Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = unbalanced electromagnetic force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 18999 KB  
Article
Research on Suppression of Negative Effects of Vibration in In-Wheel Motor-Driven Electric Vehicles Based on DMPC
by Xiangpeng Meng, Yang Rong, Renkai Ding, Wei Liu, Dong Sun and Ruochen Wang
Processes 2025, 13(10), 3081; https://doi.org/10.3390/pr13103081 - 26 Sep 2025
Abstract
In-wheel motor (IWM)-driven electric vehicles (EVs) are susceptible to road excitation, which can induce eccentricity between the stator and rotor of the IWM. This eccentricity leads to unbalanced electromagnetic forces (UEFs) and electromechanical coupling (EMC) effects, severely degrading vehicle dynamic performance. To address [...] Read more.
In-wheel motor (IWM)-driven electric vehicles (EVs) are susceptible to road excitation, which can induce eccentricity between the stator and rotor of the IWM. This eccentricity leads to unbalanced electromagnetic forces (UEFs) and electromechanical coupling (EMC) effects, severely degrading vehicle dynamic performance. To address this issue, this study first established an EMC system model encompassing UEF, IWM drive, and vehicle dynamics. Based on this model, four typical operating conditions—constant speed, acceleration, deceleration, and steering—were designed to thoroughly analyze the influence of EMC effects on vehicle dynamic response characteristics. The analysis results were validated through real-vehicle experiments. The results indicate that the EMC effects caused by motor eccentricity primarily affect the vehicle’s vertical dynamics performance (especially during acceleration and deceleration), leading to increased vertical body acceleration and reduced ride comfort, while having a relatively minor impact on longitudinal and lateral dynamics performance. Additionally, these effects significantly increase the relative eccentricity of the motor under various operating conditions, further degrading motor performance. To mitigate these negative effects, this paper designs an active suspension controller based on distributed model predictive control (DMPC). Simulation and experimental validation demonstrate that the proposed controller effectively improves ride comfort and body posture stability while significantly suppressing the growth of the motor’s relative eccentricity, thereby enhancing motor operational performance. Full article
(This article belongs to the Section Process Control and Monitoring)
13 pages, 4039 KB  
Article
Electromagnetic and NVH Characteristic Analysis of Eccentric State for Surface-Mounted Permanent Magnet Synchronous Generators in Wave Power Applications
by Woo-Sung Jung, Yeon-Su Kim, Yeon-Tae Choi, Kyung-Hun Shin and Jang-Young Choi
Appl. Sci. 2025, 15(17), 9697; https://doi.org/10.3390/app15179697 - 3 Sep 2025
Viewed by 449
Abstract
This study investigates the electromagnetic and NVH characteristics of an outer-rotor surface-mounted permanent magnet synchronous generator (SPMSG) for wave energy applications, focusing on the effect of rotor eccentricity. To reflect potential fault due to manufacturing or assembly defects, a 0.5 mm rotor eccentricity [...] Read more.
This study investigates the electromagnetic and NVH characteristics of an outer-rotor surface-mounted permanent magnet synchronous generator (SPMSG) for wave energy applications, focusing on the effect of rotor eccentricity. To reflect potential fault due to manufacturing or assembly defects, a 0.5 mm rotor eccentricity was introduced in finite element method (FEM) simulations. The torque ripple waveform was analyzed using fast Fourier transform (FFT) to identify dominant harmonic components that generate unbalanced electromagnetic forces and induce structural vibration. These harmonic components were further examined under variable marine operating conditions to evaluate their impact on acoustic radiation and vibration responses. Based on the simulation and analysis results, a design-stage methodology is proposed for predicting vibration and noise by targeting critical harmonic excitations, providing practical insights for marine generator design and improving long-term operational reliability in wave energy systems. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Vibration)
Show Figures

Figure 1

28 pages, 6846 KB  
Article
Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control
by Yihong Ping, Xiaofeng Yang, Yi Yang, Yujie Shen, Shaocong Zeng, Shihang Dai and Jingchen Hong
Machines 2025, 13(7), 556; https://doi.org/10.3390/machines13070556 - 26 Jun 2025
Cited by 1 | Viewed by 324
Abstract
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control [...] Read more.
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control strategy based on impedance transfer functions to address the parameter redundancy in structural methods. A quarter-vehicle model with a switched reluctance motor wheel hub drive was used to study different orders of generalized ground-hook impedance transfer function control strategies for dynamic inertial suspension. An enhanced fish swarm parameter optimization method identified the optimal solutions for different structural orders. Analyses showed that the third-order control strategy optimized the body acceleration by 2%, reduced the dynamic tire load by 8%, and decreased the suspension working space by 22%. This strategy also substantially lowered the power spectral density for the body acceleration and dynamic tire load in the low-frequency band of 1.2 Hz. Additionally, it balanced computational complexity and performance, having slightly higher complexity than lower-order methods but much less than higher-order structures, meeting real-time constraints. To address time-domain deviations from generalized ground-hook control in semi-active systems, a dynamic compensation strategy was proposed: eight topological structures were created by modifying the spring–damper structure. A deviation correction mechanism was devised based on the frequency-domain coupling characteristics between the wheel speed and suspension relative velocity. For ride comfort and road-friendliness, a dual-frequency control criterion was introduced: in the low-frequency range, energy transfer suppression and phase synchronization locking were realized by constraining the ground-hook damping coefficient or inertance coefficient, while in the high-frequency range, the inertia-dominant characteristic was enhanced, and dynamic phase adaptation was permitted to mitigate road excitations. The results show that only the T0 and T5 structures met dynamic constraints across the frequency spectrum. Time-domain simulations showed that the deviation between the T5 structure and the third-order generalized ground-hook impedance model was relatively small, outperforming traditional and T0 structures, validating the model’s superior adaptability in high-order semi-active suspension. Full article
(This article belongs to the Special Issue New Journeys in Vehicle System Dynamics and Control)
Show Figures

Figure 1

23 pages, 10006 KB  
Article
Research on Unbalanced Electromagnetic Force Under Static Eccentricity of the Wheel Hub Motor Based on BP Neural Network
by Xiangpeng Meng, Yunquan Zhang, Renkai Ding, Wei Liu and Ruochen Wang
World Electr. Veh. J. 2025, 16(5), 252; https://doi.org/10.3390/wevj16050252 - 28 Apr 2025
Viewed by 591
Abstract
Aiming at exploring a high-precision unbalanced electromagnetic force model suitable for the dynamic simulation of wheel hub direct-drive electric vehicles, this article establishes the unbalanced electromagnetic force model under static eccentricity of a wheel hub motor by an analytical method and verifies its [...] Read more.
Aiming at exploring a high-precision unbalanced electromagnetic force model suitable for the dynamic simulation of wheel hub direct-drive electric vehicles, this article establishes the unbalanced electromagnetic force model under static eccentricity of a wheel hub motor by an analytical method and verifies its accuracy by finite element modeling. Then, it optimizes the unbalanced electromagnetic force model based on a BP neural network and couples it with the 1/2 vehicle vertical vibration model to improve its calculation and operation efficiency. Finally, the correctness of the coupling model is further verified by bench experiments. The results show that the analytical model of the unbalanced electromagnetic force is accurate. A BP neural network optimization algorithm can reduce the time of electromagnetic force model simulation for 10 s from 1 h to about 50 s, which greatly improves the calculation efficiency of the electromagnetic force on the basis of ensuring the accuracy of the model, thus providing an unbalanced electromagnetic force model that is more suitable for the dynamic simulation of wheel hub direct-drive electric vehicles, which effectively solves the problem that the traditional electromagnetic force is difficult to couple with the vehicle dynamics model and lays a better foundation for subsequent research on the vertical vibration effect of wheel hub direct-drive electric vehicles. Full article
Show Figures

Figure 1

21 pages, 5316 KB  
Article
A Model Predictive Control Strategy with Minimum Model Error Kalman Filter Observer for HMEV-AS
by Ying Zhou, Chenlai Liu, Zhongxing Li and Yi Yu
Energies 2025, 18(6), 1557; https://doi.org/10.3390/en18061557 - 20 Mar 2025
Cited by 1 | Viewed by 478
Abstract
In hub-motor electric vehicles (HMEVs), performance is adversely affected by the mechanical-electromagnetic coupling effect arising from deformations of the air gap in the Permanent Magnet Brushless Direct Current Motor (PM BLDC), which are exacerbated by varying road conditions. In this paper, a Model [...] Read more.
In hub-motor electric vehicles (HMEVs), performance is adversely affected by the mechanical-electromagnetic coupling effect arising from deformations of the air gap in the Permanent Magnet Brushless Direct Current Motor (PM BLDC), which are exacerbated by varying road conditions. In this paper, a Model Predictive Control (MPC) strategy for HMEVs equipped with air suspension (AS) is introduced to enhance ride comfort. Firstly, an 18-degree of freedom (DOF) full-vehicle model incorporating unbalanced electromagnetic forces (UEMFs) induced by motor eccentricities is developed and experimentally validated. Additionally, a Minimum Model Error Extended Kalman Filter (MME-EKF) observer is designed to estimate unmeasurable state variables and account for errors resulting from sprung mass variations. To further improve vehicle performance, the MPC optimization objective is formulated by considering the suspension damping force and dynamic displacement constraints, solving for the optimal suspension force within a rolling time domain. Simulation results demonstrate that the proposed MPC approach significantly improves ride comfort, effectively mitigates coupling effects in hub driving motors, and ensures that suspension dynamic stroke adheres to safety criteria. Comparative analyses indicate that the MPC controller outperforms conventional PID control, achieving substantial reductions of approximately 41.59% in sprung mass vertical acceleration, 14.29% in motor eccentricity, 1.78% in tire dynamic load, 17.65% in roll angular acceleration, and 16.67% in pitch angular acceleration. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 10647 KB  
Article
Speed Estimation Method of Active Magnetic Bearings Magnetic Levitation Motor Based on Adaptive Sliding Mode Observer
by Lei Gong, Yu Li, Wenjuan Luo, Jingwen Chen, Zhiguang Hua and Dali Dai
Energies 2025, 18(6), 1539; https://doi.org/10.3390/en18061539 - 20 Mar 2025
Viewed by 592
Abstract
The installation distance between the speed sensor of the traditional rolling or sliding bearing permanent magnet synchronous motor and the rotor was very close, and the rotor of the magnetic levitation motor supported by Active Magnetic Bearings (AMBs) was in suspension. When the [...] Read more.
The installation distance between the speed sensor of the traditional rolling or sliding bearing permanent magnet synchronous motor and the rotor was very close, and the rotor of the magnetic levitation motor supported by Active Magnetic Bearings (AMBs) was in suspension. When the motor was running at high speed, the radial trajectory of the rotor changed all the time. The same frequency vibration caused by the unbalanced mass of the rotor made it easy to cause mechanical collision between the sensor and the rotor, resulting in direct damage of the sensor. Therefore, the sensorless speed estimation method was needed for the rotor control system of the magnetic levitation motor (MLM) to achieve high performance closed-loop control of speed and position. More importantly, in order to control or compensate the unbalanced force of the electromagnetic bearing rotor system, the rotor rotation speed signal should be obtained as accurately as possible. Therefore, the principle of adaptive sliding mode observer (SMO) was analyzed in detail by taking the rotor system of MLM as an example. Then, the sliding mode surface was designed, the speed estimation algorithm based on adaptive SMO was derived, and the stability analysis was completed. Finally, in order to verify the anti-disturbance performance of the system and the static and dynamic tracking performance of the motor, the dynamic performance was verified by increasing and decreasing the speed and load. The results showed that the speed estimation method based on adaptive SMO could achieve accurate speed estimation and had good static and dynamic performance. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

13 pages, 6538 KB  
Article
Analysis of Different Winding Configuration on Electromagnetic Performance of Novel Dual Three-Phase Outer-Rotor Flux-Switching Permanent Magnet Machine for Oscillating Water Column Wave Energy Generation
by Mingye Huang, Aiwu Peng and Lingzhi Zhao
Energies 2025, 18(5), 1021; https://doi.org/10.3390/en18051021 - 20 Feb 2025
Viewed by 790
Abstract
In this article, we propose, for the first time, to apply the flux-switching permanent magnet (OR-FSPM) generator to the oscillating water column wave energy conversion (OWC-WEC), and a novel dual three-phase 24-slot/46-pole OR-FSPM generator for OWC-WEC is designed and analyzed. The feasible phase-shift [...] Read more.
In this article, we propose, for the first time, to apply the flux-switching permanent magnet (OR-FSPM) generator to the oscillating water column wave energy conversion (OWC-WEC), and a novel dual three-phase 24-slot/46-pole OR-FSPM generator for OWC-WEC is designed and analyzed. The feasible phase-shift angle (PH-Angle) between the two sets of windings, namely 0°, 30° and 60°, is analyzed. The electromagnetic performance of the generator under three winding configurations is investigated, including PM flux linkage, back electromotive force (EMF), open-circuit rectified voltage, inductance, cogging torque, electromagnetic torque and unbalanced magnetic force (UMF). The prototype is manufactured, and the experimental results are consistent with that of the finite-element analysis (FEA) results. The generator with 0° and 60° PH-Angle winding configuration has stronger fault tolerance. When the 30° PH-Angle winding configuration is adopted, it has the maximum back-EMF fundamental amplitude, maximum average electromagnetic torque and the minimum torque ripple, and there is no UMF when a single set of windings is running. Therefore, the proposed novel OR-FSPM generator with 30° PH-Angle winding configuration is more suitable for OWC-WEC. Full article
(This article belongs to the Special Issue Ocean Energy Conversion and Magnetohydrodynamic Power Systems)
Show Figures

Figure 1

19 pages, 11955 KB  
Article
Structural Design and Electromagnetic Performance Analysis of Octupole Active Radial Magnetic Bearing
by Qixuan Zhu, Yujun Lu and Zhongkui Shao
Sensors 2024, 24(24), 8200; https://doi.org/10.3390/s24248200 - 22 Dec 2024
Cited by 1 | Viewed by 1642
Abstract
This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis [...] Read more.
This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°. Finally, experiments measured the electromagnetic forces acting on the rotor under the NNSS and NSNS configurations during eccentric conditions. The results indicate that the NNSS configuration significantly reduces magnetic circuit coupling, improves the uniformity of electromagnetic force distribution, and offers superior stability and control efficiency under asymmetric conditions. Experimental results deviated by less than 10% from the simulations, confirming the reliability and practicality of the proposed design. These findings provide valuable insights for optimizing ARMB pole configurations and promote their application in high-speed, high-precision industrial fields such as aerospace and power engineering. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 6762 KB  
Article
Research on the Influence of Compression and Offset of Cushion Blocks on the Axial Strength of Transformers
by Lu Sun, Shuguo Gao, Tianran Li, Jiaxin Yao, Ping Wang and Jianhao Zhu
Appl. Sci. 2023, 13(24), 13289; https://doi.org/10.3390/app132413289 - 15 Dec 2023
Viewed by 1478
Abstract
The instability of the winding-cushion structure is one of the primary causes of transformer failures. Insulation cushion compression and offset are the predominant forms leading to structural instability. Therefore, this paper, using the SFSZ7-31500/110 transformer as an example, first derives the theoretical formula [...] Read more.
The instability of the winding-cushion structure is one of the primary causes of transformer failures. Insulation cushion compression and offset are the predominant forms leading to structural instability. Therefore, this paper, using the SFSZ7-31500/110 transformer as an example, first derives the theoretical formula for mechanical stress calculation. It clarifies the key influencing parameters of the winding-cushion block structure on the axial bending stress of the winding. Subsequently, an electromagnetic force finite element calculation model is established to obtain the axial force distribution in the winding and the distribution of unbalanced displacement during short-circuit processes. Based on the force and offset distribution, a specific cushion block compression and offset test platform is constructed. By setting different cushion block variables, the effects of cushion block unbalanced height and cushion block offset on the winding’s bending elastic modulus are determined. Finally, a simulation model for stress calculation of the winding-cushion block structure is established, revealing the influence pattern of cushion block compression and offset instability on the axial strength of the winding. The results of this study indicate that the greater the uneven cushion block height, the lower the axial strength of the winding. Under the same cushion block offset angle, winding structures with non-uniform cushion block offsets exhibit the worst axial stability. When the offset angles are 30°, 45°, and 60°, the maximum axial bending stress of the winding increases by 1.73%, 3.46%, and 7.82%, respectively. Increasing the offset angle exacerbates the decrease in the axial strength of the winding up to a certain extent. The findings in this study have significant implications for enhancing a transformer’s short-circuit resistance. Full article
Show Figures

Figure 1

23 pages, 6749 KB  
Article
Multi-Objective Optimal Design of μ–Controller for Active Magnetic Bearing in High-Speed Motor
by Yuanwen Li and Changsheng Zhu
Actuators 2023, 12(5), 206; https://doi.org/10.3390/act12050206 - 17 May 2023
Cited by 7 | Viewed by 2511
Abstract
In this paper, a control strategy based on the inverse system decoupling method and μ-synthesis is proposed to control vibration in a rigid rotor system with active magnetic bearings that are built into high-speed motors. First, the decoupling method is used to [...] Read more.
In this paper, a control strategy based on the inverse system decoupling method and μ-synthesis is proposed to control vibration in a rigid rotor system with active magnetic bearings that are built into high-speed motors. First, the decoupling method is used to decouple the four-degrees-of-freedom state equation of the electromagnetic bearing rigid rotor system; the strongly coupled and nonlinear rotor system is thus decoupled into four independent subsystems, and the eigenvalues of the subsystems are then configured. The uncertain parametric perturbation method is used to model the subsystem, and the multi-objective ant colony algorithm is then used to optimize the sensitivity function and the pole positions to obtain the optimal μ-controller. The closed-loop system thus has the fastest possible response, the strongest internal stability, and the best disturbance rejection capability. Then, the unbalanced force compensation algorithm is used to compensate for the high-frequency eccentric vibration; this algorithm can attenuate the unbalanced eccentric vibration of the rotor to the greatest extent and improve the robust stability of the rotor system. Finally, simulations and experiments show that the proposed control strategy can allow the rotor to be suspended stably and suppress its low-frequency and high-frequency vibrations effectively, providing excellent internal and external stability. Full article
(This article belongs to the Special Issue Linear Motors and Direct-Drive Technology)
Show Figures

Figure 1

12 pages, 10223 KB  
Article
Effect of Unbalanced Magnetic Pull of Generator Rotor on the Dynamic Characteristics of a Pump—Turbine Rotor System
by Weidong Wu, Jiayang Pang, Xuyang Liu, Weiqiang Zhao, Zhiwei Lu, Dandan Yan, Lingjiu Zhou and Zhengwei Wang
Water 2023, 15(6), 1120; https://doi.org/10.3390/w15061120 - 15 Mar 2023
Cited by 7 | Viewed by 3759
Abstract
In pumped storage units, the rotor-bearing electromagnetic system is under the joint influence of hydraulics, mechanics, and electromagnetics, and the mechanism of unit vibration problems is very complex to investigate. ANSYS software is used to establish a three-dimensional model of a pumped storage [...] Read more.
In pumped storage units, the rotor-bearing electromagnetic system is under the joint influence of hydraulics, mechanics, and electromagnetics, and the mechanism of unit vibration problems is very complex to investigate. ANSYS software is used to establish a three-dimensional model of a pumped storage power plant’s rotor-bearing electromagnetic system, and the stiffness coefficient of the unbalanced magnetic traction forces is calculated using the Fourier series of the magnetic conductivity of the air gap. This shows that the nonequilibrium magnetic attraction increases non-linearly with increasing excitation current and eccentricity of the rotor. At each order, the critical velocity of the rotor system increases as the stiffness factor of the bearing increases, with the greatest increase in critical velocity at the third and fourth orders. In the first-order mode-oscillation pattern, the unbalanced magnetic attraction has an effect on the intrinsic frequency of the transverse oscillation, with a reduction in the amplitude of the intrinsic frequency by 34.65%. Axial and transverse modal vibrations manifest themselves as upward and downward motions and transverse oscillations in different portions of the rotor system, respectively, whereas torsional modal vibrations manifest as a radial broadening or reduction in the generator rotor, runner, and coupling portions of the rotor system. The results of the study provide a theoretical foundation and a computational method for the dynamic analysis and design of the rotor system of pumped storage power stations. Full article
(This article belongs to the Special Issue Advancements in the Complex Vortex Flow in Hydraulic Machinery)
Show Figures

Figure 1

25 pages, 4464 KB  
Tutorial
Active Damping, Vibration Isolation, and Shape Control of Space Structures: A Tutorial
by André Preumont
Actuators 2023, 12(3), 122; https://doi.org/10.3390/act12030122 - 14 Mar 2023
Cited by 17 | Viewed by 4377
Abstract
This tutorial reviews the author’s contributions to the active control of precision space structures over the past 35 years. It is based on the Santini lecture presented at the IAC-2022 Astronautical Congress in Paris in September 2022. The first part is devoted to [...] Read more.
This tutorial reviews the author’s contributions to the active control of precision space structures over the past 35 years. It is based on the Santini lecture presented at the IAC-2022 Astronautical Congress in Paris in September 2022. The first part is devoted to the active damping of space trusses with an emphasis on robustness. Guaranteed stability is achieved by using decentralized collocated actuator–sensor pairs. The so-called integral force feedback (IFF) is simple, robust, and effective, and the performances can be predicted easily with simple formulae based on modal analyses. These predictions have been confirmed by numerous experiments. The damping strategy for trusses has been extended to cable structures, and also confirmed experimentally. The second part addresses the problem of vibration isolation: isolating a sensitive payload from the vibration induced by the spacecraft (i.e., the unbalanced mass of attitude control reaction wheels and gyros). A six-axis isolator based on a Gough–Stewart platform is discussed; once again, the approach emphasizes robustness. Two different solutions are presented: The first one (active isolation) uses a decentralized controller with collocated pairs of the actuator and force sensor, with IFF control. It is demonstrated that this special implementation of the skyhook, unlike the classical one, has guaranteed stability, even if the two substructures it connects are flexible (typical of large space structures). A second approach (passive) discusses an electromagnetic implementation of the relaxation isolator where the classical dash-pot of the linear damper is substituted by a Maxwell unit, leading to an asymptotic decay rate of −40 dB/decade, similar to the skyhook (although much simpler in terms of electronics). The third part of the lecture summarizes more recent work done on the control of flexible mirrors: (i) flat mirrors for adaptive optics (AO) controlled by an array of piezoelectric ceramic (PZT) actuators and (ii) spherical thin shell polymer reflectors controlled by an array of piezoelectric polymer actuators (PVDF-TrFE) aimed at being deployed in space. Full article
Show Figures

Figure 1

15 pages, 2781 KB  
Article
Adjustable Vibration Exciter Based on Unbalanced Motors
by Volodymyr Osadchyy, Olena Nazarova, Taras Hutsol, Szymon Glowacki, Krzysztof Mudryk, Andrzej Bryś, Anatolii Rud, Weronika Tulej and Mariusz Sojak
Sensors 2023, 23(4), 2170; https://doi.org/10.3390/s23042170 - 15 Feb 2023
Cited by 7 | Viewed by 2972
Abstract
In European industry, such as metallurgical, mining and processing, construction, food, and chemical, vibration exciters are used, which indicates their wide and, in some cases, unique technological capabilities. The most common are electromagnetic and unbalanced vibration exciters. The advantages of electromagnetic vibration exciters [...] Read more.
In European industry, such as metallurgical, mining and processing, construction, food, and chemical, vibration exciters are used, which indicates their wide and, in some cases, unique technological capabilities. The most common are electromagnetic and unbalanced vibration exciters. The advantages of electromagnetic vibration exciters include the ability to control the amplitude of the vibration by changing the electrical power supplied; the disadvantages are high material consumption. However, unbalanced vibration exciters have low energy efficiency, which is associated with difficult start-up conditions and with an overestimated mechanical power of the vibration exciter in relation to the power required by the technology itself, which is due to the need to minimize the effect of the technological load on the operating mode of the vibrating unit. Adjusting the amplitude of the disturbing force of unbalanced vibration exciters, regardless of the vibration frequency, will make it possible to reduce the installed power of the unit by passing the resonant frequency with a minimum disturbing force and compensating for the effect of the process load by means of a closed-loop electric drive. In the course of the study, an analytical description of the interaction of the rotating unbalances located on a common movable platform was obtained. On the basis of these analytical dependencies, a mathematical model was developed that takes into account the dynamic characteristics of a frequency-controlled asynchronous electric drive of a closed-loop control system for the mutual arrangement of rotating unbalances. The simulation results confirmed the possibility of using the specified electric drive to control the oscillation amplitude directly in the process of operation of a four-unbalanced vibration exciter. A physical experiment was carried out to determine the transient processes of changing the angular velocity of an induction motor with an abrupt change in the frequency converter setting. On the basis of this experiment, the previously created mathematical model was refined in terms of describing the dynamic parameters of the electric drive. The proposed structure of the control system, the performance of which has been confirmed by mathematical modeling, makes it possible to implement an adjustable four-unbalanced vibration exciter using single commercially available asynchronous vibrators. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 5413 KB  
Article
Unbalance Vibration Suppression of Maglev High-Speed Motor Based on the Least-Mean-Square
by Huachun Wu, Mengying Yu, Chunsheng Song and Nianxian Wang
Actuators 2022, 11(12), 348; https://doi.org/10.3390/act11120348 - 26 Nov 2022
Cited by 7 | Viewed by 2416
Abstract
The harmonic response caused by unbalanced excitation vibration for the high-speed rotating machinery will reduce the control accuracy and stability of the maglev high-speed motor, and limit the increase of its speed. When the active magnetic bearing is used to solve the unbalanced [...] Read more.
The harmonic response caused by unbalanced excitation vibration for the high-speed rotating machinery will reduce the control accuracy and stability of the maglev high-speed motor, and limit the increase of its speed. When the active magnetic bearing is used to solve the unbalanced vibration, it will increase additional electromagnetic force and energy consumption, sometimes leading to the saturation of the power amplifier, and will transfer to the bearing foundation, causing the foundation to vibrate. In this paper, we analyzed periodic unbalance excitation force and the principle of rotor unbalanced vibration suppression, and the unbalance vibration model of the maglev rotor is derived. The Least-Mean-Square (LMS) algorithm is introduced into the PID control, an unbalance vibration control strategy based on real-time filtering compensation of rotor displacement signal is proposed, the vibration is eliminated by filtering the synchronous frequency and harmonic signal of the input of the PID control. The experimental results show that the proposed method can improve the maglev rotor’s rotation accuracy, reduce the magnetic bearing’s maximum control current, and decrease the vibration of the supporting foundation. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators)
Show Figures

Figure 1

15 pages, 4073 KB  
Article
Characteristic Analysis and Experimental Verification of Electromagnetic and Vibration/Noise Aspects of Fractional-Slot Concentrated Winding IPMSMs of e-Bike
by Young-Geun Lee, Tae-Kyoung Bang, Jeong-In Lee, Jong-Hyeon Woo, Sung-Tae Jo and Jang-Young Choi
Energies 2022, 15(1), 238; https://doi.org/10.3390/en15010238 - 30 Dec 2021
Cited by 4 | Viewed by 3811
Abstract
In this study, we performed the electromagnetic and mechanical characteristic analyses of an 8-pole 12-slot interior permanent magnet synchronous motor (IPMSM). Permanent magnet synchronous motors are classified into surface permanent magnet synchronous motor and interior permanent magnet synchronous motors according to the type [...] Read more.
In this study, we performed the electromagnetic and mechanical characteristic analyses of an 8-pole 12-slot interior permanent magnet synchronous motor (IPMSM). Permanent magnet synchronous motors are classified into surface permanent magnet synchronous motor and interior permanent magnet synchronous motors according to the type of rotor. The IPM type is advantageous for high-speed operation because of the structure where the permanent magnet is embedded inside the rotor, and it has the advantage of having a high output density by generating not only the magnetic torque of the permanent magnet, but also the reluctance torque. However, such a motor has more vibration/noise sources than other types, owing to changes in reluctance. The sources of motor noise/vibration can be broadly classified into electromagnetic, mechanical, and aerodynamic sources. Electromagnetic noise sources are classified into electromagnetic excitation sources, torque pulsations, and unbalanced magnetic forces (UMFs). Vibration and noise cause machine malfunctions and affect the entire system. Therefore, it is important to analyze the electromagnetic vibration source. In this study, the electromagnetic characteristics of an IPMSM were analyzed through the finite element method to derive the UMF. Vibration and noise analyses were performed by electromagnetic–mechanical coupling analysis, and vibration and noise characteristics based on electromagnetic noise sources were analyzed. Full article
Show Figures

Figure 1

Back to TopTop