Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (774)

Search Parameters:
Keywords = tyrosine-14 phosphorylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4649 KiB  
Article
Network Pharmacology and Molecular Docking-Based Approach to Explore Potential Bioactive Compounds from Kaempferia parviflora on Chemokine Signaling Pathways in the Treatment of Psoriasis Disease
by Chotiwit Sakuludomkan, Jittasak Khowsathit, Pilaiporn Thippraphan, Nut Koonrungsesomboon, Mingkwan Na Takuathung and Weerakit Taychaworaditsakul
Int. J. Mol. Sci. 2025, 26(11), 5243; https://doi.org/10.3390/ijms26115243 - 29 May 2025
Viewed by 174
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation and dysregulated chemokine signaling. Kaempferia parviflora (KP) has long been valued for its medicinal properties; however, its specific role in psoriasis treatment remains unclear. This study investigates the anti-psoriatic potential of methoxyflavones [...] Read more.
Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation and dysregulated chemokine signaling. Kaempferia parviflora (KP) has long been valued for its medicinal properties; however, its specific role in psoriasis treatment remains unclear. This study investigates the anti-psoriatic potential of methoxyflavones derived from KP through an integrated approach combining network pharmacology, molecular docking, and experimental validation. A total of 232 target genes were identified as being associated with KP bioactive compounds, of which 64 overlapped with psoriasis-related genes implicated in chemokine signaling pathways. Molecular docking analyses revealed that key methoxyflavones interact with pivotal proteins such as protein kinase B (AKT1 or AKT), proto-oncogene tyrosine-protein kinase (SRC), and phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), suggesting their potential involvement in modulating inflammation. Experimental results confirmed that 5,7,4′-trimethoxyflavone and 3,5,7-trimethoxyflavone significantly inhibited keratinocyte proliferation, migration, and macrophage activation, key processes in psoriasis progression. Additionally, both compounds reduced nitric oxide production, supporting their anti-inflammatory effects. Western blot analysis further demonstrated that these compounds tended to decrease the phosphorylation levels of AKT and SRC, supporting their role in influencing inflammatory signaling pathways. These findings suggest that methoxyflavones from KP act through multi-target mechanisms, offering potential as natural therapeutic agents for psoriasis. Further, in vivo studies are needed to validate their efficacy and explore their clinical applications. Full article
(This article belongs to the Special Issue Network Pharmacology: An Emerging Field in Drug Discovery)
Show Figures

Figure 1

15 pages, 5037 KiB  
Article
Unraveling Botulinum Neurotoxin A Light-Chain-Induced Signaling Pathways: A Phosphoproteomic Analysis in a Controlled Cellular Model
by Chensi Zhu, Liangyan Zhang, Wenjing Yu, Yeqing Tu, Xiaolan Yang, Deyu Li, Hui Wang and Tao Li
Int. J. Mol. Sci. 2025, 26(11), 5168; https://doi.org/10.3390/ijms26115168 - 28 May 2025
Viewed by 74
Abstract
Botulinum neurotoxin type A (BoNT/A), among the most potent known toxins, is widely used in cosmetic medicine. However, its toxicity mechanisms remain poorly understood due to a lack of suitable models. Here, we generated a doxycycline (DOX)-inducible Neuro-2a cell line stably expressing the [...] Read more.
Botulinum neurotoxin type A (BoNT/A), among the most potent known toxins, is widely used in cosmetic medicine. However, its toxicity mechanisms remain poorly understood due to a lack of suitable models. Here, we generated a doxycycline (DOX)-inducible Neuro-2a cell line stably expressing the BoNT/A light chain (ALC). ALC expression was confirmed by GFP and FLAG tag antibodies, and its activity was validated through cleavage of the substrate SNAP-25. Using this model, combined with natural toxin infection of cells, phospho-antibody microarray analysis revealed significant alterations in host phosphorylation networks in both ALC-expressing and toxin-infected cells. Among the shared phosphorylation changes, 75 proteins showed upregulation, while 27 were downregulated. Upregulated phosphorylation events were enriched in pathways such as PI3K-AKT signaling, EGFR tyrosine kinase inhibitor resistance, and Ras signaling, whereas downregulated events were associated with the ERBB and thyroid hormone signaling pathways. Key alterations were observed in AKT signaling, with protein–protein interaction analysis identifying Hsp90ab1 and Map2k1 as central hub molecules for upregulated and downregulated proteins, respectively. This study establishes a robust Neuro-2a-based model system to study BoNT/A toxicity and provides insights into toxin-induced phosphorylation network changes, offering a valuable platform for therapeutic screening and mechanistic exploration. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

14 pages, 3006 KiB  
Article
Unlocking the Potential of Perillaldehyde: A Novel Mechanism for Chronic Myeloid Leukemia by Targeting HSP70
by Miaomiao Zhang, Jinfeng Wang, Rongsong Jiang, Ming Liu and Weiyi Zhang
Molecules 2025, 30(11), 2294; https://doi.org/10.3390/molecules30112294 - 23 May 2025
Viewed by 174
Abstract
Leukemia is a malignant tumor of the hematopoietic system. Approximately 15% of adult leukemias are chronic myeloid leukemias (CMLs), and this incidence increases annually. The BCR-ABL oncoprotein drives the initiation, promotion, and progression of CML. Although tyrosine kinase inhibitors (TKIs) are first-line therapies [...] Read more.
Leukemia is a malignant tumor of the hematopoietic system. Approximately 15% of adult leukemias are chronic myeloid leukemias (CMLs), and this incidence increases annually. The BCR-ABL oncoprotein drives the initiation, promotion, and progression of CML. Although tyrosine kinase inhibitors (TKIs) are first-line therapies for CML, BCR-ABL-mediated drug resistance limits their clinical efficacy and patient prognosis. Perillaldehyde (PAE), a monoterpene and primary volatile oil from perilla, is a promising small-molecule candidate for degrading BCR-ABL and has potential medical applications. The molecular mechanism showed that PAE regulated the expression of autophagy- and apoptosis-related proteins in K562 cells. Confocal laser observation showed that PAE damaged the mitochondrial membrane potential and induced ROS generation. Further evaluations indicated that PAE targeted HSP70 and inactivated the phosphorylation of BCR-ABL, thereby inhibiting its downstream proteins. This study may produce a lead compound for CML therapy as PAE may be an effective treatment for further exploration. Full article
Show Figures

Graphical abstract

17 pages, 2222 KiB  
Article
Role of Tyrosine Phosphorylation in PEP1 Receptor 1(PEPR1) in Arabidopsis thaliana
by Jae-Han Choi and Man-Ho Oh
Plants 2025, 14(10), 1515; https://doi.org/10.3390/plants14101515 - 19 May 2025
Viewed by 282
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have evolved to perceive environmental changes. Among LRR-RLKs, PEPR1 perceives the pep1 peptide and triggers defense signal transduction in Arabidopsis thaliana. In the present study, we focused on PEPR1 and PEPR2, which are the receptors of pep1, [...] Read more.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have evolved to perceive environmental changes. Among LRR-RLKs, PEPR1 perceives the pep1 peptide and triggers defense signal transduction in Arabidopsis thaliana. In the present study, we focused on PEPR1 and PEPR2, which are the receptors of pep1, to understand the role of tyrosine phosphorylation. PEPR1-CD (cytoplasmic domain) recombinant protein exhibited strong tyrosine autophosphorylation, including threonine autophosphorylation. We subjected all tyrosine residues in PEPR1-CD to site-directed mutagenesis. The recombinant proteins were purified along with PEPR1-CD, and Western blotting was performed using a tyrosine-specific antibody. Among the 13 tyrosine residues in PEPR1-CD, the PEPR1(Y995F)-CD recombinant protein showed significantly reduced tyrosine autophosphorylation intensity compared to PEPR1-CD and other tyrosine mutants, despite little change in threonine autophosphorylation. To confirm the autophosphorylation site, we generated a phospho-specific peptide Ab, pY995. As a result, Tyr-995 of PEPR1-CD was a major tyrosine autophosphorylation site in vitro. To understand the function of tyrosine phosphorylation in vivo, we generated transgenic plants, expressing PEPR1-Flag, PEPR1(Y995F)-Flag, and PEPR1(Y995D)-Flag in a pepr1/2 double mutant background. Interestingly, the root growths of PEPR1(Y995F)-Flag and PEPR1(Y995D)-Flag were not inhibited by pep1 peptide treatment, compared to Col-0 and PEPR1-Flag (pepr1/2) transgenic plants. Also, we analyzed downstream components, which included PROPEP1, MPK3, WRKY33, and RBOHD gene expressions in four different genotypes (Col-0, PEPR1-Flag, PEPR1(Y995F)-Flag, and PEPR1(Y995D)-Flag) of plants in the presence of the pep1 peptide. Interestingly, the expressions of PROPEP1, MPK3, WRKY33, and RBOHD were not regulated by pep1 peptide treatment in PEPR1(Y995F)-Flag and PEPR1(Y995D)-Flag transgenic plants, in contrast to Col-0 and PEPR1-Flag. These results suggest that specific tyrosine residues play an important role in vivo in the plant receptor function. Full article
(This article belongs to the Special Issue Mechanisms of Plant Defense Against Abiotic Stresses)
Show Figures

Figure 1

15 pages, 4256 KiB  
Article
Cloning and Spatiotemporal Expression Analysis of IGF1R Gene cDNA in Alopex lagopus (Arctic Fox)
by Wei Xu, Hualin Fu, Xiangyu Meng, Yiwen Sun, Fangyong Ning and Zhiheng Du
Life 2025, 15(5), 796; https://doi.org/10.3390/life15050796 - 17 May 2025
Viewed by 257
Abstract
This study aimed to clarify the sequence characteristics and spatiotemporal expression patterns of the insulin-like growth factor 1 receptor (IGF1R) gene in Alopex lagopus (Arctic fox), thereby addressing the existing knowledge gap regarding IGF1R-mediated growth regulation in this species. The [...] Read more.
This study aimed to clarify the sequence characteristics and spatiotemporal expression patterns of the insulin-like growth factor 1 receptor (IGF1R) gene in Alopex lagopus (Arctic fox), thereby addressing the existing knowledge gap regarding IGF1R-mediated growth regulation in this species. The findings establish a crucial foundation for subsequent investigations into the correlation between this gene and Arctic fox growth traits. Specific primers were designed based on the cDNA sequence of the canine IGF1R gene (Accession No. XM_545828). The full-length coding sequence (CDS) of the Arctic fox IGF1R gene (1617 bp, encoding 538 amino acids) was successfully cloned via RT-PCR. Phylogenetic analysis using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm revealed a 99% sequence homology in the IGF1R gene between the Arctic fox and canine, confirmed their closest evolutionary relationship. Protein characterization showed that the IGF1R protein has a molecular weight of 60.62 kDa (theoretical isoelectric point pI = 5.15), containing one fibronectin type-III domain and one tyrosine kinase domain, classifying it as an acidic hydrophilic transmembrane protein. Phosphorylation site prediction identified 27 phosphorylation sites, with secondary structures dominated by α-helices (26.39%) and random coils (52.79%). The IGF1R gene displayed significant tissue-specific expression variations across 12 examined tissues in Arctic foxes: highest expression levels in testis, minimal expression in stomach, and no detectable expression in duodenum. Spatiotemporal expression analysis revealed that in 2-, 4-, and 6-month-old individuals, hepatic IGF1R exhibited a progressive increase, testicular expression reached peak levels at 6 months, and skeletal muscle demonstrated transient upregulation peaking at 4 months. These spatiotemporal expression patterns suggest that IGF1R may participate in metabolism and organ developmental processes during critical growth stages of Arctic foxes through tissue-specific regulation. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

23 pages, 7439 KiB  
Article
Nardostachys jatamansi Extract and Nardosinone Exert Neuroprotective Effects by Suppressing Glucose Metabolic Reprogramming and Modulating T Cell Infiltration
by Congyan Duan, Weifang Lin, Mingjie Zhang, Bianxia Xue, Wangjie Sun, Yang Jin, Xiaoxu Zhang, Hong Guo, Qing Yuan, Mingyu Yu, Qi Liu, Naixuan Wang, Hong Wang, Honghua Wu and Shaoxia Wang
Cells 2025, 14(9), 644; https://doi.org/10.3390/cells14090644 - 28 Apr 2025
Viewed by 575
Abstract
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. [...] Read more.
Background: Nardostachys jatamansi DC. (Gansong), a widely utilized herb in traditional Chinese medicine, has been historically employed in the management of various neuropsychiatric disorders. Nardosinone (Nar), a sesquiterpenoid compound, has been identified as one of the principal bioactive constituents of N. jatamansi. This study investigated the effects of ethyl acetate extract (NJ-1A) from N. jatamansi and its active constituent nardosinone on neuroinflammatory mediator release, glucose metabolic reprogramming, and T cell migration using both in vitro and in vivo experimental models. Methods: Lipopolysaccharide(LPS)-induced BV-2 microglial cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p)-induced male C57BL/6N mouse chronic model of Parkinson’s disease were applied. Results: Both NJ-1A and Nar could significantly suppress LPS-induced production of M1 pro-inflammatory factors or markers in microglia and could inhibit the glycolytic process and promote oxidative phosphorylation via the AKT/mTOR signaling pathway. Furthermore, they exhibited the capacity to attenuate chemokine release from activated microglia, consequently reducing T cell migration. In vivo experiments revealed that NJ-1A and Nar effectively inhibited microglial activation, diminished T cell infiltration, and mitigated the loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the substantia nigra of MPTP-induced mice. Conclusions: NJ-1A and nardosinone exert neuroprotective effects through the modulation of microglial polarization states, regulation of metabolic reprogramming, and suppression of T cell infiltration. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

32 pages, 13423 KiB  
Article
MicroRNA-142-3p Overcomes Drug Resistance in Hepatocellular Carcinoma by Targeting YES1 and TWF1
by Khadijeh Mahboobnia, Tasnuva D. Kabir, Rui Hou, Peiwen Liu, Alistair Forrest, Dianne J. Beveridge, Kirsty L. Richardson, Lisa M. Stuart, George C. Yeoh and Peter J. Leedman
Int. J. Mol. Sci. 2025, 26(9), 4161; https://doi.org/10.3390/ijms26094161 - 27 Apr 2025
Viewed by 493
Abstract
Resistance to tyrosine kinase inhibitors (TKIs, e.g., sorafenib and lenvatinib) presents a significant hurdle for hepatocellular carcinoma (HCC) treatment, underscoring the need to decipher the underlying mechanisms for improved therapeutic strategies. MicroRNAs (miRNAs) have emerged as critical modulators in HCC progression and TKI [...] Read more.
Resistance to tyrosine kinase inhibitors (TKIs, e.g., sorafenib and lenvatinib) presents a significant hurdle for hepatocellular carcinoma (HCC) treatment, underscoring the need to decipher the underlying mechanisms for improved therapeutic strategies. MicroRNAs (miRNAs) have emerged as critical modulators in HCC progression and TKI resistance. In this study, we report a positive correlation between the expression levels of a tumor suppressor miRNA, miR-142-3p, and increased sensitivity to sorafenib and lenvatinib, supported by clinical data from the BIOSTORM HCC cohort. Overexpression of miR-142-3p in TKI-resistant HCC cells significantly inhibited proliferation and colony formation, induced apoptosis, increased cell cycle arrest at the G2 phase, and reduced migration and invasion by reversing epithelial–mesenchymal transition. Notably, combining miR-142-3p with lenvatinib synergistically inhibited growth in both inherent and acquired TKI-resistant HCC cells by modulating critical signaling pathways, including STAT3, PI3K/AKT, MAPK, YAP1, and by impeding autophagic influx. RNA-sequencing of a TKI-resistant HCC cell line ± miR-142-3p overexpression identified YES1 and TWF1 as direct downstream target genes of miR-142-3p, both of which are key genes associated with drug resistance in HCC. Small interfering RNA (siRNA)-mediated knockdown of these genes mirrored the antitumor effects of miR-142-3p and enhanced TKI sensitivity, with YES1 knockdown decreasing YAP1 phosphorylation, and TWF1 knockdown inhibiting autophagy. Collectively, these findings indicate that restoring miR-142-3p expression or targeting its downstream effectors YES1 and TWF1 offers a promising strategy to overcome drug resistance and improve therapeutic outcome in HCC. Full article
(This article belongs to the Special Issue Regulation by Non-Coding RNAs 2025)
Show Figures

Figure 1

17 pages, 3053 KiB  
Article
Therapeutic Effect of Lebanese Cannabis Oil Extract in the Management of Sodium Orthovanadate-Induced Nephrotoxicity in Rats
by Christabel Habchy, Alia Khalil, Wassim Shebaby, Diana Bylan, Marissa El Hage, Mona Saad, Selim Nasser, Wissam H. Faour and Mohamad Mroueh
Int. J. Mol. Sci. 2025, 26(9), 4142; https://doi.org/10.3390/ijms26094142 - 27 Apr 2025
Viewed by 447
Abstract
Sodium orthovanadate is a non-selective protein tyrosine phosphatase inhibitor that can cause several types of kidney injury, including glomerulosclerosis, inflammation, and tubular damage. Cannabis is widely known for its medicinal use, and several studies have demonstrated its anti-diabetic and anti-inflammatory properties. The current [...] Read more.
Sodium orthovanadate is a non-selective protein tyrosine phosphatase inhibitor that can cause several types of kidney injury, including glomerulosclerosis, inflammation, and tubular damage. Cannabis is widely known for its medicinal use, and several studies have demonstrated its anti-diabetic and anti-inflammatory properties. The current study investigated the therapeutic effect of Lebanese cannabis oil extract (COE) against sodium orthovanadate-induced nephrotoxicity both in vitro and in vivo. Sprague Dawley male rats were intraperitoneally injected with 10 mg/kg sodium orthovanadate for 10 days followed by 5 mg/kg; 10 mg/kg; or 20 mg/kg intraperitoneal injection of cannabis oil extract, starting on day 4 until day 10. The body weight of the rats was monitored during the study, and clinical parameters, including serum urea, creatinine, and electrolytes, as well as kidney and heart pathology, were measured. Conditionally immortalized cultured rat podocytes were exposed to either sodium orthovanadate or selective phosphatase inhibitors, including DUSPi (DUSP1/6 inhibitor) and SF1670 (PTEN inhibitor), in the presence or absence of cannabis oil extract. MTS and an in vitro scratch assay were used to assess podocyte cell viability and migration, respectively. Western blot analysis was used to evaluate the phosphorylation levels of AKT and p38 MAPK. Rats injected with sodium orthovanadate displayed a marked reduction in body weight and an increase in serum creatinine and urea in comparison to the control non-treated group. All doses of COE caused a significant decrease in serum urea, with a significant decrease in serum creatinine observed at a dose of 20 mg/kg. Moreover, the COE treatment of rats injected with orthovanadate (20 mg/kg) showed a marked reduction in renal vascular dilatation, scattered foci of acute tubular necrosis, and numerous mitoses in tubular cells compared to the sodium orthovanadate-treated group. The cell viability assay revealed that COE reversed cytotoxicity induced by sodium orthovanadate and specific phosphatase inhibitors (DUSPi and SF1670) in rat podocytes. The in vitro scratch assay showed that COE partially restored the migratory capacity of podocytes incubated with DUSPi and SF1670. Time-course and dose-dependent experiments showed that COE (1 μg/mL) induced a significant increase in phospho-(S473)-AKT, along with a decrease in phospho (T180 + Y182) P38 levels. The current results demonstrated that Lebanese cannabis oil possesses important kidney protective effects against sodium orthovanadate-induced renal injury. Full article
(This article belongs to the Special Issue Molecular Advances on Cannabinoid and Endocannabinoid Research 2.0)
Show Figures

Figure 1

23 pages, 2524 KiB  
Article
Prolactin Mediates Distinct Time Course Regulation of Tyrosine Hydroxylase Phosphorylation and Gene Expression in Tuberoinfundibular Dopaminergic Neurons of Female Rats
by Philip J. Jensik and Lydia A. Arbogast
Cells 2025, 14(9), 642; https://doi.org/10.3390/cells14090642 - 27 Apr 2025
Viewed by 519
Abstract
Prolactin (PRL) regulates its own secretion by short-loop feedback to tuberoinfundibular dopaminergic (TIDA) neurons. PRL-induced cellular mechanisms in the regulation of tyrosine hydroxylase (TH) are not completely understood. The objectives were to (1) examine PRL-induced, time-dependent hypothalamic changes in JAK2-STAT5B signaling, TH activity, [...] Read more.
Prolactin (PRL) regulates its own secretion by short-loop feedback to tuberoinfundibular dopaminergic (TIDA) neurons. PRL-induced cellular mechanisms in the regulation of tyrosine hydroxylase (TH) are not completely understood. The objectives were to (1) examine PRL-induced, time-dependent hypothalamic changes in JAK2-STAT5B signaling, TH activity, TH phosphorylation state and Th mRNA levels, and (2) evaluate direct influences of PRLR-STAT5B signaling on Th promoter activity. Ovariectomized rats were administered ovine PRL. JAK2 and STAT5 phosphorylation in the mediobasal hypothalamus peaked at 15 and 30–60 min, respectively. TH Ser40 phosphorylation in the median eminence was increased between 2 and 72 h, correlating with increased dihydroxyphenylalanine (DOPA) accumulation. Th mRNA levels in TIDA neurons were unchanged up to 72 h but elevated by 7 days. PRL did not alter Th promoter activity in CAD cells, and STAT5B did not bind three putative Gamma Interferon Activation Sites (GAS) elements. We conclude that PRL initiates an integrated cascade of cellular mechanisms in TIDA neurons, including JAK2-STAT5B activation, TH Ser40 phosphorylation coupled to increased TH activity, followed by a delayed rise in Th gene expression. PRL-induced changes in Th gene expression are not the result of STAT5-mediated transactivation but likely result from enduring changes in TIDA neuronal activity. Full article
Show Figures

Figure 1

17 pages, 9016 KiB  
Article
Interaction of Serratia proteamaculans with Integrins Activates Invasion-Promoting Signaling Pathways
by Olga Tsaplina
Int. J. Mol. Sci. 2025, 26(9), 3955; https://doi.org/10.3390/ijms26093955 - 22 Apr 2025
Viewed by 336
Abstract
The opportunistic bacteria Serratia proteamaculans are able to penetrate human cells. It was previously shown that the bacterial surface protein OmpX promotes bacterial adhesion. In addition, infection with bacteria that synthesize the OmpX protein enhances the expression of EGFR and β1 integrin involved [...] Read more.
The opportunistic bacteria Serratia proteamaculans are able to penetrate human cells. It was previously shown that the bacterial surface protein OmpX promotes bacterial adhesion. In addition, infection with bacteria that synthesize the OmpX protein enhances the expression of EGFR and β1 integrin involved in the invasion of S. proteamaculans. Therefore, this work was aimed at determining the mechanism of interaction of S. proteamaculans with receptors of eukaryotic cells. Both integrin-linked kinase (ILK) and EGFR tyrosine kinase have been shown to be involved in the invasion of these bacteria. During infection, EGFR is first phosphorylated at Tyr845, which is carried out by c-Src kinase transmitting a signal from nearby receptors. The S. proteamaculans invasion depends on c-Src and focal adhesion kinase (FAK), which can both transmit a signal between β1 integrin and EGFR and participate in cytoskeletal rearrangements. These bacteria have been shown to interact with integrin not through the RGD binding site, and integrin binding to the RGD peptide enhances adhesion, invasion, and expression of α5 and β1 integrin subunits in response to infection. On the other hand, bacterial adhesion and increased expression of integrins during infection are caused by OmpX. Thus, OmpX interacts with integrins, and the participation of the α5 and β1 integrin subunits in the S. proteamaculans invasion allows us to assume that the receptor of OmpX is α5β1 integrin. Full article
(This article belongs to the Special Issue Parasite Biology and Host-Parasite Interactions: 2nd Edition)
Show Figures

Figure 1

9 pages, 2008 KiB  
Case Report
Pediatric Cutaneous Anaplastic Lymphoma Kinase-Positive Histiocytosis with DCTN1::ALK Fusion: A Case Report and Literature Search
by Kristóf Levente Korpás, Attila Mokánszki, Lívia Beke, Gábor Méhes and Yi-Che Chang Chien
Diagnostics 2025, 15(9), 1057; https://doi.org/10.3390/diagnostics15091057 - 22 Apr 2025
Viewed by 722
Abstract
Background and Clinical Significance: Anaplastic lymphoma kinase (ALK)-positive histiocytosis is a relatively novel entity, affecting single or multiple organ systems; it is characterized by aggregates of neoplastic cells of the histiocytic lineage, harboring molecular alterations in the ALK gene and exhibiting excellent [...] Read more.
Background and Clinical Significance: Anaplastic lymphoma kinase (ALK)-positive histiocytosis is a relatively novel entity, affecting single or multiple organ systems; it is characterized by aggregates of neoplastic cells of the histiocytic lineage, harboring molecular alterations in the ALK gene and exhibiting excellent response to systemic tyrosine kinase inhibitors. Case presentation: Herein, we present a pediatric case with cutaneous-only involvement: the 6-month-old male patient presented with an elevated, tan-colored lesion on his left forearm. Following surgical excision, histopathological evaluation reported spindle cells with wide eosinophilic cytoplasm and Touton-type giant cells. The tumor cells were positive for CD163, ALK, phosphorylated ERK, and cyclin D1. Fluorescent in situ hybridization revealed ALK rearrangement, whereas, upon next-generation sequencing, a DCTN1::ALK fusion was identified. Conclusion: Our case serves as a great addition to the limited number of cases reported in the literature, and it represents the first published pediatric case with the rare DCTN1::ALK fusion. The novelty of this genetic alteration and the lack of knowledge about its potential effects on the clinical aspects of ALK-positive histiocytosis highlight the importance of ancillary molecular testing, when available. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

14 pages, 2886 KiB  
Article
Crizotinib Inhibits Viability, Migration, and Invasion by Suppressing the c-Met/PI3K/Akt Pathway in the Three-Dimensional Bladder Cancer Spheroid Model
by Byeongdo Song, Danhyo Kim, Jin-Nyoung Ho, Van-Hung Le and Sangchul Lee
Curr. Oncol. 2025, 32(4), 236; https://doi.org/10.3390/curroncol32040236 - 17 Apr 2025
Viewed by 380
Abstract
We aimed to evaluate the therapeutic potential of crizotinib, a broad-spectrum tyrosine kinase inhibitor against bladder cancer (BC) cells, based on a three-dimensional (3D) cell culture system. After proliferating cell masses (spheroids) using T24 cisplatin-naïve and T24R2 cisplatin-resistant human BC cell lines, the [...] Read more.
We aimed to evaluate the therapeutic potential of crizotinib, a broad-spectrum tyrosine kinase inhibitor against bladder cancer (BC) cells, based on a three-dimensional (3D) cell culture system. After proliferating cell masses (spheroids) using T24 cisplatin-naïve and T24R2 cisplatin-resistant human BC cell lines, the spheroids were exposed to various crizotinib concentrations in order to derive an ideal crizotinib concentration to suppress cell survival, migration, and invasion. Crizotinib suppressed cell proliferation, migration, and invasion in both T24 and T24R2 BC cell lines under a 3D spheroid model, which was more appropriate than the conventional two-dimensional cell culture model. Real-time quantitative polymerase chain reaction analysis revealed a reduced expression of E-cadherin and an enhanced expression of vimentin, suggesting EMT suppression and the subsequent suppression of tumor aggressiveness following crizotinib administration. Meanwhile, the expressions of apoptosis-related genes increased. Western blot analysis revealed that the expression levels of phosphorylated mesenchymal–epithelial transition factor (c-Met) and phosphorylated Akt decreased following crizotinib administration, suggesting that the antitumor effect of crizotinib can be associated with the inhibition of the phosphorylated activation of the c-Met/PI3K/Akt pathway. Crizotinib showed a potential antitumor effect on both cisplatin-naïve and cisplatin-resistant human BC cells, likely through c-Met-induced PI3K/Akt pathway inhibition. Full article
(This article belongs to the Section Genitourinary Oncology)
Show Figures

Figure 1

20 pages, 1136 KiB  
Review
Kinase-Targeted Therapies for Glioblastoma
by Maria Salbini, Alessia Formato, Maria Patrizia Mongiardi, Andrea Levi and Maria Laura Falchetti
Int. J. Mol. Sci. 2025, 26(8), 3737; https://doi.org/10.3390/ijms26083737 - 15 Apr 2025
Viewed by 442
Abstract
Protein phosphorylation and dephosphorylation are key mechanisms that regulate cellular activities. The addition or removal of phosphate groups by specific enzymes, known as kinases and phosphatases, activates or inhibits many enzymes and receptors involved in various cell signaling pathways. Dysregulated activity of these [...] Read more.
Protein phosphorylation and dephosphorylation are key mechanisms that regulate cellular activities. The addition or removal of phosphate groups by specific enzymes, known as kinases and phosphatases, activates or inhibits many enzymes and receptors involved in various cell signaling pathways. Dysregulated activity of these enzymes is associated with various diseases, predominantly cancers. Synthetic and natural single- and multiple-kinase inhibitors are currently being used as targeted therapies for different tumors, including glioblastoma. Glioblastoma IDH-wild-type is the most aggressive brain tumor in adults, with a median overall survival of 15 months. The great majority of glioblastoma patients present mutations in receptor tyrosine kinase (RTK) signaling pathways responsible for tumor initiation and/or progression. Despite this, the multi-kinase inhibitor regorafenib has only recently been approved for glioblastoma patients in some countries. In this review, we analyze the history of kinase inhibitor drugs in glioblastoma therapy. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Graphical abstract

21 pages, 722 KiB  
Review
SnRK2s: Kinases or Substrates?
by Yunmin Wei, Linzhu Peng and Xiangui Zhou
Plants 2025, 14(8), 1171; https://doi.org/10.3390/plants14081171 - 9 Apr 2025
Viewed by 578
Abstract
Throughout their life cycle, plants persistent through environmental adversities that activate sophisticated stress-signaling networks, with protein kinases serving as pivotal regulators of these responses. The sucrose non-fermenting-1-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase, orchestrates stress adaptation by phosphorylating downstream targets to [...] Read more.
Throughout their life cycle, plants persistent through environmental adversities that activate sophisticated stress-signaling networks, with protein kinases serving as pivotal regulators of these responses. The sucrose non-fermenting-1-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase, orchestrates stress adaptation by phosphorylating downstream targets to modulate gene expression and physiological adjustments. While SnRK2 substrates have been extensively identified, the existing literature lacks a systematic classification of these components and their functional implications. This review synthesizes recent advances in characterizing SnRK2-phosphorylated substrates in Arabidopsis thaliana, providing a mechanistic framework for their roles in stress signaling and developmental regulation. Furthermore, we explore the understudied paradigm of SnRK2 undergoing multilayered post-translational modifications (PTMs), including phosphorylation, ubiquitination, SUMOylation, S-nitrosylation, sulfation (S-sulfination and tyrosine sulfation), and N-glycosylation. These PTMs collectively fine-tune SnRK2 stability, activity, and subcellular dynamics, revealing an intricate feedback system that balances kinase activation and attenuation. By integrating substrate networks with regulatory modifications, this work highlights SnRK2’s dual role as both a phosphorylation executor and a PTM-regulated scaffold, offering new perspectives for engineering stress-resilient crops through targeted manipulation of SnRK2 signaling modules. Full article
Show Figures

Figure 1

21 pages, 5168 KiB  
Article
Type One Protein Phosphatase 4aD Negatively Regulates Cotton (Gossypium hirsutum) Salt Tolerance by Inhibiting the Phosphorylation of Kinases That Respond to Abscisic Acid
by Pengfei Cao, Miao Zhao, Jinxin Liu, Mingwei Du, Xiaoli Tian, Fangjun Li and Zhaohu Li
Int. J. Mol. Sci. 2025, 26(8), 3471; https://doi.org/10.3390/ijms26083471 - 8 Apr 2025
Viewed by 309
Abstract
Salinity is one of the major factors limiting the growth, development, and yield of cotton. Although the mechanisms of cotton tolerance to salt stress have been studied, the regulatory roles and mechanisms of protein kinases and phosphatases in cotton salt response remain poorly [...] Read more.
Salinity is one of the major factors limiting the growth, development, and yield of cotton. Although the mechanisms of cotton tolerance to salt stress have been studied, the regulatory roles and mechanisms of protein kinases and phosphatases in cotton salt response remain poorly understood. Here, we identify Type One Protein Phosphatase 4aD (GhTOPP4aD), belonging to the Type One Protein Phosphatase (TOPP) family, as a negative regulator in cotton salt stress response. To reveal the post-translational modification mechanism by which GhTOPP4aD regulates salt stress response in cotton, phosphoproteome analysis was performed. A total of 6055 phosphoproteins with 12,608 phosphosites were identified. In VIGS-Ctrl plants, there were 935 upregulated and 35 downregulated phosphoproteins, while there were 1026 upregulated and 89 downregulated phosphoproteins in VIGS-GhTOPP4aD plants after NaCl treatment. Moreover, a class of tyrosine kinases responsive to abscisic acid (ABA) was significantly enriched at upregulated, differentially phosphorylated sites that were induced by NaCl in GhTOPP4aD-silenced plants, suggesting that these proteins could be regulated by dephosphorylation mediated by GhTOPP4aD in response to salt stress. Among them, Raf-like Kinase 36 (GhRAF36), FERONIA (GhFER), and Lysin Motif-containing Receptor-like Kinase 3 (GhLYK3) interacted with GhTOPP4aD and their kinase activities were inhibited by GhTOPP4aD. VIGS-GhRAF36, VIGS-GhFER, and VIGS-GhLYK3 plants were sensitive to salt stress, suggesting that these kinases may play important roles in the regulation of cotton salt stress response mediated by GhTOPP4aD. These studies provide new insights into the mechanisms of cotton salt stress tolerance and the potential molecular targets for breeding salt-tolerant cotton varieties. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop