Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,266)

Search Parameters:
Keywords = vehicle path optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
99 pages, 1612 KB  
Review
Machine Learning-Based Electric Vehicle Charging Demand Forecasting: A Systematized Literature Review
by Maher Alaraj, Mohammed Radi, Elaf Alsisi, Munir Majdalawieh and Mohamed Darwish
Energies 2025, 18(17), 4779; https://doi.org/10.3390/en18174779 - 8 Sep 2025
Abstract
The transport sector significantly contributes to global greenhouse gas emissions, making electromobility crucial in the race toward the United Nations Sustainable Development Goals. In recent years, the increasing competition among manufacturers, the development of cheaper batteries, the ongoing policy support, and people’s greater [...] Read more.
The transport sector significantly contributes to global greenhouse gas emissions, making electromobility crucial in the race toward the United Nations Sustainable Development Goals. In recent years, the increasing competition among manufacturers, the development of cheaper batteries, the ongoing policy support, and people’s greater environmental awareness have consistently increased electric vehicles (EVs) adoption. Nevertheless, EVs charging needs—highly influenced by EV drivers’ behavior uncertainty—challenge their integration into the power grid on a massive scale, leading to potential issues, such as overloading and grid instability. Smart charging strategies can mitigate these adverse effects by using information and communication technologies to optimize EV charging schedules in terms of power systems’ constraints, electricity prices, and users’ preferences, benefiting stakeholders by minimizing network losses, maximizing aggregators’ profit, and reducing users’ driving range anxiety. To this end, accurately forecasting EV charging demand is paramount. Traditionally used forecasting methods, such as model-driven and statistical ones, often rely on complex mathematical models, simulated data, or simplifying assumptions, failing to accurately represent current real-world EV charging profiles. Machine learning (ML) methods, which leverage real-life historical data to model complex, nonlinear, high-dimensional problems, have demonstrated superiority in this domain, becoming a hot research topic. In a scenario where EV technologies, charging infrastructure, data acquisition, and ML techniques constantly evolve, this paper conducts a systematized literature review (SLR) to understand the current landscape of ML-based EV charging demand forecasting, its emerging trends, and its future perspectives. The proposed SLR provides a well-structured synthesis of a large body of literature, categorizing approaches not only based on their ML-based approach, but also on the EV charging application. In addition, we focus on the most recent technological advances, exploring deep-learning architectures, spatial-temporal challenges, and cross-domain learning strategies. This offers an integrative perspective. On the one hand, it maps the state of the art, identifying a notable shift toward deep-learning approaches and an increasing interest in public EV charging stations. On the other hand, it uncovers underexplored methodological intersections that can be further exploited and research gaps that remain underaddressed, such as real-time data integration, long-term forecasting, and the development of adaptable models to different charging behaviors and locations. In this line, emerging trends combining recurrent and convolutional neural networks, and using relatively new ML techniques, especially transformers, and ML paradigms, such as transfer-, federated-, and meta-learning, have shown promising results for addressing spatial-temporality, time-scalability, and geographical-generalizability issues, paving the path for future research directions. Full article
(This article belongs to the Topic Electric Vehicles Energy Management, 2nd Volume)
31 pages, 5528 KB  
Article
Gradient-Based Time-Extended Potential Field Method for Real-Time Path Planning in Infrastructure-Based Cooperative Driving Systems
by Jakyung Ko and Inchul Yang
Sensors 2025, 25(17), 5601; https://doi.org/10.3390/s25175601 - 8 Sep 2025
Abstract
This study proposes a real-time path generation method called the Gradient-based Time-extended Potential Field (GT-PF) for cooperative autonomous driving environments. The proposed approach models the road environment and dynamic obstacles as a time-variant potential field and generates safe and feasible paths by tracing [...] Read more.
This study proposes a real-time path generation method called the Gradient-based Time-extended Potential Field (GT-PF) for cooperative autonomous driving environments. The proposed approach models the road environment and dynamic obstacles as a time-variant potential field and generates safe and feasible paths by tracing the negative gradient of the field, which corresponds to the direction of steepest descent. In contrast to conventional sampling-based or optimization-based methods, the proposed PF framework enables lightweight computation and continuous trajectory generation in spatiotemporal domains. Furthermore, a velocity-oriented bias is introduced in the PF formulation to ensure that the generated paths satisfy the vehicle’s kinematic constraints and desired cruising behavior. The effectiveness of the proposed method is verified through comparative simulations against a sampling-based Rapidly exploring Random Tree (RRT) planner. Results demonstrate that the GT-PF approach exhibits superior performance in terms of runtime efficiency and safety. The system is particularly suitable for RSU (Roadside Unit)-based infrastructure control in real-time traffic environments. Future work includes the extension to complex urban scenarios, integration with multi-agent planning frameworks, and deployment in sensor-fused cooperative perception systems. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

31 pages, 4028 KB  
Article
Efficient Area Coverage Strategies for High-Altitude UAVs in Smart City Monitoring
by Didar Yedilkhan, Abzal Kyzyrkanov, Beibut Amirgaliyev, Nursultan Khaimuldin, Muhammad Shoaib Ayub and Ainur Zhumadillayeva
Drones 2025, 9(9), 632; https://doi.org/10.3390/drones9090632 (registering DOI) - 8 Sep 2025
Abstract
This scientific article presents an innovative approach to optimizing routes of high-altitude unmanned aerial vehicles (UAVs) for effective monitoring of smart cities. The main proposed method is based on the ant colony optimization (ACO) algorithm with the implementation of an inverse pheromone mechanism—a [...] Read more.
This scientific article presents an innovative approach to optimizing routes of high-altitude unmanned aerial vehicles (UAVs) for effective monitoring of smart cities. The main proposed method is based on the ant colony optimization (ACO) algorithm with the implementation of an inverse pheromone mechanism—a repulsion-based exploration strategy. Unlike standard pheromones that encourage exploitation of frequently visited paths, this approach promotes exploration of unvisited areas by repelling UAVs from undesirable route sections, allowing UAVs to adapt more efficiently to dynamic changes in the urban environment. The authors developed a simulation system in the Webots environment, taking into account numerous factors: atmospheric conditions at high altitudes, potential for improved energy efficiency, urban development features, and priority of observation zones. Simulation results demonstrate that the proposed algorithm using inverse pheromones provides more effective area coverage compared to traditional route-planning methods, which may contribute to reduced UAV energy consumption and optimizing the monitoring process in real time. The research makes a significant contribution to the development of smart city technologies, offering a solution that can be integrated with existing urban monitoring systems to improve the efficiency of urban infrastructure observation, enhance security, and optimize urban resource management. Full article
(This article belongs to the Section Innovative Urban Mobility)
Show Figures

Figure 1

36 pages, 1547 KB  
Review
UAV–Ground Vehicle Collaborative Delivery in Emergency Response: A Review of Key Technologies and Future Trends
by Yizhe Wang, Jie Li, Xiaoguang Yang and Qing Peng
Appl. Sci. 2025, 15(17), 9803; https://doi.org/10.3390/app15179803 (registering DOI) - 6 Sep 2025
Viewed by 463
Abstract
UAV delivery and ground transfer scheduling in emergency scenarios represent critical technological systems for enhancing disaster response capabilities and safeguarding lives and property. This study systematically reviews recent advances across eight core research domains: UAV emergency delivery systems, ground–air integrated transportation coordination, emergency [...] Read more.
UAV delivery and ground transfer scheduling in emergency scenarios represent critical technological systems for enhancing disaster response capabilities and safeguarding lives and property. This study systematically reviews recent advances across eight core research domains: UAV emergency delivery systems, ground–air integrated transportation coordination, emergency logistics optimization, UAV path planning and scheduling algorithms, collaborative optimization between ground vehicles and UAVs, emergency response decision support systems, low-altitude economy and urban air traffic management, and intelligent transportation system integration. Research findings indicate that UAV delivery technologies in emergency contexts have evolved from single-aircraft applications to intelligent multi-modal collaborative systems, demonstrating significant advantages in medical supply distribution, disaster relief, and search-and-rescue operations. Current technological development exhibits four major trends: hybrid optimization algorithms, multi-UAV cooperation, artificial intelligence enhancement, and real-time adaptation capabilities. However, critical challenges persist, including regulatory framework integration, adverse weather adaptability, cybersecurity protection, human–machine interface design, cost–benefit assessment, and standardization deficiencies. Future research should prioritize distributed decision architectures, robustness optimization, cross-domain collaboration mechanisms, emerging technology integration, and practical application validation. This comprehensive review provides systematic theoretical foundations and practical guidance for emergency management agencies in formulating technology development strategies, enterprises in investment planning, and research institutions in determining research priorities. Full article
(This article belongs to the Special Issue Artificial Intelligence in Drone and UAV)
Show Figures

Figure 1

31 pages, 2804 KB  
Article
Prediction of Electric Vehicle Charging Load Considering User Travel Characteristics and Charging Behavior
by Haihong Bian, Xin Tang, Kai Ji, Yifan Zhang and Yongqing Xie
World Electr. Veh. J. 2025, 16(9), 502; https://doi.org/10.3390/wevj16090502 - 6 Sep 2025
Viewed by 135
Abstract
Accurate forecasting of the electric vehicle (EV) charging load is a prerequisite for developing coordinated charging and discharging strategies. This study proposes a method for predicting the EV charging load by incorporating user travel characteristics and charging behavior. First, a transportation network–distribution network [...] Read more.
Accurate forecasting of the electric vehicle (EV) charging load is a prerequisite for developing coordinated charging and discharging strategies. This study proposes a method for predicting the EV charging load by incorporating user travel characteristics and charging behavior. First, a transportation network–distribution network coupling framework is established based on a road network model with multi-source information fusion. Second, considering the multiple-intersection features of urban road networks, a time-flow model is developed. A time-optimal path selection method is designed based on the topological structure of the road network. Then, an EV driving energy consumption model is developed, accounting for both the mileage energy consumption and air conditioning energy consumption. Next, the user travel characteristics are finely modeled under two scenarios: working days and rest days. A user charging decision model is established using a fuzzy logic inference system, taking into account the state of charge (SOC), average electricity price, and parking duration. Finally, the Monte Carlo method is applied to simulate user travel and charging behavior. A simulation of the spatiotemporal distribution of the EV charging load was conducted in a specific area of Jiangning District, Nanjing. The simulation results show that there is a significant difference in the time distribution of EV charging loads between working days and rest days, with peak-to-valley differences of 3100.8 kW and 3233.5 kW, respectively. Full article
(This article belongs to the Special Issue Sustainable EV Rapid Charging, Challenges, and Development)
29 pages, 1588 KB  
Review
A Review of Dynamic Traffic Flow Prediction Methods for Global Energy-Efficient Route Planning
by Pengyang Qi, Chaofeng Pan, Xing Xu, Jian Wang, Jun Liang and Weiqi Zhou
Sensors 2025, 25(17), 5560; https://doi.org/10.3390/s25175560 - 5 Sep 2025
Viewed by 559
Abstract
Urbanization and traffic congestion caused by the surge in car ownership have exacerbated energy consumption and carbon emissions, and dynamic traffic flow prediction and energy-saving route planning have become the key to solving this problem. Dynamic traffic flow prediction accurately captures the spatio-temporal [...] Read more.
Urbanization and traffic congestion caused by the surge in car ownership have exacerbated energy consumption and carbon emissions, and dynamic traffic flow prediction and energy-saving route planning have become the key to solving this problem. Dynamic traffic flow prediction accurately captures the spatio-temporal changes of traffic flow through advanced algorithms and models, providing prospective information for traffic management and travel decision-making. Energy-saving route planning optimizes travel routes based on prediction results, reduces the time vehicles spend on congested road sections, thereby reducing fuel consumption and exhaust emissions. However, there are still many shortcomings in the current relevant research, and the existing research is mostly isolated and applies a single model, and there is a lack of systematic comparison of the adaptability, generalization ability and fusion potential of different models in various scenarios, and the advantages of heterogeneous graph neural networks in integrating multi-source heterogeneous data in traffic have not been brought into play. This paper systematically reviews the relevant global studies from 2020 to 2025, focuses on the integration path of dynamic traffic flow prediction methods and energy-saving route planning, and reveals the advantages of LSTM, graph neural network and other models in capturing spatiotemporal features by combing the application of statistical models, machine learning, deep learning and mixed methods in traffic forecasting, and comparing their performance with RMSE, MAPE and other indicators, and points out that the potential of heterogeneous graph neural networks in multi-source heterogeneous data integration has not been fully explored. Aiming at the problem of disconnection between traffic prediction and path planning, an integrated framework is constructed, and the real-time prediction results are integrated into path algorithms such as A* and Dijkstra through multi-objective cost functions to balance distance, time and energy consumption optimization. Finally, the challenges of data quality, algorithm efficiency, and multimodal adaptation are analyzed, and the development direction of standardized evaluation platform and open source toolkit is proposed, providing theoretical support and practical path for the sustainable development of intelligent transportation systems. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

21 pages, 6118 KB  
Article
3D Spatial Path Planning Based on Improved Particle Swarm Optimization
by Junxia Ma, Zixu Yang and Ming Chen
Future Internet 2025, 17(9), 406; https://doi.org/10.3390/fi17090406 - 5 Sep 2025
Viewed by 133
Abstract
Three-dimensional path planning is critical for the successful operation of unmanned aerial vehicles (UAVs), automated guided vehicles (AGVs), and robots in industrial Internet of Things (IIoT) applications. In 3D path planning, the standard Particle Swarm Optimization (PSO) algorithm suffers from premature convergence and [...] Read more.
Three-dimensional path planning is critical for the successful operation of unmanned aerial vehicles (UAVs), automated guided vehicles (AGVs), and robots in industrial Internet of Things (IIoT) applications. In 3D path planning, the standard Particle Swarm Optimization (PSO) algorithm suffers from premature convergence and a tendency to fall into local optima, leading to significant deviations from the optimal path. This paper proposes an improved PSO (IPSO) algorithm that enhances particle diversity and randomness through the introduction of logistic chaotic mapping, while employing dynamic learning factors and nonlinear inertia weights to improve global search capability. Experimental results demonstrate that IPSO outperforms traditional methods in terms of path length and computational efficiency, showing potential for real-time path planning in complex environments. Full article
Show Figures

Figure 1

26 pages, 9169 KB  
Article
Multi-Objective Path Planning for USVs Considering Environmental Factors
by Weiqiang Liao, Feng Zhang, Xinyue Wu and Huihui Li
J. Mar. Sci. Eng. 2025, 13(9), 1705; https://doi.org/10.3390/jmse13091705 - 3 Sep 2025
Viewed by 186
Abstract
This study investigates the multi-objective path planning problem for unmanned surface vehicles (USVs), aiming to optimize both travel distance and energy consumption in maritime environments with obstacles, sea winds, and ocean currents. The proposed method accounts for practical constraints, including collision avoidance, kinematic [...] Read more.
This study investigates the multi-objective path planning problem for unmanned surface vehicles (USVs), aiming to optimize both travel distance and energy consumption in maritime environments with obstacles, sea winds, and ocean currents. The proposed method accounts for practical constraints, including collision avoidance, kinematic boundaries, and speed limitations. The problem is formulated as a nonlinear multi-objective optimization model with generalized constraints and is solved using an improved particle swarm optimization algorithm enhanced by a vector-weighted fusion strategy. The algorithm adaptively balances exploration and exploitation to obtain diverse Pareto-optimal solutions. Simulation results under varying environmental conditions, along with real-world sea trials, validate the effectiveness of the proposed approach. The outcomes demonstrate that the method enables USVs to generate energy-efficient, smooth trajectories while maintaining robustness and adaptability, offering practical value for intelligent marine navigation. Full article
(This article belongs to the Special Issue Motion Control and Path Planning of Marine Vehicles—3rd Edition)
Show Figures

Figure 1

20 pages, 2591 KB  
Article
Distributed Robust Routing Optimization for Laser-Powered UAV Cluster with Temporary Parking Charging
by Xunzhuo He, Yuanchang Zhong and Han Li
Appl. Sci. 2025, 15(17), 9676; https://doi.org/10.3390/app15179676 - 2 Sep 2025
Viewed by 280
Abstract
Unmanned aerial vehicle (UAV) clusters are increasingly deployed in power system applications, such as transmission line inspection, fault diagnosis, and post-disaster emergency communication restoration. Nonetheless, limitations of range and battery capacity have rendered the assurance of uninterrupted task operation a critical concern. Efficient [...] Read more.
Unmanned aerial vehicle (UAV) clusters are increasingly deployed in power system applications, such as transmission line inspection, fault diagnosis, and post-disaster emergency communication restoration. Nonetheless, limitations of range and battery capacity have rendered the assurance of uninterrupted task operation a critical concern. Efficient cooperation and energy replenishment solutions are crucial for effective UAV cluster scheduling to resolve this issue. This study proposes an innovative scheduling method that integrates UAV path planning with laser-based remote charging technology. Initially, a scheduling model incorporating both energy consumption and task completion time is established. Subsequently, an integrated laser-powered UAV model is proposed, unifying charging operations with mission execution processes. Furthermore, a distributed robust optimization (DRO) framework is proposed to handle spatiotemporal uncertainties, particularly those caused by weather conditions. Finally, the proposed scheduling method is applied to a disaster recovery scenario of a power system. Simulation results demonstrate that the proposed strategy significantly outperforms traditional scheduling methods without remote charging by achieving higher task completion rates and improved energy efficiency. These findings substantiate the effectiveness and engineering feasibility of the proposed method in enhancing UAV cluster operational capabilities under stringent energy constraints. Full article
Show Figures

Figure 1

22 pages, 3513 KB  
Article
Tightly-Coupled Air-Ground Collaborative System for Autonomous UGV Navigation in GPS-Denied Environments
by Jiacheng Deng, Jierui Liu and Jiangping Hu
Drones 2025, 9(9), 614; https://doi.org/10.3390/drones9090614 - 31 Aug 2025
Viewed by 308
Abstract
Autonomous navigation for unmanned vehicles in complex, unstructured environments remains challenging, especially in GPS-denied or obstacle-dense scenarios, limiting their practical deployment in logistics, inspection, and emergency response applications. To overcome these limitations, this paper presents a tightly integrated air-ground collaborative system comprising three [...] Read more.
Autonomous navigation for unmanned vehicles in complex, unstructured environments remains challenging, especially in GPS-denied or obstacle-dense scenarios, limiting their practical deployment in logistics, inspection, and emergency response applications. To overcome these limitations, this paper presents a tightly integrated air-ground collaborative system comprising three key components: (1) an aerial perception module employing a YOLOv8-based vision system onboard the UAV to generate real-time global obstacle maps; (2) a low-latency communication module utilizing FAST DDS middleware for reliable air-ground data transmission; and (3) a ground navigation module implementing an A* algorithm for optimal path planning coupled with closed-loop control for precise trajectory execution. The complete system was physically implemented using cost-effective hardware and experimentally validated in cluttered environments. Results demonstrated successful UGV autonomous navigation and obstacle avoidance relying exclusively on UAV-provided environmental data. The proposed framework offers a practical, economical solution for enabling robust UGV operations in challenging real-world conditions, with significant potential for diverse industrial applications. Full article
(This article belongs to the Section Artificial Intelligence in Drones (AID))
Show Figures

Figure 1

21 pages, 2002 KB  
Article
Grey Wolf Optimizer Based on Variable Population and Strategy for Moving Target Search Using UAVs
by Ziyang Li, Zhenzu Bai and Bowen Hou
Drones 2025, 9(9), 613; https://doi.org/10.3390/drones9090613 - 31 Aug 2025
Viewed by 278
Abstract
Unmanned aerial vehicles (UAVs) are increasingly favored for emergency search and rescue operations due to their high adaptability to harsh environments and low operational costs. However, the dynamic nature of search path endpoints, influenced by target movement, limits the applicability of shortest path [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly favored for emergency search and rescue operations due to their high adaptability to harsh environments and low operational costs. However, the dynamic nature of search path endpoints, influenced by target movement, limits the applicability of shortest path models between fixed points in moving target search problems. Consequently, the moving target search problem using UAVs in complex environments presents considerable challenges, constituting an NP-hard problem. The Grey Wolf Optimizer (GWO) is known for addressing such problems. However, it suffers from limitations, including premature convergence and instability. To resolve these constraints, a Grey Wolf Optimizer with variable population and strategy (GWO-VPS) is developed in this work. GWO-VPS implements a variable encoding scheme for UAV movement patterns, combining motion-based encoding with path-based encoding. The algorithm iteratively alternates between global optimization and local smoothing phases. The global optimization phase incorporates: (1) a Q-learning-based strategy selection; (2) position updates with obstacle avoidance and energy consumption reduction; and (3) adaptive exploration factor. The local smoothing phase employs four path smoothing operators and Q-learning-based strategy selection. Experimental results demonstrate that GWO-VPS outperforms both enhanced GWO variants and standard algorithms, confirming the algorithm’s effectiveness in UAV-based moving target search simulations. Full article
Show Figures

Figure 1

20 pages, 1235 KB  
Article
Variable-Speed UAV Path Optimization Based on the CRLB Criterion for Passive Target Localization
by Lijia Chen, Chengfeng You, Yixin Wang and Xueting Li
Sensors 2025, 25(17), 5297; https://doi.org/10.3390/s25175297 - 26 Aug 2025
Viewed by 540
Abstract
The performance of passive target localization is significantly influenced by the positions of unmanned aerial vehicle swarms (UAVs). In this paper, we investigate the problem of UAV path optimization to enhance the localization accuracy. Firstly, a passive target localization signal model based on [...] Read more.
The performance of passive target localization is significantly influenced by the positions of unmanned aerial vehicle swarms (UAVs). In this paper, we investigate the problem of UAV path optimization to enhance the localization accuracy. Firstly, a passive target localization signal model based on the time difference of arrival (TDOA) algorithm, which is then improved by the Chan method and Taylor series expansion, is established. Secondly, the Cramer–Rao lower bound (CRLB) of the modified TDOA algorithm is derived and adopted as the evaluation criterion to optimize the UAVs’ positions at each time step. Different from the existing works, in this paper, we consider the UAVs to have variable speed; therefore, the feasible region of the UAVs’ positions is changed from a circle into an annular region, which will extend the feasible region, enhancing the localization accuracy while increasing the computation complexity. Thirdly, to improve the efficiency of the UAV path optimization algorithm, the particle swarm optimization (PSO) algorithm is applied to search for the optimal positions of the UAVs for the next time step. Finally, numerical simulations are conducted to verify the validity and effectiveness of the proposals in this paper. Full article
(This article belongs to the Special Issue Radar Target Detection, Imaging and Recognition)
Show Figures

Figure 1

20 pages, 3852 KB  
Article
A Two-Stage Multi-UAV Task Allocation Approach Based on Graph Theory and a Learning-Inspired Immune Algorithm
by Shiqi Zhang, Chongshuang Hu, Danling Zhao, Kewei Yang, Zihan Xu and Minghao Li
Drones 2025, 9(9), 599; https://doi.org/10.3390/drones9090599 - 26 Aug 2025
Viewed by 441
Abstract
Unmanned aerial vehicle (UAV) systems offer significant advantages in terms of rapid decision-making processes, precise operational execution, and robust performance in complex environments. With the evolution of security paradigms and advancements in equipment systems, collaborative multi-UAV operations have become essential for modern protection [...] Read more.
Unmanned aerial vehicle (UAV) systems offer significant advantages in terms of rapid decision-making processes, precise operational execution, and robust performance in complex environments. With the evolution of security paradigms and advancements in equipment systems, collaborative multi-UAV operations have become essential for modern protection frameworks and represent a key developmental direction. To address the need for coordinated multi-objective operations within complex network environments—and to overcome the limitation in current research where single operational loops can only handle individual objectives—this study proposes an innovative intelligent loop recommendation method. By formulating the operational loop recommendation problem as a network flow shortest-path model, we implement an exact algorithm to generate operational loops that enable coordinated multi-UAV operations. Additionally, we develop a learning-inspired algorithm (LIA) incorporating Pareto optimization strategies and specialized learning mechanisms to effectively resolve multi-objective conflicts in UAV task allocation. This research integrates complex network theory with operational loop optimization concepts, providing new technical support for intelligent mission management systems. Full article
Show Figures

Figure 1

24 pages, 8688 KB  
Article
Lightweight Obstacle Avoidance for Fixed-Wing UAVs Using Entropy-Aware PPO
by Meimei Su, Haochen Chai, Chunhui Zhao, Yang Lyu and Jinwen Hu
Drones 2025, 9(9), 598; https://doi.org/10.3390/drones9090598 - 26 Aug 2025
Viewed by 724
Abstract
Obstacle avoidance during high-speed, low-altitude flight remains a significant challenge for unmanned aerial vehicles (UAVs), particularly in unfamiliar environments where prior maps and heavy onboard sensors are unavailable. To address this, we present an entropy-aware deep reinforcement learning framework that enables fixed-wing UAVs [...] Read more.
Obstacle avoidance during high-speed, low-altitude flight remains a significant challenge for unmanned aerial vehicles (UAVs), particularly in unfamiliar environments where prior maps and heavy onboard sensors are unavailable. To address this, we present an entropy-aware deep reinforcement learning framework that enables fixed-wing UAVs to navigate safely using only monocular onboard cameras. Our system features a lightweight, single-frame depth estimation module optimized for real-time execution on edge computing platforms, followed by a reinforcement learning controller equipped with a novel reward function that balances goal-reaching performance with path smoothness under fixed-wing dynamic constraints. To enhance policy optimization, we incorporate high-quality experiences from the replay buffer into the gradient computation, introducing a soft imitation mechanism that encourages the agent to align its behavior with previously successful actions. To further balance exploration and exploitation, we integrate an adaptive entropy regularization mechanism into the Proximal Policy Optimization (PPO) algorithm. This module dynamically adjusts policy entropy during training, leading to improved stability, faster convergence, and better generalization to unseen scenarios. Extensive software-in-the-loop (SITL) and hardware-in-the-loop (HITL) experiments demonstrate that our approach outperforms baseline methods in obstacle avoidance success rate and path quality, while remaining lightweight and deployable on resource-constrained aerial platforms. Full article
Show Figures

Figure 1

18 pages, 1142 KB  
Article
A New Vehicle–Multi-Drone Collaborative Delivery Path Optimization Approach
by Jinhui Li and Meng Wang
Symmetry 2025, 17(9), 1382; https://doi.org/10.3390/sym17091382 - 24 Aug 2025
Viewed by 443
Abstract
To address the logistical challenges of traffic congestion and environmental concerns associated with carbon emissions in last-mile delivery, this paper explores the potential of vehicle–drone cooperative delivery. The existing studies are predominantly confined to single-drone scenarios, failing to simultaneously consider the constraints of [...] Read more.
To address the logistical challenges of traffic congestion and environmental concerns associated with carbon emissions in last-mile delivery, this paper explores the potential of vehicle–drone cooperative delivery. The existing studies are predominantly confined to single-drone scenarios, failing to simultaneously consider the constraints of drone payload capacity and endurance. This limitation leads to task allocation imbalance in large-scale customer deliveries and low distribution efficiency. Firstly, a mathematical model for vehicle–multi-drone collaborative delivery with payload and endurance constraint (VMDCD-PEC) is proposed. Secondly, an improved genetic algorithm (IGA) is developed, as follows: 1. designing a hybrid selection strategy to achieve symmetrical equilibrium between exploration and exploitation by adjusting the weights of dynamic fitness–distance balance, greedy selection, and random selection; and 2. introducing the local search operator composed of gene sequence reversal, single-gene slide-down, and random half-swap to improve the neighborhood quality solution mining efficiency. Finally, the experimental results show that compared with a traditional genetic algorithm (GA) and adaptive large neighborhood search (ALNS), the IGA requires less time to find solutions in various test cases and reduces the average cost of the optimal solution by up to 30%. In addition, an analysis of drone payload sensitivity showed that drone payload capacity is negatively correlated with delivery time, and that larger customer sizes corresponded to higher sensitivity. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop