident for the radius of curvature of the tunnel below 1000 m. By comparing the smoke distribution characteristics from various fire source locations, the most unfavorable fire source locations within a curved tunnel were determined. High-temperature fire smoke bounds between the inner and outer walls of the tunnel, leading to the formation of multiple high-temperature zones in proximity to the fire source, rather than diffusing directly towards the exit in a linear tunnel. Additionally, based on an analysis of temperature, visibility, and CO concentration at characteristic heights, suitable locations for pedestrian crossings within the tunnel were deduced and an evacuation strategy for persons within the core fire area was proposed. The results can provide a reference for personal evacuation strategies in curved highway tunnel fire scenarios and the design of an adit for people passing in such tunnels. Full article
Show Figures

Figure 1

Back to TopTop