Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (94)

Search Parameters:
Keywords = vector-borne bacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1942 KB  
Article
Characterization of Gut Bacteria in Natural Populations of Sand Flies (Diptera: Psychodidae) from Endemic and Non-Endemic Areas of Leishmaniasis in Morocco
by Mohamed Daoudi, Abdelkrim Outammassine, El Mahdi Redouane, Souad Loqman, Mohamed Hafidi, Ali Boumezzough, Martin Olivier, Samia Boussaa and Momar Ndao
Microorganisms 2025, 13(10), 2279; https://doi.org/10.3390/microorganisms13102279 - 30 Sep 2025
Viewed by 519
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania spp., transmitted to humans by phlebotomine sand flies. The development of Leishmania into infective metacyclic promastigotes occurs within the sand fly gut, where the bacterial microbiota plays a pivotal role in parasite development and [...] Read more.
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania spp., transmitted to humans by phlebotomine sand flies. The development of Leishmania into infective metacyclic promastigotes occurs within the sand fly gut, where the bacterial microbiota plays a pivotal role in parasite development and transmission dynamics. This study aimed to characterize the gut bacterial composition of phlebotomine sand flies collected from both endemic (Lalla Aaziza) and non-endemic (Marrakech) regions of leishmaniasis in Morocco. We investigated the microbiota of Phlebotomus papatasi, P. sergenti, P. perniciosus, and P. longicuspis, all proven vectors of cutaneous and visceral leishmaniasis in the Old World, including Morocco, as well as Sergentomyia minuta, a potential vector in the Mediterranean basin. Gut bacteria were isolated using conventional microbiological techniques and identified by MALDI-TOF mass spectrometry. Fifteen bacterial strains from three phyla were identified, with Bacillus pumilus being the most frequently detected species. Significant differences in colony-forming unit (CFU) counts and bacterial richness were observed between sand fly species and collection sites. Notably, Bacillus simplex (in P. papatasi), Nocardia ignorata (in P. sergenti), and Serratia spp. (in P. longicuspis) were identified for the first time in these vectors. This study is the first to investigate the gut bacterial composition of sand flies in Morocco, revealing species and locality-dependent differences in microbial communities. The predominance of Bacillus spp., particularly B. pumilus, suggests a potentially influential role in sand fly physiology and vector competence. Furthermore, the novel detection of B. simplex, N. ignorata, and Serratia spp. underscores previously unrecognized microbial associations that warrant further investigation. These findings provide a critical baseline for future studies exploring the microbiota-mediated modulation of sand fly–Leishmania interactions. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 1162 KB  
Article
Molecular Detection of Vector-Borne Pathogens and Their Association with Feline Immunodeficiency Virus and Feline Leukemia Virus in Cats from Northeastern Thailand
by Charinya So-In, Laksanachan Watayotha, Thikhamporn Sonsupee, Surasak Khankhum and Nuchsupha Sunthamala
Animals 2025, 15(14), 2065; https://doi.org/10.3390/ani15142065 - 12 Jul 2025
Cited by 1 | Viewed by 1057
Abstract
In Thailand, domestic cats are frequently exposed to vectors that transmit a variety of pathogens. In this study, the prevalence of vector-borne pathogens (VBPs) and their association with feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) were investigated in 187 domestic cats [...] Read more.
In Thailand, domestic cats are frequently exposed to vectors that transmit a variety of pathogens. In this study, the prevalence of vector-borne pathogens (VBPs) and their association with feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) were investigated in 187 domestic cats from animal hospitals across five northeastern provinces. Twelve pathogens, including viruses, bacteria, and protozoa, were screened using PCR assays. FIV was identified in 2.67% of the cats, while FeLV exhibited a notably higher prevalence of 29.95%. Among the bacterial pathogens, Bartonella henselae was the most frequently detected (94.65%), followed by Rickettsia felis (34.22%). Protozoan infections such as Babesia canis (8.02%) and Cytauxzoon felis (3.21%) were less prevalent. Co-infections were common, with numerous cats hosting multiple pathogens. Correlation analysis revealed moderate associations between FIV and Babesia microti (r = 0.43), Babesia canis (r = 0.35), and Mycoplasma spp. (r = 0.33), indicating potential co-infection or predisposition. Although significant differences in the total white blood cell counts were not observed, leukopenia was more commonly found in FeLV/FIV-positive cats. These findings indicate that a high burden of infection and co-infection exists in the feline population, supporting the need for expanded pathogen screening and enhanced vector control strategies. Full article
(This article belongs to the Special Issue Vector-Borne and Zoonotic Diseases in Dogs and Cats: Second Edition)
Show Figures

Figure 1

17 pages, 964 KB  
Article
Using Digital PCR to Unravel the Occurrence of Piroplasmids, Bartonella spp., and Borrelia spp. in Wild Animals from Brazil
by Ana Cláudia Calchi, Anna Claudia Baumel Mongruel, Fernanda Beatriz Pereira Cavalcanti, Lilliane Bartone, José Maurício Barbanti Duarte, Emília Patrícia Medici, Danilo Kluyber, Mayara G. Caiaffa, Mario Henrique Alves, Arnaud Leonard Jean Desbiez, Taciana Fernandes Souza Barbosa Coelho, Rosangela Zacarias Machado, Edward B. Breitschwerdt, Ricardo G. Maggi and Marcos Rogério André
Pathogens 2025, 14(6), 567; https://doi.org/10.3390/pathogens14060567 - 6 Jun 2025
Viewed by 1138
Abstract
Piroplasmids (Babesia spp., Rangelia spp., Theileria spp., Cytauxzoon spp.) are tick-borne apicomplexan protozoa that infect, depending on the species, erythrocytes and leucocytes in a wide variety of mammals and birds. The genera Bartonella and Borrelia include vector-borne bacteria that can infect and [...] Read more.
Piroplasmids (Babesia spp., Rangelia spp., Theileria spp., Cytauxzoon spp.) are tick-borne apicomplexan protozoa that infect, depending on the species, erythrocytes and leucocytes in a wide variety of mammals and birds. The genera Bartonella and Borrelia include vector-borne bacteria that can infect and cause disease in both animals and humans. Detection of hemotropic bacteria and piroplasmids in wild animals is often challenging due to low bacteremia or parasitemia. Digital (d)PCR has proven to be an effective modality for the detection and quantification of DNA of hemotropic pathogens with low parasitemia. This study compared dPCR results from 366 biological samples from seven different Brazilian wild animal groups (5 Xenarthra species, 5 deer species, 3 felid species, 1 canid species, 3 rodent species, 1 bat species, 1 tapir species, and 12 bird species) to two other molecular diagnostic techniques: quantitative real-time (qPCR) and nested (nPCR). For this study, DNA extracted from wild animal blood and spleen samples were subjected to a multiplex dPCR assay for piroplasmids, Bartonella spp., and Borrelia spp. For comparison, the same primers and probes for each agent were used in qPCR assays. Additionally, an nPCR based on the 18S rRNA gene for piroplasmids was performed. The proportions of positive results obtained using dPCR were 85.5% for piroplasmids, 33.6% for Bartonella spp., and 16.7% for Borrelia spp. For all tested agents, dPCR proved to be the technique with the highest sensitivity, making it a useful tool for screening vector-borne agents in biological samples from wild animals with low parasitemia. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

14 pages, 290 KB  
Article
Tick Species Identification and Zoonotic Bacteria Detection from Healthcare-Extracted Specimens from Humans in the Basque Country, Northern Iberian Peninsula
by Patirke Ibarrondo-Mendiola, Patricia Vázquez, Miriam Alkorta, Cristina Zugazaga, Ana L. García-Pérez, Jesús F. Barandika and Aitor Cevidanes
Pathogens 2025, 14(6), 561; https://doi.org/10.3390/pathogens14060561 - 4 Jun 2025
Viewed by 920
Abstract
Hard ticks are vectors of a wide range of pathogens, with tick-borne bacteria being among the most frequently detected. This study presents a first approach to the identification of human-biting ticks in the Basque Country (northern Iberian Peninsula), where previous research has mainly [...] Read more.
Hard ticks are vectors of a wide range of pathogens, with tick-borne bacteria being among the most frequently detected. This study presents a first approach to the identification of human-biting ticks in the Basque Country (northern Iberian Peninsula), where previous research has mainly focused on ticks from vegetation and domestic and wild animals. The aim of this study was (i) to identify tick species collected in hospitals and health centres and (ii) to determine the presence and identify of pathogenic bacteria that they may carry using PCR, RLB and sequencing methods. A total of 181 ticks were collected and grouped in pools of one, two or three specimens, resulting in 157 samples. Morphological and molecular identification of collected ticks revealed that most specimens belonged to Ixodes ricinus (88.5%). Additionally, Rhipicephalus bursa, Haemaphysalis punctata, Dermacentor reticulatus and Dermacentor marginatus were also identified. A total of 25 samples (15.9%) tested positive for DNA from the targeted pathogens. The most prevalent vector-borne bacteria were Borrelia spp. (6.4%), followed by Rickettsia spp. (5.1%), Anaplasma phagocytophilum (2.5%) and Coxiella spp. (1.9%). Species identified included B. afzelii, B. garinii, B. miyamotoi, B. valaisiana, B. burgdorferi s. s., R. monacensis, “Candidatus R. rioja”, R. helvetica and R. massiliae. This study highlights the usefulness of combining molecular diagnostics with passive surveillance of human-attached ticks as an effective tool for regional monitoring of ticks and tick-borne pathogens. Full article
(This article belongs to the Special Issue Ticks and Tick-Borne Pathogens in a Changing World)
Show Figures

Graphical abstract

27 pages, 4146 KB  
Review
The Hidden Threat: Rodent-Borne Viruses and Their Impact on Public Health
by Awad A. Shehata, Rokshana Parvin, Shadia Tasnim, Phelipe Magalhães Duarte, Alfonso J. Rodriguez-Morales and Shereen Basiouni
Viruses 2025, 17(6), 809; https://doi.org/10.3390/v17060809 - 2 Jun 2025
Cited by 3 | Viewed by 3916
Abstract
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that [...] Read more.
Rodents represent the most diverse order of mammals, comprising over 2200 species and nearly 42% of global mammalian biodiversity. They are major reservoirs of zoonotic pathogens, including viruses, bacteria, protozoa, and fungi, and are particularly effective at transmitting diseases, especially synanthropic species that live in close proximity to humans. As of April 2025, approximately 15,205 rodent-associated viruses have been identified across 32 viral families. Among these, key zoonotic agents belong to the Arenaviridae, Hantaviridae, Picornaviridae, Coronaviridae, and Poxviridae families. Due to their adaptability to both urban and rural environments, rodents serve as efficient vectors across diverse ecological landscapes. Environmental and anthropogenic factors, such as climate change, urbanization, deforestation, and emerging pathogens, are increasingly linked to rising outbreaks of rodent-borne diseases. This review synthesizes current knowledge on rodent-borne viral zoonoses, focusing on their taxonomy, biology, host associations, transmission dynamics, clinical impact, and public health significance. It underscores the critical need for early detection, effective surveillance, and integrated control strategies. A multidisciplinary approach, including enhanced vector control, improved environmental sanitation, and targeted public education, is essential for mitigating the growing threat of rodent-borne zoonoses to global health. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses 2026)
Show Figures

Figure 1

16 pages, 10919 KB  
Article
Isolation and Characterization of a Novel Orthomyxovirus from a Bothriocroton hydrosauri Tick Removed from a Blotched Blue-Tongued Skink (Tiliqua nigrolutea) in Tasmania, Australia
by Paul Selleck, Gemma Vincent, Mary Tachedjian, Sandra Crameri, Glenn Marsh, Stephen Graves and John Stenos
Zoonotic Dis. 2025, 5(2), 9; https://doi.org/10.3390/zoonoticdis5020009 - 10 Apr 2025
Viewed by 729
Abstract
Active and passive surveillance, followed by gene sequencing, continue to be used to identify a diverse range of novel bacteria, viruses, and other microorganisms in ticks with the potential to cause disease in vertebrate hosts following tick bite. In this study, we describe [...] Read more.
Active and passive surveillance, followed by gene sequencing, continue to be used to identify a diverse range of novel bacteria, viruses, and other microorganisms in ticks with the potential to cause disease in vertebrate hosts following tick bite. In this study, we describe the isolation and characterization of a novel virus from Bothriocroton hydrosauri ticks collected from a blotched blue-tongue, Tiliqua nigrolutea. In an attempt to isolate rickettsia, the inoculation of Vero cell cultures with tick extracts led to the isolation of a virus, identified as a novel tick Orthomyxovirus by electron microscopy and gene sequencing. Transmission electron microscopic analysis revealed that B. hydrosauri tick virus-1 (BHTV-1) is a spherical orthomyxovirus, 85 nm in size. Multiple developmental stages of the virus were evident in vitro. Analysis of putative BHTV-1 amino acid sequences derived from a genomic analysis of virus-infected host cell extracts revealed the presence of six putative RNA segments encoding genes, sharing the closest sequence similarity to viral sequences belonging to the arthropod-borne Thogotovirus genus within the Orthomyxoviridae. Thogotoviruses are an emerging cause of disease in humans and animals following tick bite. The detection of this new thogotovirus, BHTV-1, in B. hydrosauri, a competent vector for human tick-borne infectious diseases, warrants follow-up investigation to determine its prevalence, host range, and pathogenic potential. Full article
Show Figures

Figure 1

15 pages, 969 KB  
Article
Vector-Borne Bacteria Detected in Ticks, Mites and Flies Parasitizing Bats in the State of Rondônia, Brazilian Amazon
by Leormando Fortunato Dornelas Júnior, Irineu Norberto Cunha, Felipe Rodrigues Jorge, Gustavo Graciolli, Ricardo Bassini-Silva, Fernando de Castro Jacinavicius, Maria Carolina A. Serpa, Marcelo Bahia Labruna, Felipe Arley Costa Pessoa and Luís Marcelo Aranha Camargo
Pathogens 2025, 14(4), 338; https://doi.org/10.3390/pathogens14040338 - 31 Mar 2025
Viewed by 1097
Abstract
Bats (Chiroptera) are among the most diverse and geographically dispersed mammals. They are of great importance to the ecosystem, as pollinators, seed dispersers and pest controllers, in addition to being hosts to several parasitic arthropods, including ticks, mites, lice, fleas and flies. Their [...] Read more.
Bats (Chiroptera) are among the most diverse and geographically dispersed mammals. They are of great importance to the ecosystem, as pollinators, seed dispersers and pest controllers, in addition to being hosts to several parasitic arthropods, including ticks, mites, lice, fleas and flies. Their diet includes the tissue and blood or other body fluids of bats. Bats are reservoirs of several disease-causing agents, many of them pathogenic to humans, such as bacteria, as well as protozoa, viruses and fungi. This study was conducted in Monte Negro, Rondônia, Brazil and the occurrence of parasitic arthropods in bats was evaluated, as well as a screening of bacteria that these ectoparasites can carry. Through a total of 69 nocturnal captures, 217 chiropterans were sampled, representing 23 species and six families. A total of 592 specimens of parasitic arthropods (ticks, mites and flies) were collected from these bats (9% dipterans, 59% ticks and 32% mites). Bartonella spp. were found in two species of bat flies (Trichobius joblingi and Strebla mirabilis) in peri-urban and forest areas with an infection rate of 62% and 38%, respectively. We report for the first time in Rondônia the argasid tick Ornithodoros hasei and its infection by a spotted fever group bacterium ‘Candidatus Rickettsia wissemanii’ in a peri-urban area. Full article
(This article belongs to the Special Issue Zoonotic Pathogens in the Tropics: From the Forest to the Cities)
Show Figures

Figure 1

20 pages, 3280 KB  
Article
Molecular Survey of Anaplasmataceae Agents, Rickettsia spp., Bartonella spp., and Piroplasmids in Ectoparasites from Cave-Dwelling Bats in Mainland Portugal
by Gustavo Seron Sanches, Luísa Rodrigues, Estefania Torrejón, Ricardo Bassini-Silva, Ana Cláudia Calchi, Daniel Antônio Braga Lee, Paulo Vitor Cadina Arantes, Eder Barbier, Darci Moraes Barros-Battesti, Gustavo Graciolli, Rosangela Zacarias Machado, Sandra Antunes, Ana Domingos and Marcos Rogério André
Pathogens 2025, 14(3), 273; https://doi.org/10.3390/pathogens14030273 - 12 Mar 2025
Cited by 1 | Viewed by 1134
Abstract
Bats and their ectoparasites play a crucial role in understanding the ecology and transmission of vector-borne pathogens, yet these dynamics remain poorly studied in Portugal. This study aimed to investigate the molecular occurrence of vector-borne bacteria (Anaplasma spp., Bartonella spp., Ehrlichia spp., [...] Read more.
Bats and their ectoparasites play a crucial role in understanding the ecology and transmission of vector-borne pathogens, yet these dynamics remain poorly studied in Portugal. This study aimed to investigate the molecular occurrence of vector-borne bacteria (Anaplasma spp., Bartonella spp., Ehrlichia spp., and Rickettsia spp.) and protozoa (Babesia spp. and Theileria spp.) in ectoparasites of cave-dwelling bats. Bats were sampled from two caves in Portugal, and their ectoparasites included wing mites (Spinturnix myoti), ticks (Ixodes simplex), and bat flies (Penicillidia conspicua and Nycteribia schmidlii). Molecular analyses revealed the presence of Bartonella spp. in S. myoti and N. schmidlii. Phylogenetic inference based on the gltA gene positioned the detected genotypes close to those previously reported in bats and Nycteribiidae flies in Europe, Asia, and Africa. Notably, no DNA from Anaplasmataceae, Rickettsia spp., or piroplasmids was detected. The prevalence of S. myoti was high, with all examined bats being infested, showing notable differences in ectoparasite diversity concerning sex and cave-specific location. These findings suggest that host behavior, environmental conditions, and ectoparasite lifecycles play critical roles in shaping pathogen transmission dynamics. This study advances the understanding of bat ectoparasite–pathogen interactions in a region with limited data and highlights the need for continued research to assess the zoonotic potential and ecological impacts of the Bartonella genotypes detected herein. Full article
Show Figures

Figure 1

18 pages, 1025 KB  
Article
Zoonotic Bacteria and Vector-Borne Protozoa in Troglophilus Bat Colonies in Sicily (Southern Italy): A Biomolecular Survey
by Santina Di Bella, Ilenia Giacchino, Valeria Blanda, Francesca Gucciardi, Silvia Scibetta, Francesco La Russa, Antonio Lastra, Giuseppa Purpari, Rosario Grasso, Maria Teresa Spena, Bianca Maria Orlandella, Nadia Vicari, Emanuela Olivieri, Francesca Grippi and Annalisa Guercio
Animals 2025, 15(4), 488; https://doi.org/10.3390/ani15040488 - 9 Feb 2025
Cited by 3 | Viewed by 1334
Abstract
Bats, as members of the order Chiroptera, are vital to ecosystems and serve as reservoirs for numerous microorganisms, some of which can cause zoonotic diseases. Human interactions with bats are increasing due to habitat alterations, making it essential to understand their microbiota, particularly [...] Read more.
Bats, as members of the order Chiroptera, are vital to ecosystems and serve as reservoirs for numerous microorganisms, some of which can cause zoonotic diseases. Human interactions with bats are increasing due to habitat alterations, making it essential to understand their microbiota, particularly potential pathogens. This study aimed to evaluate the excretion of zoonotic bacteria and protozoa in insectivorous bats from four caves in the provinces of Ragusa, Catania, and Syracuse (Sicily, Southern Italy) using molecular biology tests for zoonotic agents, including Bartonella henselae, Borrelia, Coxiella burnetii, Leptospira, Chlamydia, Rickettsia, Anaplasma, and Piroplasmids. From December 2020 to April 2023, urine, fecal swabs, ocular conjunctival swabs, and oropharyngeal swabs were collected from 149 bats of six species, along with guano samples from the caves. Bartonella henselae DNA was detected in 3 of the 149 tested bats, one ocular conjunctival swab and two oropharyngeal swabs. Chlamydia spp. DNA was detected in a sample of guano, in feces, ocular conjunctival and oropharyngeal swabs of a bat, and in four urine samples. Piroplasmid DNA was detected in 10 of 149 fecal swabs and in 5 of 16 bat ectoparasites. No samples were positive for Leptospira spp., Borrelia spp., Coxiella burnetii, Rickettsia spp., or Anaplasma spp. These findings underscore the importance of multiple sample types in assessing bats as reservoirs for zoonotic pathogens, particularly highlighting their role in transmitting pathogens through various body habitats, including saliva, urine, and ocular excretions. This study highlights the relevance of monitoring bat populations and studying their microbiota to enhance protections for both human and animal health. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

20 pages, 2259 KB  
Article
Molecular Detection of Rickettsia spp. and Other Tick-Borne Pathogens in Ticks from a Nature Reserve: Implications for Zoonotic Transmission
by Santina Di Bella, Valeria Blanda, Silvia Scibetta, Ilenia Giacchino, Antonino Gentile, Giuseppina Chiarenza, Vincenza Cannella, Giovanni Provinzano, Francesca Grippi and Annalisa Guercio
Animals 2025, 15(1), 72; https://doi.org/10.3390/ani15010072 - 31 Dec 2024
Cited by 1 | Viewed by 1390
Abstract
Ticks are a major concern for both animal and human health, as they are primary vectors of infectious pathogens. This study focused on ticks found in a nature reserve in southern Italy, highly frequented for recreational activities and inhabited by wild boars. Using [...] Read more.
Ticks are a major concern for both animal and human health, as they are primary vectors of infectious pathogens. This study focused on ticks found in a nature reserve in southern Italy, highly frequented for recreational activities and inhabited by wild boars. Using molecular techniques, 214 ticks, including questing ticks and those removed from wild boars, were examined for tick-borne pathogens (TBPs), with a focus on zoonotic pathogens. Six tick species were identified: Hyalomma lusitanicum, Rhipicephalus pusillus, Rh. sanguineus s.l., Rh. bursa, Rh. turanicus, and Dermacentor marginatus, several of which are known vectors of zoonotic pathogens. Overall, 14% of ticks were positive for TBPs, mainly bacteria of Rickettsia genus. Molecular analyses detected Rickettsia slovaca, R. massiliae, Candidatus R. shennongii, R. conorii, R. felis, and R. barbariae. Additionally, single detections of Coxiella burnetii and Theileria annulata were recorded. Phylogenetic analyses were conducted on Rickettsia sequences. The range of ticks and TBPs present in this area highlights potential public health concerns. New associations between tick species and TBPs were documented, though vector roles need further investigation. The study highlights the importance of monitoring tick populations in both rural and urban environments to protect public health and prevent tick-borne disease spreading. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

12 pages, 1084 KB  
Article
Molecular Identification of Borreliella Species in Ixodes hexagonus Ticks Infesting Hedgehogs (Erinaceus europaeus and E. roumanicus) in North-Western Poland
by Kolomiiets Valentyna and Wodecka Beata
Int. J. Mol. Sci. 2025, 26(1), 58; https://doi.org/10.3390/ijms26010058 - 25 Dec 2024
Cited by 1 | Viewed by 1043
Abstract
The western European hedgehog (Erinaceus europaeus) and the northern white-breasted hedgehog (E. roumanicus) are natural hosts of the tick Ixodes hexagonus, the vector of tick-borne pathogens such as the Borreliella bacteria responsible for Lyme disease. The aim of [...] Read more.
The western European hedgehog (Erinaceus europaeus) and the northern white-breasted hedgehog (E. roumanicus) are natural hosts of the tick Ixodes hexagonus, the vector of tick-borne pathogens such as the Borreliella bacteria responsible for Lyme disease. The aim of this study was to identify these pathogens in ticks collected from hedgehogs in northwestern Poland and to assess their genetic diversity by molecular analysis of the detected pathogens based on the flaB gene and the mag-trnI intergenic spacer. Among 101 hedgehogs examined, 737 ticks were found on 56 (55.45%) individuals, including 501 females of I. hexagonus. Borreliella spirochete infection was confirmed in 9 females of I. hexagonus (1.8%) obtained from 4 (3.96%) hedgehogs, detecting Borreliella (Bl.) afzelii (8/89%) and Bl. spielmanii (1/11%). Phylogenetic analysis based on the flaB gene and the mag-trnI intergenic spacer showed a lack of diversity in Bl. afzelii detected in I. hexagonus ticks collected from hedgehogs as well as little diversity against reference strains detected in small mammals and ticks collected from them. The results confirm that hedgehogs play an important role in the circulation of the detected spirochete species, at least as hosts of I. hexagonus ticks infected with them, indicating their potential to spread Borreliella spirochetes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

7 pages, 574 KB  
Brief Report
Significance of Detecting Serum Antibodies to Outer Surface Protein A of Lyme Disease Borreliae in PCR-Confirmed Blood Infections
by Jyotsna S. Shah and Ranjan Ramasamy
Diagnostics 2024, 14(23), 2704; https://doi.org/10.3390/diagnostics14232704 - 30 Nov 2024
Viewed by 1376
Abstract
Background/Objectives: Lyme disease is caused by some species of tick-borne bacteria of the genus Borrelia, termed Lyme disease Borreliae (LDB). Borrelia burgdorferi is the LDB species principally responsible for Lyme disease in the US. The outer surface protein A (OspA) of [...] Read more.
Background/Objectives: Lyme disease is caused by some species of tick-borne bacteria of the genus Borrelia, termed Lyme disease Borreliae (LDB). Borrelia burgdorferi is the LDB species principally responsible for Lyme disease in the US. The outer surface protein A (OspA) of LDB attaches the bacteria to the gut of Ixodes tick vectors. OspA expression is downregulated when B. burgdorferi is transmitted from ticks to mammalian hosts. Vaccination with OspA elicits antibody-mediated protective immunity in animals and humans against LDB infection. The possible presence of serum antibodies against OspA in persons with PCR-confirmed LDB infections in blood was investigated in this study. Methods: Ninety-one archived sera from patients with LDB infections in blood demonstrated by a sensitive PCR assay were tested for reactivity with OspA from multiple LDB species in line immunoblots. Results: In total, 14 of the 91 sera (15.4%) had either IgG or IgM antibodies to OspA from one or more LDB species. Conclusions: The results show for the first time that serum antibodies to OspA are formed when LDB are present in human blood. However, the factors that governed the expression of OspA by LDB in patients could not be ascertained. It will be useful to determine whether the observed levels of serum antibodies to OspA in infected persons can protect against subsequent tick-borne infection and whether OspA used in conjunction with other LDB antigens can improve the serological diagnosis of Lyme disease. Full article
Show Figures

Figure 1

16 pages, 1024 KB  
Review
Wolbachia-Based Approaches to Controlling Mosquito-Borne Viral Threats: Innovations, AI Integration, and Future Directions in the Context of Climate Change
by Francesco Branda, Eleonora Cella, Fabio Scarpa, Svetoslav Nanev Slavov, Annamaria Bevivino, Riccardo Moretti, Abate Lemlem Degafu, Leandro Pecchia, Alberto Rizzo, Francesco Defilippo, Ana Moreno, Giancarlo Ceccarelli, Luiz Carlos Junior Alcantara, Alvaro Ferreira, Massimo Ciccozzi and Marta Giovanetti
Viruses 2024, 16(12), 1868; https://doi.org/10.3390/v16121868 - 30 Nov 2024
Cited by 8 | Viewed by 4632
Abstract
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional [...] Read more.
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases. Changes in temperature, humidity, and rainfall patterns can alter mosquito breeding habitats and extend the geographical range of disease vectors, increasing the urgency for effective control measures. This review highlights innovations in Wolbachia-based mosquito control and explores future directions in the context of climate change. It emphasizes the integration of Wolbachia with other biological approaches and the need for multidisciplinary efforts to address climate-amplified disease risks. As ecosystems shift, Wolbachia interventions could be crucial in reducing mosquito-borne diseases, especially in vulnerable regions. AI integration in Wolbachia research presents opportunities to enhance mosquito control strategies by modeling ecological data, predicting mosquito dynamics, and optimizing intervention outcomes. Key areas include refining release strategies, real-time monitoring, and scaling interventions. Future opportunities lie in advancing AI-driven approaches for integrating Wolbachia with other vector control measures, promoting adaptive, data-driven responses to climate-amplified disease transmission. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

11 pages, 6192 KB  
Article
In Situ Localization of Staphylococcus shinii and Staphylococcus succinus in Infected Rhipicephalus microplus Ticks: Implications for Biocontrol Strategies
by Cesar A. Arreguin-Perez, Raquel Cossio-Bayugar, Hugo Aguilar-Diaz and Estefan Miranda-Miranda
Pathogens 2024, 13(12), 1025; https://doi.org/10.3390/pathogens13121025 - 21 Nov 2024
Cited by 2 | Viewed by 1503
Abstract
Rhipicephalus microplus is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an [...] Read more.
Rhipicephalus microplus is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections on R. microplus. Our experimental data confirmed that S. shinii and S. succinus exhibited significant acaropathogenic properties against R. microplus, as demonstrated by the tracking of fluorescent-labeled bacteria within the engorged-tick body. Our experiments revealed that both bacterial species could infect the hemolymph, salivary glands, and vestibular vagina of the tick, inducing histological changes in the affected organs that may impair feeding as well as reproductive capabilities. Gené’s organ infection was detected only in S. succinus. Our findings offer valuable insights for developing biocontrol strategies to manage Rhipicephalus microplus populations effectively. Full article
Show Figures

Figure 1

22 pages, 5058 KB  
Article
Characterization of the Blood Bacterial Microbiota in Lowland Tapirs (Tapirus terrestris), a Vulnerable Species in Brazil
by Anna Claudia Baumel Mongruel, Emília Patrícia Medici, Rosangela Zacarias Machado, Keith Clay and Marcos Rogério André
Microorganisms 2024, 12(11), 2270; https://doi.org/10.3390/microorganisms12112270 - 8 Nov 2024
Cited by 3 | Viewed by 1463
Abstract
Microbiome studies targeting hypervariable regions of the 16S rRNA gene are suitable for understanding interactions between animals and their associated bacteria. While many studies focus on the gut microbiome, assessments of blood microbiota remain scarce despite the prevalence of blood-borne pathogens in vertebrates. [...] Read more.
Microbiome studies targeting hypervariable regions of the 16S rRNA gene are suitable for understanding interactions between animals and their associated bacteria. While many studies focus on the gut microbiome, assessments of blood microbiota remain scarce despite the prevalence of blood-borne pathogens in vertebrates. This study aimed to investigate the bacterial community in blood samples from 79 living and 7 road-killed lowland tapirs (Tapirus terrestris), a vulnerable species, sampled in two biomes in midwestern Brazil: Pantanal and Cerrado. Animals were categorized by condition (living or road-killed), sex, age, and biome. V3–V4 16S rRNA fragments were obtained from 86 blood samples and 4 negative controls. After filtering contaminants, 13,742,198 sequences representing 2146 ASVs were analyzed. Alpha diversity significantly differed by condition, while beta diversity differed by condition, site, and age (adults vs. sub-adults). For living animals (79/86 samples), alpha diversity showed no significant differences, but beta diversity differed by age. Different vector-borne bacterial pathogens, including Anaplasmataceae, Bartonella, and Borrelia spp., were detected. Additionally, evidence of transient translocation of microbial communities from other body regions to the bloodstream was observed. Amplification of bacterial 16S rRNA from blood samples of wild T. terrestris provided novel information about the diversity of blood-borne microbiota of lowland tapirs, members of a poorly studied mammalian family. Next-generation sequencing proved to be a valuable tool for screening potential vector-borne pathogens in this host. Full article
Show Figures

Figure 1

Back to TopTop