Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = ultra-short-term photovoltaic power prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4947 KB  
Article
Nowcasting of Surface Solar Irradiance Based on Cloud Optical Thickness from GOES-16
by Yulu Yi, Zhuowen Zheng, Taotao Lv, Jiaxin Dong, Jie Yang, Zhiyong Lin and Siwei Li
Remote Sens. 2025, 17(16), 2861; https://doi.org/10.3390/rs17162861 - 17 Aug 2025
Viewed by 416
Abstract
Surface solar irradiance (SSI) is a critical factor influencing the power generation capacity of photovoltaic (PV) power plants. Dynamic changes in cloud cover pose significant challenges to the accurate nowcasting of SSI, which in turn directly affects the reliability and stability of renewable [...] Read more.
Surface solar irradiance (SSI) is a critical factor influencing the power generation capacity of photovoltaic (PV) power plants. Dynamic changes in cloud cover pose significant challenges to the accurate nowcasting of SSI, which in turn directly affects the reliability and stability of renewable energy systems. However, existing research often simplifies or overlooks changes in the optical and morphological characteristics of clouds, leading to considerable errors in SSI nowcasting. To address this limitation and improve the accuracy of ultra-short-term SSI forecasting, this study first forecasts changes in cloud optical thickness (COT) within the next 3 h based on a spatiotemporal long short-term memory model, since COT is the primary factor determining cloud shading effects, and then integrates the zenith and regional averages of COT, along with factors influencing direct solar radiation and scattered radiation, to achieve precise SSI nowcasting. To validate the proposed method, we apply it to the Albuquerque, New Mexico, United States (ABQ) site, where it yielded promising performance, with correlations between predicted and actual surface solar irradiance for the next 1 h, 2 h, and 3 h reaching 0.94, 0.92, and 0.92, respectively. The proposed method effectively captures the temporal trends and spatial patterns of cloud changes, avoiding simplifications of cloud movement trends or interference from non-cloud factors, thus providing a basis for power adjustments in solar power plants. Full article
Show Figures

Figure 1

30 pages, 4254 KB  
Article
Ultra-Short-Term Photovoltaic Power Prediction Based on Predictable Component Reconstruction and Spatiotemporal Heterogeneous Graph Neural Networks
by Yingjie Liu and Mao Yang
Energies 2025, 18(15), 4192; https://doi.org/10.3390/en18154192 - 7 Aug 2025
Viewed by 396
Abstract
Ultra-short-term PV power prediction (USTPVPP) results provide a basis for the development of intra-day rolling power generation plans. However, due to the feature information and the unpredictability of meteorology, the current ultra-short-term PV power prediction accuracy improvement still faces technical challenges. In this [...] Read more.
Ultra-short-term PV power prediction (USTPVPP) results provide a basis for the development of intra-day rolling power generation plans. However, due to the feature information and the unpredictability of meteorology, the current ultra-short-term PV power prediction accuracy improvement still faces technical challenges. In this paper, we propose a combined prediction framework that takes into account the reconfiguration of the predictable components of PV stations and the spatiotemporal heterogeneous maps. A circuit singular spectral decomposition (CISSD) intrinsic predictable component extraction method is adopted to obtain specific frequency components in sensitive meteorological variables, a mechanism based on radiation characteristics and PV power trend predictable component extraction and reconstruction is proposed to enhance power predictability, and a spatiotemporal heterogeneous graph neural network (STHGNN) combined with a Non-stationary Transformer (Ns-Transformer) combination architecture to achieve joint prediction for different PV components. The proposed method is applied to a PV power plant in Gansu, China, and the results show that the prediction method based on the proposed combined spatio-temporal heterogeneous graph neural network model combined with the proposed predictable component extraction achieves an average reduction of 6.50% in the RMSE, an average reduction of 2.50% in the MAE, and an average improvement of 11.93% in the R2 over the direct prediction method, respectively. Full article
(This article belongs to the Special Issue Advances on Solar Energy and Photovoltaic Devices)
Show Figures

Figure 1

29 pages, 9145 KB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 308
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

15 pages, 3636 KB  
Article
Prediction of Ultra-Short-Term Photovoltaic Power Using BiLSTM–Informer Based on Secondary Decomposition
by Ruoqi Zhang, Zishuo Xu, Shuangquan Liu, Kaixiang Fu and Jie Zhang
Energies 2025, 18(6), 1485; https://doi.org/10.3390/en18061485 - 18 Mar 2025
Viewed by 422
Abstract
Photovoltaic power generation as a green energy source is often used in power systems, but the volatility of PV output and randomness of the problem affect the stability of the power-grid power supply; so, for the problem of low prediction accuracy of photovoltaic [...] Read more.
Photovoltaic power generation as a green energy source is often used in power systems, but the volatility of PV output and randomness of the problem affect the stability of the power-grid power supply; so, for the problem of low prediction accuracy of photovoltaic power generation under different weather conditions, this paper proposes a Variational Mode Decomposition (VMD), combined with a Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) secondary decomposition method for the original signal decomposition, to reduce the signal volatility and reduce the complexity of feature mapping the PV data, followed by the use of a BiLSTM model to model the timing information of the decomposed IMF. Simultaneously, the Informer model predicts the components obtained from the secondary decomposition, and finally, the subsequence is reconstructed and superimposed to obtain the PV power prediction value. The results show that the RMSE and MAE of the proposed model are improved by up to 10.91% and 17.33% on the annual PV dataset, with high prediction accuracy and stability, which can effectively predict the ultra-short-term power of PV power plants. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 10564 KB  
Article
Ultra-Short-Term Solar Irradiance Prediction Using an Integrated Framework with Novel Textural Convolution Kernel for Feature Extraction of Clouds
by Lijie Wang, Xin Li, Ying Hao and Qingshan Zhang
Sustainability 2025, 17(6), 2606; https://doi.org/10.3390/su17062606 - 16 Mar 2025
Viewed by 695
Abstract
Solar irradiance is one of the main factors affecting photovoltaic power generation. The shielding effect of clouds on solar radiation is affected by both type and cover. Therefore, this paper proposes the use of textural features to represent the shielding effect of clouds [...] Read more.
Solar irradiance is one of the main factors affecting photovoltaic power generation. The shielding effect of clouds on solar radiation is affected by both type and cover. Therefore, this paper proposes the use of textural features to represent the shielding effect of clouds on solar radiation, and a novel textural convolution kernel of a convolutional neural network, based on grey-level co-occurrence matrix, is presented to extract the textural features of clouds. An integrated ultra-short-term solar irradiance prediction framework is then proposed based on feature extraction network, a clear sky model, and LSTM. The textural features are extracted from satellite cloud images, and the theoretical irradiance under clear sky conditions is calculated based on an improved ASHRAE model. The LSTM is trained with the textural features of clouds, theoretical irradiance, and NWP information. A case study using data from Wuwei PV station in northwest China indicate that the features extracted from the proposed textural convolution kernel are better than common convolution kernels in reflecting the shielding effect of clouds on solar irradiance, and integrating textural features of cloud with theoretical irradiance can lead to better performance in solar irradiance prediction. Thus, this study will help to forecast the output power of PV stations. Full article
Show Figures

Figure 1

19 pages, 983 KB  
Article
Ultra-Short-Term Photovoltaic Power Prediction Based on BiLSTM with Wavelet Decomposition and Dual Attention Mechanism
by Mingyang Liu, Xiaohuan Wang and Zhiwen Zhong
Electronics 2025, 14(2), 306; https://doi.org/10.3390/electronics14020306 - 14 Jan 2025
Cited by 3 | Viewed by 1189
Abstract
Photovoltaic power generation relies on sunlight conditions, and traditional prediction models find it difficult to capture the deep features of power data, resulting in low prediction accuracy. In addition, there are problems such as outliers and missing values in the data collected on [...] Read more.
Photovoltaic power generation relies on sunlight conditions, and traditional prediction models find it difficult to capture the deep features of power data, resulting in low prediction accuracy. In addition, there are problems such as outliers and missing values in the data collected on site. This article proposes an ultra-short-term photovoltaic power generation prediction model based on wavelet decomposition, a dual attention mechanism, and a bidirectional long short-term memory network (W-DA-BiLSTM), aiming to address the limitations of existing deep learning models in processing nonlinear data and automatic feature extraction and optimize for the common problems of outliers and missing values in on-site data collection. This model uses the quartile range method for outlier detection and multiple interpolation methods for missing value completion. In the prediction section, wavelet decomposition is used to effectively handle the volatility and nonlinear characteristics of photovoltaic power generation data, while the bidirectional long short-term memory network (LSTM) structure and dual attention mechanism enhance the model’s comprehensive learning ability for time series data. The experimental results show that compared with the SOTA method, the model proposed in this paper has higher accuracy and efficiency in predicting photovoltaic power generation and can effectively address common random fluctuations and nonlinear problems in photovoltaic power generation. Full article
Show Figures

Figure 1

19 pages, 15139 KB  
Article
Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data
by Hong Wu, Haipeng Liu, Huaiping Jin and Yanping He
Energies 2024, 17(18), 4739; https://doi.org/10.3390/en17184739 - 23 Sep 2024
Cited by 5 | Viewed by 1540
Abstract
Photovoltaic (PV) power generation is highly stochastic and intermittent, which poses a challenge to the planning and operation of existing power systems. To enhance the accuracy of PV power prediction and ensure the safe operation of the power system, a novel approach based [...] Read more.
Photovoltaic (PV) power generation is highly stochastic and intermittent, which poses a challenge to the planning and operation of existing power systems. To enhance the accuracy of PV power prediction and ensure the safe operation of the power system, a novel approach based on seasonal division and a periodic attention mechanism (PAM) for PV power prediction is proposed. First, the dataset is divided into three components of trend, period, and residual under fuzzy c-means clustering (FCM) and the seasonal decomposition (SD) method according to four seasons. Three independent bidirectional long short-term memory (BiLTSM) networks are constructed for these subsequences. Then, the network is optimized using the improved Newton–Raphson genetic algorithm (NRGA), and the innovative PAM is added to focus on the periodic characteristics of the data. Finally, the results of each component are summarized to obtain the final prediction results. A case study of the Australian DKASC Alice Spring PV power plant dataset demonstrates the performance of the proposed approach. Compared with other paper models, the MAE, RMSE, and MAPE performance evaluation indexes show that the proposed approach has excellent performance in predicting output power accuracy and stability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

17 pages, 7689 KB  
Article
Multisite Long-Term Photovoltaic Forecasting Model Based on VACI
by Siling Feng, Ruitao Chen, Mengxing Huang, Yuanyuan Wu and Huizhou Liu
Electronics 2024, 13(14), 2806; https://doi.org/10.3390/electronics13142806 - 17 Jul 2024
Cited by 1 | Viewed by 1156
Abstract
In the field of photovoltaic (PV) power prediction, long-term forecasting, which is more challenging than short-term forecasting, can provide more comprehensive and forward-looking guidance. Currently, significant achievements have been made in the field of short-term forecasting for PV power, but inadequate attention has [...] Read more.
In the field of photovoltaic (PV) power prediction, long-term forecasting, which is more challenging than short-term forecasting, can provide more comprehensive and forward-looking guidance. Currently, significant achievements have been made in the field of short-term forecasting for PV power, but inadequate attention has been paid to long-term forecasting. Additionally, multivariate global forecasting across multiple sites and the limited historical time series data available further increase the difficulty of prediction. To address these challenges, we propose a variable–adaptive channel-independent architecture (VACI) and design a deep tree-structured multi-scale gated component named DTM block for this architecture. Subsequently, we construct a specific forecasting model called DTMGNet. Unlike channel-independent modeling and channel-dependent modeling, the VACI integrates the advantages of both and emphasizes the diversity of training data and the model’s adaptability to different variables across channels. Finally, the effectiveness of the DTM block is empirically validated using the real-world solar energy benchmark dataset. And on this dataset, the multivariate long-term forecasting performance of DTMGNet achieved state-of-the-art (SOTA) levels, particularly making significant breakthroughs in the 720-step ultra-long forecasting window, where it reduced the MSE metric below 0.2 for the first time (from 0.215 to 0.199), representing a reduction of 7.44%. Full article
Show Figures

Figure 1

21 pages, 8896 KB  
Article
Ultra-Short-Term Photovoltaic Power Generation Prediction Based on Hunter–Prey Optimized K-Nearest Neighbors and Simple Recurrent Unit
by Yin Tang, Lizhuo Zhang, Dan Huang, Sha Yang and Yingchun Kuang
Appl. Sci. 2024, 14(5), 2159; https://doi.org/10.3390/app14052159 - 5 Mar 2024
Cited by 4 | Viewed by 1385
Abstract
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a Simple Recurrent Unit (SRU), K-Nearest Neighbors (KNN), and Hunter–Prey [...] Read more.
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a Simple Recurrent Unit (SRU), K-Nearest Neighbors (KNN), and Hunter–Prey Optimization (HPO). Firstly, the sliding time window is determined by using the autocorrelation function (ACF), partial correlation function (PACF), and model training. The Pearson correlation coefficient method is used to filter the principal meteorological factors that affect photovoltaic power. Then, the K-Nearest Neighbors (KNN) algorithm is utilized for effective outlier detection and processing to ensure the quality of input data for the prediction model, and the Hunter–Prey Optimization (HPO) algorithm is applied to optimize the parameters of the KNN algorithm. Finally, the efficient Simple Recurrent Unit (SRU) model is used for training and prediction, with the Hunter–Prey Optimization (HPO) algorithm applied to optimize the parameters of the SRU model. Simulation experiments and extensive ablation studies using photovoltaic data from the Desert Knowledge Australia Solar Centre (DKASC) in Alice Springs, Australia, validate the effectiveness of the integrated model, the KNN outlier handling, and the HPO algorithm. Compared to the Support Vector Regression (SVR), Long Short-Term Memory (LSTM), Temporal Convolutional Network (TCN), and Simple Recurrent Unit (SRU) models, this model exhibits an average reduction of 19.63% in Mean Square Error (RMSE), 27.54% in Mean Absolute Error (MAE), and an average increase of 1.96% in coefficient of determination (R2) values. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

24 pages, 4141 KB  
Article
PV Power Forecasting Based on Relevance Vector Machine with Sparrow Search Algorithm Considering Seasonal Distribution and Weather Type
by Wentao Ma, Lihong Qiu, Fengyuan Sun, Sherif S. M. Ghoneim and Jiandong Duan
Energies 2022, 15(14), 5231; https://doi.org/10.3390/en15145231 - 19 Jul 2022
Cited by 12 | Viewed by 1942
Abstract
Accurate photovoltaic (PV) power forecasting is indispensable to enhancing the stability of the power grid and expanding the absorptive photoelectric capacity of the power grid. As an excellent nonlinear regression model, the relevance vector machine (RVM) can be employed to forecast PV power. [...] Read more.
Accurate photovoltaic (PV) power forecasting is indispensable to enhancing the stability of the power grid and expanding the absorptive photoelectric capacity of the power grid. As an excellent nonlinear regression model, the relevance vector machine (RVM) can be employed to forecast PV power. However, the optimization of the free parameters is still a key problem for improving the performance of the RVM. Taking advantage of the strong global search capability, good stability, and fast convergence rate of the sparrow search algorithm (SSA), this paper optimizes the parameters of the RVM by using the SSA to develop an excellent RVM (called SSA-RVM). Consequently, a novel hybrid PV power forecasting model via the SSA-RVM is proposed to perform ultra-short-term (4 h ahead) prediction. In addition, the effects of seasonal distribution and weather type on PV power are fully considered, and different seasonal prediction models are established separately to improve the prediction capability. The benchmark is used to verify the accuracy of the SSA-RVM-based forecasting model under various conditions, and the experiment results demonstrate that the proposed SSA-RMV method outperforms the traditional RVM and support vector machine models, and it even shows a better prediction effect than the RVM models with other optimization approaches. Full article
(This article belongs to the Special Issue Advances in Photovoltaic Technologies)
Show Figures

Figure 1

24 pages, 25572 KB  
Article
Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting
by Yongju Son, Yeunggurl Yoon, Jintae Cho and Sungyun Choi
Sustainability 2022, 14(8), 4427; https://doi.org/10.3390/su14084427 - 8 Apr 2022
Cited by 16 | Viewed by 3908
Abstract
Photovoltaic power generation must be predicted to counter the system instability caused by an increasing number of photovoltaic power-plant connections. In this study, a method for predicting the cloud volume and power generation using satellite images is proposed. Generally, solar irradiance and cloud [...] Read more.
Photovoltaic power generation must be predicted to counter the system instability caused by an increasing number of photovoltaic power-plant connections. In this study, a method for predicting the cloud volume and power generation using satellite images is proposed. Generally, solar irradiance and cloud cover have a high correlation. However, because the predicted solar irradiance is not provided by the Meteorological Administration or a weather site, cloud cover can be used instead of the predicted solar radiation. A lot of information, such as the direction and speed of movement of the cloud is contained in the satellite image. Therefore, the spatio-temporal correlation of the cloud is obtained from satellite images, and this correlation is presented pictorially. When the learning is complete, the current satellite image can be entered at the current time and the cloud value for the desired time can be obtained. In the case of the predictive model, the artificial neural network (ANN) model with the identical hyperparameters or setting values is used for data performance evaluation. Four cases of forecasting models are tested: cloud cover, visible image, infrared image, and a combination of the three variables. According to the result, the multivariable case showed the best performance for all test periods. Among single variable models, cloud cover presented a fair performance for short-term forecasting, and visible image presented a good performance for ultra-short-term forecasting. Full article
Show Figures

Figure 1

19 pages, 3798 KB  
Article
Stochastic Optimization Method for Energy Storage System Configuration Considering Self-Regulation of the State of Charge
by Delong Zhang, Yiyi Ma, Jinxin Liu, Siyu Jiang, Yongcong Chen, Longze Wang, Yan Zhang and Meicheng Li
Sustainability 2022, 14(1), 553; https://doi.org/10.3390/su14010553 - 5 Jan 2022
Cited by 6 | Viewed by 3168
Abstract
Photovoltaic (PV) power generation has developed rapidly in recent years. Owing to its volatility and intermittency, PV power generation has an impact on the power quality and operation of the power system. To mitigate the impact caused by the PV generation, an energy [...] Read more.
Photovoltaic (PV) power generation has developed rapidly in recent years. Owing to its volatility and intermittency, PV power generation has an impact on the power quality and operation of the power system. To mitigate the impact caused by the PV generation, an energy storage (ES) system is applied to the PV plants. The capacity configuration and control strategy based on the stochastic optimization method have become an important research topic. However, the accuracy of the probability distribution model is insufficient and a stochastic optimization method is rarely used in a control strategy. In this paper, a stochastic optimization method for the energy storage system (ESS) configuration considering the self-regulation of the battery state of charge (SoC) is proposed. Firstly, to reduce the sampling error when typical scenarios of PV power are generated, a time-divided probability distribution model of the ultra-short-term predicted error of PV power is established. On this basis, to solve the problem that SoC reaches the threshold frequently, a self-regulation model of the SoC based on multiple scenarios is established, which can regulate the SoC according to rolling PV power prediction. A stochastic optimization configuration model of the energy storage system is constructed, which can reduce the impact of PV uncertainty on the configuration result. Finally, the proposed stochastic optimization method is validated. The fitting error of the time-divided probability distribution model is 15.61% lower than that of the t-distribution. The expected revenue of the optimal configuration in this paper is 8.86% higher than the scheme with a fixed probability distribution model, and 16.87% higher than without considering the stochastic optimization method. Full article
(This article belongs to the Collection Sustainable Electric Power Systems Research)
Show Figures

Figure 1

16 pages, 4636 KB  
Article
Solar Radiation Prediction Based on Convolution Neural Network and Long Short-Term Memory
by Tingting Zhu, Yiren Guo, Zhenye Li and Cong Wang
Energies 2021, 14(24), 8498; https://doi.org/10.3390/en14248498 - 16 Dec 2021
Cited by 41 | Viewed by 4613
Abstract
Photovoltaic power generation is highly valued and has developed rapidly throughout the world. However, the fluctuation of solar irradiance affects the stability of the photovoltaic power system and endangers the safety of the power grid. Therefore, ultra-short-term solar irradiance predictions are widely used [...] Read more.
Photovoltaic power generation is highly valued and has developed rapidly throughout the world. However, the fluctuation of solar irradiance affects the stability of the photovoltaic power system and endangers the safety of the power grid. Therefore, ultra-short-term solar irradiance predictions are widely used to provide decision support for power dispatching systems. Although a great deal of research has been done, there is still room for improvement regarding the prediction accuracy of solar irradiance including global horizontal irradiance, direct normal irradiance and diffuse irradiance. This study took the direct normal irradiance (DNI) as prediction target and proposed a Siamese convolutional neural network-long short-term memory (SCNN-LSTM) model to predict the inter-hour DNI by combining the time-dependent spatial features of total sky images and historical meteorological observations. First, the features of total sky images were automatically extracted using a Siamese CNN to describe the cloud information. Next, the image features and meteorological observations were fused and then predicted the DNI in 10-min ahead using an LSTM. To verify the validity of the proposed SCNN-LSTM model, several experiments were carried out using two-year historical observation data provided by the National Renewable Energy Laboratory (NREL). The results show that the proposed method achieved nRMSE of 23.47% and forecast skill of 24.51% for the whole year of 2014, and it also did better than some published methods especially under clear sky and rainy days. Full article
Show Figures

Graphical abstract

19 pages, 671 KB  
Article
Ultra-Short-Term Forecasting of Photo-Voltaic Power via RBF Neural Network
by Wanxing Ma, Zhimin Chen and Qing Zhu
Electronics 2020, 9(10), 1717; https://doi.org/10.3390/electronics9101717 - 18 Oct 2020
Cited by 13 | Viewed by 2832
Abstract
With the fast expansion of renewable energy systems during recent years, the stability and quality of smart grids using solar energy have been challenged because of the intermittency and fluctuations. Hence, forecasting photo-voltaic (PV) power generation is essential in facilitating planning and managing [...] Read more.
With the fast expansion of renewable energy systems during recent years, the stability and quality of smart grids using solar energy have been challenged because of the intermittency and fluctuations. Hence, forecasting photo-voltaic (PV) power generation is essential in facilitating planning and managing electricity generation and distribution. In this paper, the ultra-short-term forecasting method for solar PV power generation is investigated. Subsequently, we proposed a radial basis function (RBF)-based neural network. Additionally, to improve the network generalization ability and reduce the training time, the numbers of hidden layer neurons are limited. The input of neural network is selected as the one with higher Spearman correlation among the predicted power features. The data are normalized and the expansion parameter of RBF neurons are adjusted continuously in order to reduce the calculation errors and improve the forecasting accuracy. Numerous simulations are carried out to evaluate the performance of the proposed forecasting method. The mean absolute percentage error (MAPE) of the testing set is within 10%, which show that the power values of the following 15 min. can be predicted accurately. The simulation results verify that our method shows better performance than other existing works. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

19 pages, 9786 KB  
Article
Ultrashort-Term Power Fluctuation Forecasting Based on the Prediction of the Shipborne Panel Tilt Angle
by Xiuyan Peng, Luo Zhao, Bo Wang and Biao Zhang
Appl. Sci. 2020, 10(15), 5213; https://doi.org/10.3390/app10155213 - 29 Jul 2020
Cited by 4 | Viewed by 2107
Abstract
When a solar ship is navigating in the ocean, the swaying motion of a photovoltaic panel will affect the output power of the photovoltaic (PV) power generation system more frequently and violently. In addition to considering multiple climatic factors, this paper also adopts [...] Read more.
When a solar ship is navigating in the ocean, the swaying motion of a photovoltaic panel will affect the output power of the photovoltaic (PV) power generation system more frequently and violently. In addition to considering multiple climatic factors, this paper also adopts a ship swaying motion and radiation level of sunlight to establish a suitable calculation model for the output power of photovoltaic systems, which are rarely considered at the same time in previous studies, and also to make ultrashort-term power predictions. Furthermore, this paper proposes a multilayer heterogeneous particle swarm optimization (PSO) algorithm to design the weights and thresholds of a long short-term memory (LSTM) neural network to improve the accuracy of forecasting the changes of a photovoltaic panel’s angle, which is used for accurate power output prediction for the purpose of power planning. The case analysis shows the effectiveness of the algorithm, which provides a more reliable method for designing a power prediction system. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop