Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ultra-deep foundation pit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5547 KB  
Article
Study of Performance and Engineering Application of D-RJP Jet Grouting Technology in Anchorage Foundation Reinforcement for Deep Suspension Bridge Excavations
by Xiaoliang Zhu, Wenqing Zhao, Sheng Fang, Junchen Zhao, Guoliang Dai, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(16), 8985; https://doi.org/10.3390/app15168985 - 14 Aug 2025
Viewed by 320
Abstract
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground [...] Read more.
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground improvement. Its effectiveness is systematically validated through a case study of the South Anchorage Foundation Pit for the North Channel Bridge of the Zhangjinggao Yangtze River Bridge. The D-RJP method led to the successful construction of a composite foundation within the soft soil that satisfies the permeability coefficient, interface friction coefficient, bearing capacity, and shear strength requirements, significantly improving the geotechnical performance of the anchorage foundation. A series of field experiments were conducted to optimize the critical construction parameters, including the lifting speed, water–cement ratio, and stroke spacing. Core sampling and laboratory testing revealed the grout columns to have good structural integrity. The unconfined compressive strength of the high-pressure jet grout columns reached 5.45 MPa in silty clay layers and 8.21 MPa in silty sand layers. The average permeability coefficient ranged from 1.67 × 10−7 to 2.52 × 10−7 cm/s. The average density of the columns was 1.66 g/cm3 in the silty clay layer and 2.08 g/cm3 in the silty sand layer. The cement content in the return slurry varied between 18% and 27%, with no significant soil squeezing effect observed. The foundation interface friction coefficient ranged from 0.44 to 0.52. After excavation, the composite foundation formed by D-RJP columns was subjected to static load and direct shear testing. The results showed a characteristic bearing capacity value of 1200 kPa, the internal friction angle exceeded 24.23°, and the cohesion exceeded 180 kPa. This study successfully verifies the feasibility of applying D-RJP technology to construct high-performance artificial composite foundations in complex strata characterized by deep soft soils and high-pressure confined groundwater, providing valuable technical references and practical insights for similar ultra-deep foundation pit projects involving suspension bridge anchorages. Full article
Show Figures

Figure 1

30 pages, 19640 KB  
Article
Analysis of Deformation of Deep and Large Foundation Pit Support Structure and Impact on Neighbouring Buildings in Complex Environments
by Chao Guo, Xiaodong Yang, Chengchao Guo and Pengfei Li
Buildings 2025, 15(9), 1435; https://doi.org/10.3390/buildings15091435 - 24 Apr 2025
Viewed by 603
Abstract
The development trend of urban underground space towards deep and large three-dimensional foundation pit projects in complex environments faces the challenges of deformation and instability of supporting structures, strong sensitivity of the surrounding environment, and significant limitations of the traditional design theory. Based [...] Read more.
The development trend of urban underground space towards deep and large three-dimensional foundation pit projects in complex environments faces the challenges of deformation and instability of supporting structures, strong sensitivity of the surrounding environment, and significant limitations of the traditional design theory. Based on the ultra-long/deep foundation pit project at the Shenzhen Airport East Station, a refined three-dimensional finite element simulation is used to systematically study the deformation mechanism of the supporting structures of deep and large foundation pits under a complex environment and investigate the influence on the neighbouring buildings. In this study, a three-dimensional finite element model is constructed considering the soil–structure coupling effect, and the mechanical response law of the foundation pit under the compliant–inverse combination method is revealed. Based on ABAQUS 6.14, a 10 m wide strip-shaped model of the central island area and an environmental risk source model including an underground station and group pile foundation are established. The analysis shows the following: the lateral shift in the ground wall is distributed in a ‘convex belly’ shape, with a maximum displacement of 29.98 mm; the pit bottom is raised in the shape of the bottom of a rebutted pot, and the settlement behind the wall has an effect ranging up to 3.8 times the depth of the excavation; the lateral shift in the side wall of the neighbouring underground station and the differential settlement of the group piles validate the predictive ability of the model on the complex-environment coupling effect. The research results can provide guidance for the design and construction of support structure projects and similar projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

15 pages, 5681 KB  
Article
Comprehensive Monitoring Method for Diaphragm Wall Deformation Combining Distributed and Point Monitoring in Key Areas
by Chun Lan, Hui Zhang, Guangqing Hu, Feng Han and Heming Han
Sensors 2025, 25(7), 2232; https://doi.org/10.3390/s25072232 - 2 Apr 2025
Viewed by 733
Abstract
The diaphragm wall plays an important role in the safe construction of foundation pits, and it is crucial to accurately monitor its deformation in real time. Traditional monitoring methods often face challenges in achieving distributed monitoring, and the cost of using fiber optic [...] Read more.
The diaphragm wall plays an important role in the safe construction of foundation pits, and it is crucial to accurately monitor its deformation in real time. Traditional monitoring methods often face challenges in achieving distributed monitoring, and the cost of using fiber optic sensors for real-time and distributed monitoring can be prohibitively high. To improve the monitoring efficiency and accuracy of the deep deformation of the diaphragm wall, this paper proposes a hybrid monitoring method that combines ultra-weak fiber Bragg grating (UWFBG) technology and traditional FBG sensors. This distributed–discrete optical fiber monitoring approach allows for continuous, high-resolution data collection along the diaphragm wall while providing targeted, real-time measurements at critical locations. Fiber optic crack testing of concrete beam structures was carried out to verify the method of evaluating the health status of structures using distributed fiber optic data. An engineering case study was developed to validate the feasibility of this method. The results demonstrated that the hybrid approach effectively captures the overall deformation distribution of the diaphragm wall while enabling real-time monitoring of key areas, including the detection of crack initiation and propagation. The proposed method offers a significant advancement in deformation monitoring, providing enhanced accuracy, spatial coverage, and the ability to detect both macro-scale trends and micro-scale anomalies, which is particularly beneficial for complex underground structures. Full article
Show Figures

Figure 1

22 pages, 5895 KB  
Article
Hydro-Mechanical Numerical Analysis of a Double-Wall Deep Excavation in a Multi-Aquifer Strata Considering Soil–Structure Interaction
by Yinhang Zhu, Weidong Wang, Zhonghua Xu, Jinjian Chen and Ji Zhang
Buildings 2025, 15(6), 989; https://doi.org/10.3390/buildings15060989 - 20 Mar 2025
Cited by 2 | Viewed by 478
Abstract
In order to exploit the deep underground space, the construction of ultra-deep excavation in Shanghai is growing rapidly. In multi-aquifer strata, deep excavations typically require dewatering of confined aquifers to ensure engineering safety. However, existing studies have seldom conducted in-depth analysis on the [...] Read more.
In order to exploit the deep underground space, the construction of ultra-deep excavation in Shanghai is growing rapidly. In multi-aquifer strata, deep excavations typically require dewatering of confined aquifers to ensure engineering safety. However, existing studies have seldom conducted in-depth analysis on the influence of the soil parameters and construction measures on the deformation of retaining structures. In this study, a three-dimensional hydro-mechanical numerical model was developed to evaluate the performances of excavation and dewatering of the foundation pit. The model was validated by comparing the calculated and measured wall deflections and groundwater drawdowns of a 45 m ultra-deep double-wall excavation in Shanghai. According to the characteristics of soil stratification and construction activities, three parameters were selected for subsequent analysis, including the hydraulic conductivity of aquitard below the bottom of the pit, the pumping rate in the second confined aquifer and the construction of TRD wall. The stress distributions on both sides of the diaphragm wall were examined to elucidate the deformation mechanism. The results indicate that the aquitard hydraulic conductivity directly affects the effective stress of the overlying aquifer, which plays a crucial role in resisting wall deflection. An increase in the hydraulic conductivity leads to smaller effective stress, greater wall deflection and larger ground settlement. While an appropriately increased pumping rate enhances effective stress, over-pumping may induce excessive wall deflection at depth and disproportionate ground settlement. The TRD wall is quite useful in terms of waterproofing but the effect on deformation control is limited. The findings of this study provide valuable insights for engineering practices and the optimization of deep excavation construction measures in multi-aquifer strata. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

18 pages, 12870 KB  
Article
Numerical Simulation on an Ultra-Large Seven-Ring Internal Support System Considering the Effects of Soil–Structure Interaction and Temperature
by Hexiang Hu, Yu Tian, Neimeng Zheng, Xiuli Du, Haishan Guo and Zhonghua Xu
Buildings 2025, 15(3), 463; https://doi.org/10.3390/buildings15030463 - 2 Feb 2025
Cited by 1 | Viewed by 609
Abstract
The foundation pit area of Kunming International Comprehensive Transportation Hub is 56,800 m2, and the excavation depth ranges from 18 m to 25 m. Because the surrounding environment is very complex, the foundation pit is supported by an underground continuous wall [...] Read more.
The foundation pit area of Kunming International Comprehensive Transportation Hub is 56,800 m2, and the excavation depth ranges from 18 m to 25 m. Because the surrounding environment is very complex, the foundation pit is supported by an underground continuous wall and three layers of internal support system with seven rings. The force of this internal support system is coupled integrally, and the number of rings is the highest in the world at present. In this work, a finite element model considering the interaction between soil and the retaining structure is established. The Hardening Soil model with small strain stiffness is used to simulate and analyze the whole excavation process of the foundation pit. Considering the ultra-large plane size of the foundation pit, we cannot ignore the temperature effect, so the deformation of the underground continuous wall and the force of the internal support system under seasonal temperature variation are investigated. By comparing numerical simulation results with field measurements, the deformation of the ultra-large seven-ring internal support system, the deformation of the surrounding soil, and the axial force of the supports are analyzed. The results show that the finite element simulation agrees well with the measured data. This work provides a reliable method for analyzing ultra-large deep foundation pits. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

22 pages, 4457 KB  
Article
Sensitivity Analysis and Application of the Shanghai Model in Ultra-Deep Excavation Engineering
by Aoyang Ma, Weiyi Wang, Wenxuan Zhu, Zhonghua Xu and Guanlin Ye
Geotechnics 2025, 5(1), 6; https://doi.org/10.3390/geotechnics5010006 - 13 Jan 2025
Cited by 1 | Viewed by 893
Abstract
In deep foundation pit engineering, the soil undergoes a complex stress path, encompassing both loading and unloading phases. The Shanghai model, an advanced constitutive model, effectively accounts for the soil’s deformation characteristics under these varied stress paths, which is essential for accurately predicting [...] Read more.
In deep foundation pit engineering, the soil undergoes a complex stress path, encompassing both loading and unloading phases. The Shanghai model, an advanced constitutive model, effectively accounts for the soil’s deformation characteristics under these varied stress paths, which is essential for accurately predicting the horizontal displacement and surface settlement of the foundation pit’s enclosure structure. This model comprises eight material parameters, three initial state parameters, and one small-strain parameter. Despite its sophistication, there is a scarcity of numerical studies exploring the correlation between these parameters and the deformation patterns in foundation pit engineering. This paper initially establishes the superiority of the Shanghai model in ultra-deep circular vertical shaft foundation pit engineering by examining a case study of a nursery circular ultra-deep vertical shaft foundation pit, which is part of the Suzhou River section’s deep drainage and storage pipeline system pilot project in Shanghai. Subsequently, utilizing an idealized foundation pit engineering model, a comprehensive sensitivity analysis of the Shanghai model’s multi-parameter values across their full range was performed using orthogonal experiments. The findings revealed that the parameter most sensitive to the lateral displacement of the underground continuous wall was κ, with an increase in κ leading to a corresponding increase in displacement. Similarly, the parameter most sensitive to surface subsidence outside the pit was λ, with an increase in λ resulting in greater subsidence. Lastly, the parameter most sensitive to soil uplift at the bottom of the pit was also κ, with an increase in κ leading to more significant uplift. Full article
Show Figures

Figure 1

21 pages, 7600 KB  
Article
A Multi-Objective Prediction XGBoost Model for Predicting Ground Settlement, Station Settlement, and Pit Deformation Induced by Ultra-Deep Foundation Construction
by Guangkai Huang, Zhijian Liu, Yajian Wang and Yuyou Yang
Buildings 2024, 14(9), 2996; https://doi.org/10.3390/buildings14092996 - 21 Sep 2024
Cited by 8 | Viewed by 2069
Abstract
Building a deep foundation pit in urban centers frequently confronts issues such as closeness to structures, high excavation depths, and extended exposure durations, making monitoring and prediction of the settlement and deformation of neighboring buildings critical. Machine learning and deep learning models are [...] Read more.
Building a deep foundation pit in urban centers frequently confronts issues such as closeness to structures, high excavation depths, and extended exposure durations, making monitoring and prediction of the settlement and deformation of neighboring buildings critical. Machine learning and deep learning models are more popular than physical models because they can handle dynamic process data. However, these models frequently fail to establish an appropriate balance between accuracy and generalization capacity when dealing with multi-objective prediction. This work proposes a multi-objective prediction model based on the XGBoost algorithm and introduces the Random Forest Bayesian Optimization method for hyperparameter self-optimization and self-adaptation in the prediction process. This model was trained with monitoring data from a deep foundation pit at Luomashi Station of Chengdu Metro Line 18, which are characterized by a sand and pebble stratum, cut-and-cover construction, and a depth of 45.5 m. Input data of the model included excavation rate, excavation depth, construction time, shutdown time, and dewatering; output data included settlement, ground settlement, and pit deformation at an operating metro station only 5.7 m adjacent to the ongoing pits. The training effectiveness of the model was validated through its high R2 scores in both training and test sets, and its generalization ability and transferability were evaluated through the R2 calculated by deploying it on adjacent monitoring data (new data). The multi-objective prediction model proposed in this paper will be promising for monitoring the data processing and prediction of settlement of surrounding buildings for ultra-deep foundation pit engineering. Full article
(This article belongs to the Special Issue Research on Intelligent Geotechnical Engineering)
Show Figures

Figure 1

22 pages, 25739 KB  
Article
Study on the Impact of Deep Foundation Pit Construction on Nearby Elevated Structures—Case Study
by Junzhou Huang, Jun Yan, Kai Guo, Xingyue Yang, Sheng Peng and Cai Wu
Buildings 2024, 14(8), 2541; https://doi.org/10.3390/buildings14082541 - 18 Aug 2024
Cited by 4 | Viewed by 2277
Abstract
Urbanization and population concentration in China’s major cities drive high land utilization demands, affecting nearby bridges during underground construction. Foundation pit construction alters the internal forces, deformation, and displacement of bridge piles. To understand these impacts and assess excavation support rationality, a case [...] Read more.
Urbanization and population concentration in China’s major cities drive high land utilization demands, affecting nearby bridges during underground construction. Foundation pit construction alters the internal forces, deformation, and displacement of bridge piles. To understand these impacts and assess excavation support rationality, a case study was conducted on an ultra-deep foundation pit near an elevated ring road bridge in Wuhan. Considering the engineering geological conditions of the project site, construction sequence, and traffic load on the bridge, a three-dimensional finite element model was established to simulate the impact of foundation pit excavation on the elevated structure. And through an analysis of tracked monitoring data from the construction site, comparisons were also made with the simulation results. The findings of this case study indicated that throughout the entire construction phase of the foundation pit, the maximum horizontal and vertical displacements of the bridge foundation structure caused by the construction are 2.98 mm and −1.75 mm, respectively; the maximum change rate of the bending moment in the bridge structure due to the foundation pit construction is 6.3%, while the change in the axial forces is small, and completely within the safety control standards for bridge structure displacement. By analyzing the monitoring data over three stages within one year after the completion of the foundation pit, it is shown that the bridge structure gradually tends to stabilize. Additionally, due to soil consolidation, its displacement shows uniform rebound and tends to stabilize. The research findings provide valuable reference points for the design and construction of similar deep foundation pit projects. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 3616 KB  
Article
Research on Deformation Safety Risk Warning of Super-Large and Ultra-Deep Foundation Pits Based on Long Short-Term Memory
by Yanhui Guo, Chengjin Li, Ming Yan, Rui Ma and Wei Bi
Buildings 2024, 14(5), 1464; https://doi.org/10.3390/buildings14051464 - 17 May 2024
Cited by 7 | Viewed by 1420
Abstract
This paper proposes transforming actual monitoring data into risk quantities and establishing a Long Short-Term Memory (LSTM) safety risk warning model for predicting the deformation of super-large and ultra-deep foundation pits in river–round gravel strata based on safety evaluation methods. Using this model, [...] Read more.
This paper proposes transforming actual monitoring data into risk quantities and establishing a Long Short-Term Memory (LSTM) safety risk warning model for predicting the deformation of super-large and ultra-deep foundation pits in river–round gravel strata based on safety evaluation methods. Using this model, short-term deformation predictions at various monitoring points of the foundation pits are made and compared with monitoring data. The results from the LSTM safety risk warning model indicate an absolute error range between the predicted deformation values and on-site monitoring values of −0.24 to 0.16 mm, demonstrating the model’s accuracy in predicting pit deformation. Additionally, calculations reveal that both the overall risk level based on on-site monitoring data and the overall safety risk level based on predicted data are classified as level four. The acceptance criteria for the overall risk level of the foundation pit are defined as “unacceptable and requiring decision-making”, with the risk warning control scheme being “requiring decision-making, formulation of control, and warning measures”. These research findings offer valuable insights for predicting and warning about safety risks in similar foundation pit engineering projects. Full article
Show Figures

Figure 1

22 pages, 20776 KB  
Article
Innovative Three-Row Pile Support System of Ultra-Deep Foundation Pit and Cooperative Construction Technology with Basement for High-Rise Tower Structures
by Yuxuan Zhu, Huilai Qin, Xiangping Zhang, Desheng Wei, Lei Zhai and Lixin Hu
Buildings 2024, 14(4), 1003; https://doi.org/10.3390/buildings14041003 - 4 Apr 2024
Cited by 3 | Viewed by 2991
Abstract
This paper proposes the structural design and calculation model of stepped three-row pile and verifies its antioverturning and antisliding stability, based on the Xinghe Yabao deep foundation pit project in Shenzhen, China. The three-row pile model is constructed using finite element software, and [...] Read more.
This paper proposes the structural design and calculation model of stepped three-row pile and verifies its antioverturning and antisliding stability, based on the Xinghe Yabao deep foundation pit project in Shenzhen, China. The three-row pile model is constructed using finite element software, and the force and deformation of the piles are analyzed. The influence of the direction of the prestressing anchors on the support effect of the three-row pile is investigated by simulating the prestressing anchors in three directions: oblique, horizontal, and vertical. The results show that the combined support effect of the oblique anchor and the three-row pile is the most effective, resulting in the smallest deformation, followed by the horizontal anchor, and the vertical anchor produces the largest deformation. Finally, the innovative construction method of the three-row pile removal and the basement top-down construction method is proposed. The three-dimensional model of the tower building and the basement is established by the finite element software to simulate the structural grading load and the cooperative construction of the supporting structure and the basement structure. The research results have greater engineering application value and significant economic benefits, which could provide reference and guidance for the design and construction of deep foundation pits in similar projects. Full article
(This article belongs to the Special Issue Advanced Structural Technology in Buildings)
Show Figures

Figure 1

18 pages, 6311 KB  
Article
Stability Analysis of Trench Wall for Diaphragm Wall in Ultra-Deep Circular Foundation Pit: A Comprehensive Investigation
by Qianwei Xu, Jinli Xie, Zili Sun, Linhai Lu and Hangfei Yu
Appl. Sci. 2023, 13(21), 12037; https://doi.org/10.3390/app132112037 - 4 Nov 2023
Cited by 5 | Viewed by 3914
Abstract
Circular diaphragm walls are increasingly being used in ultra-deep foundation pits due to their arch-shaped bearing system, which provides reasonable structural support. The trench walls that form the circular ground connection wall are typically double-angled in shape, and their stability analysis remains a [...] Read more.
Circular diaphragm walls are increasingly being used in ultra-deep foundation pits due to their arch-shaped bearing system, which provides reasonable structural support. The trench walls that form the circular ground connection wall are typically double-angled in shape, and their stability analysis remains a challenge. In this paper, an instability model for double-angled trench walls based on 3D sliding body analysis is proposed. The objective of this paper is to determine the minimum amount of slurry needed to maintain the integrity of the trench wall. The results show that the center of symmetry on the inside of the wall is the most vulnerable to damage, followed by the inside corner, and then the center and corner on the outside. The consideration of sliding bodies in overall and local stability calculations for double-angled trench wall shapes can provide a reasonable stability assessment. Full article
(This article belongs to the Topic Complex Rock Mechanics Problems and Solutions)
Show Figures

Figure 1

26 pages, 6461 KB  
Article
Application and Automatic Monitoring and Analysis of Hybrid Support Structure in Ultra-DEEP Foundation Pit Engineering in the Lanzhou Area under Complex Environmental Conditions
by Jian Wu, Shuaihua Ye, Zhiquan Wang and Dong Yang
Water 2023, 15(7), 1335; https://doi.org/10.3390/w15071335 - 28 Mar 2023
Cited by 16 | Viewed by 3538
Abstract
This paper takes the deep foundation pit project of Lanzhou Hospital of Traditional Chinese Medicine as the background. The design and construction of the foundation pit is relatively difficult due to the complex environment around the pit, the dense surrounding buildings, the complex [...] Read more.
This paper takes the deep foundation pit project of Lanzhou Hospital of Traditional Chinese Medicine as the background. The design and construction of the foundation pit is relatively difficult due to the complex environment around the pit, the dense surrounding buildings, the complex underground soil layer and the influence of groundwater on the pit. In order to detect problems in the construction process, the pit was monitored in real time through an automated monitoring system for the whole process of excavation and backfilling of the pit. The analysis of the actual monitoring data shows that: (i) the support scheme of bored pile + prestressed anchor cable support combined with concrete corner bracing can meet the design of this type of foundation pit without causing disturbance to the surrounding buildings; (ii) combined with the actual case of the influence of groundwater on the excavation process of the foundation pit, it proves that the real-time measurement by the robot can timely detect the safety hazards caused by external factors during the construction process of the foundation pit. The project is a very important one for deep pits and complex pits. This project provides a good reference case for deep foundation pits and foundation pit projects in complex environments. Full article
(This article belongs to the Special Issue Risk Management Technologies for Deep Excavations in Water-Rich Areas)
Show Figures

Figure 1

23 pages, 18804 KB  
Article
Experimental Study on Shear Strength Parameters of Round Gravel Soils in Plateau Alluvial-Lacustrine Deposits and Its Application
by Zhijun Kong, Yanhui Guo, Shilin Mao and Wei Zhang
Sustainability 2023, 15(5), 3954; https://doi.org/10.3390/su15053954 - 22 Feb 2023
Cited by 4 | Viewed by 3003
Abstract
The shear strength parameters of conglomerate soils are crucial to the stability analysis of foundation support when excavating and supporting ultra-deep foundation pits in the highland alluvial lacustrine layer. The difference in water content of conglomerate soils in different regions will directly affect [...] Read more.
The shear strength parameters of conglomerate soils are crucial to the stability analysis of foundation support when excavating and supporting ultra-deep foundation pits in the highland alluvial lacustrine layer. The difference in water content of conglomerate soils in different regions will directly affect the values of shear strength parameters. At the same time, more research on the shear strength of conglomerate soils under different water contents is required. In this study, a series of large-scale direct shear tests were carried out on the round gravel soil in the plateau alluvial-lacustrine deposit, and the round gravel soil’s shear strength curves under natural and saturated conditions and water content were obtained. The influence of different water content on the shear strength characteristics of the round gravel soil was discussed, and the shear strength parameters of the round gravel soil with different water content were used in the numerical simulation of ultra-deep foundation pit excavation and support. The stress and deformation laws of the foundation pit support were analyzed. The results show that the peak strength of the round gravel soil in the natural water content state appears between 30% and 45% of the shear displacement, while the peak strength in the saturated water content state appears around 45–55% of the shear displacement. The shear strength tends to be stable or slightly weakened with the increase of the shear displacement. The angle of internal friction and cohesion of round gravel soil in the natural water content state is greater than those in the saturated water content state. The simulation of the foundation excavation support shows that the shear strength parameter of the round gravel soil influences the force deformation of the support structure. The higher the water content of the round gravel soil, the more the shear strength parameter affects the soil displacement. The research results can provide some reference for optimizing project design parameters. Full article
(This article belongs to the Special Issue Advances in Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

29 pages, 10093 KB  
Article
Field Measurement and Numerical Study on the Effects of Under-Excavation and Over-Excavation on Ultra-Deep Foundation Pit in Coastal Area
by Jifei Cui, Zhenkun Yang and Rafig Azzam
J. Mar. Sci. Eng. 2023, 11(1), 219; https://doi.org/10.3390/jmse11010219 - 14 Jan 2023
Cited by 30 | Viewed by 3872
Abstract
An ultra-deep L-shape foundation pit in a coastal area has recently been constructed and monitored. The project overview, geological conditions, excavation sequence and monitoring scheme are introduced in detail. The deformation of the retaining structure and surrounding strata are analyzed in detail through [...] Read more.
An ultra-deep L-shape foundation pit in a coastal area has recently been constructed and monitored. The project overview, geological conditions, excavation sequence and monitoring scheme are introduced in detail. The deformation of the retaining structure and surrounding strata are analyzed in detail through the measured data and 3D numerical simulation. The results show that the exceptional performance of the current project is due to the combination of under-excavation and over-excavation during construction. The under-excavation procedure restrained the wall deflections at the middle part of the diaphragm wall, making the corner effects at the corresponding side inapparent. Both the under-excavation and over-excavation procedure can only influence the performance of the excavation in close proximity, while having negligible impacts on the normally excavated areas. Based on the results of this study, practical suggestions are given to improve the performance of similar excavations in the future. Full article
(This article belongs to the Special Issue Advances in Offshore Geotechnics)
Show Figures

Figure 1

Back to TopTop