Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = viscous torque stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4453 KB  
Article
Multi-Objective Optimization of Wet Clutch Groove Structures Based on Response Surface Methodology and Engagement Thermal–Flow Analysis
by Xiangping Liao, Langxin Sun, Ying Zhao and Xinyang Zhu
Lubricants 2025, 13(9), 402; https://doi.org/10.3390/lubricants13090402 - 10 Sep 2025
Viewed by 488
Abstract
This study addresses the thermal hazards that arise during the initial engagement stage of wet clutches, where rapid heat generation within the transient lubricating film may cause premature film rupture, torque instability, and accelerated wear. To overcome these challenges, a coupled thermo–fluid model [...] Read more.
This study addresses the thermal hazards that arise during the initial engagement stage of wet clutches, where rapid heat generation within the transient lubricating film may cause premature film rupture, torque instability, and accelerated wear. To overcome these challenges, a coupled thermo–fluid model was developed to capture oil film flow, heat transfer, and viscous torque behavior under varying groove structures. A novelty of this work is the first integration of computational fluid dynamics (CFD) with response surface methodology (RSM) to systematically reveal how groove geometry—cross-sectional shape, number, and inclination angle—collectively influences peak temperature and viscous torque during the lubricating film stage. Simulation results show that spiral semi-circular grooves provide superior thermal management, reducing the peak friction plate temperature to 75.5 °C, while the optimized design obtained via RSM (groove depth of 0.89 mm, 19 grooves, and a 5.28° inclination angle) further lowers the maximum temperature to 68.2 °C and sustains torque transmission above 18.5 N·m. These findings demonstrate that rational groove design, guided by multi-objective optimization, can mitigate thermal risks while maintaining torque stability, offering new insights for the high-performance design of wet clutches. Full article
Show Figures

Figure 1

21 pages, 2778 KB  
Article
Research on the Mechanical Parameter Identification and Controller Performance of Permanent Magnet Motors Based on Sensorless Control
by Mingchen Luan, Yun Zhang, Jiuhong Ruan, Yongwu Guo, Long Wang and Huihui Min
Actuators 2024, 13(12), 525; https://doi.org/10.3390/act13120525 - 19 Dec 2024
Cited by 1 | Viewed by 868
Abstract
In order to improve the control performance of the position sensorless control system of permanent magnet synchronous motors and to reduce the influence of external uncertainties on the control system, such as inertia ingestion and load disturbance, this paper proposes a novel position [...] Read more.
In order to improve the control performance of the position sensorless control system of permanent magnet synchronous motors and to reduce the influence of external uncertainties on the control system, such as inertia ingestion and load disturbance, this paper proposes a novel position sensorless control algorithm for permanent magnet synchronous motors based on an interleaved parallel extended sliding mode observer. Firstly, in order to identify the time-varying moment of inertia, load torque and viscous friction coefficient of the system, a novel interleaved parallel extended sliding mode observer based on a single-observer model is proposed, and a robust activator is designed to reduce the coupling between the parameters to be measured. Then, a new predefined-time sliding mode controller is designed for the face-mounted permanent magnet synchronous motor using sliding film control theory, which improves the response speed and control accuracy of the system. Then, the proposed novel interleaved parallel extended sliding mode observer and predefined-time sliding mode controller are used to design the permanent magnet synchronous motor control system, and the stability of the system is proved using the Lyapunov stability theorem. Finally, through simulation analysis and experimental tests, it is verified that the control strategy proposed in this paper can improve the identification accuracy of the motor parameters, reduce the time of identification, and improve the control accuracy and tracking speed. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

28 pages, 12978 KB  
Article
A Novel Double Closed Loop Control of Temperature and Rotational Speed for Integrated Multi-Parameter Hydro-Viscous Speed Control System (HSCS)
by Kai Zhao, Yuan Wang, Shoukun Wang, Feiyue Gao, Xiang Feng, Hu Shen, Lin Zhang, Liang Wang, Bin Yu and Kaixian Ba
Machines 2024, 12(6), 394; https://doi.org/10.3390/machines12060394 - 10 Jun 2024
Viewed by 1546
Abstract
Hydro-viscous clutch has already become an inevitable choice for special vehicle transmission in the present and future. As a nonlinear system with a large hysteresis loop, its speed control performance is affected by input rotational speed, lubricating oil temperature, lubrication pressure, and other [...] Read more.
Hydro-viscous clutch has already become an inevitable choice for special vehicle transmission in the present and future. As a nonlinear system with a large hysteresis loop, its speed control performance is affected by input rotational speed, lubricating oil temperature, lubrication pressure, and other factors. The traditional control method cannot adjust the temperature and rotational speed, which will lead to problems of narrow speed range, poor rotational speed stability, and large dynamic load impact. In order to solve the above problems, this paper studies the control method of an integrated multi-parameter hydro-viscous speed control system (HSCS) in a controlled environment. Through the mechanism analysis of the law of HSCS, the influence law of speed and temperature during the system operation is found. The temperature closed loop based on model predictive control (MPC) is introduced to control the rotational speed, and then the traditional PID control results are compensated according to the speed closed loop. Next, a novel double closed loop control method of temperature and rotational speed for HSCS is formed. Finally, the simulating verification is carried out. Compared with the traditional control method, the design method in this paper can adjust the control parameters according to the temperature of the lubricating oil and the input rotational speed and effectively expand the domain of HSCS and the speed control stability. The effective transmission ratio is extended to 0.2~0.8, and the hydro-viscous torque and speed fluctuation under the engine rotational speed fluctuation are reduced by more than 30%. The novel control method of HSCS designed in this paper can effectively improve the influence of input rotational speed and lubricating oil temperature on the speed control performance of HSCS and can be widely used in nonlinear HSCS such as hydro-viscous clutch. Full article
(This article belongs to the Special Issue Control and Mechanical System Engineering)
Show Figures

Figure 1

14 pages, 4302 KB  
Article
Rotational Rheology of Wood Flour Composites Based on Recycled Polyethylene
by Antonella Patti, Gianluca Cicala and Stefano Acierno
Polymers 2021, 13(14), 2226; https://doi.org/10.3390/polym13142226 - 6 Jul 2021
Cited by 22 | Viewed by 3046
Abstract
In this paper, we study the effect of the addition of wood flour as a filler in a recycled polyethylene (r-PE) in view of its potential applications in 3D printing. The composites, prepared by melt mixing, are characterized with torque measurements performed during [...] Read more.
In this paper, we study the effect of the addition of wood flour as a filler in a recycled polyethylene (r-PE) in view of its potential applications in 3D printing. The composites, prepared by melt mixing, are characterized with torque measurements performed during the compounding, dynamic rotational rheology, and infrared spectroscopy. Data show that the introduction of wood results in increased viscosity and in sensible viscous heating during the compounding. The r-PE appear to be stable at temperatures up to 180 °C while at higher temperatures the material shows a rheological response characterized by time-increasing viscoelastic moduli that suggests a thermal degradation governed by crosslinking reactions. The compounds (with wood loading up to 50% in wt.) also shows thermal stability at temperatures up to 180 °C. The viscoelastic behavior and the infrared spectra of the r-PE matrix suggests the presence of branches in the macromolecular structure due to the process. Although the addition of wood particles determines increased viscoelastic moduli, a solid-like viscoelastic response is not shown even for the highest wood concentrations. This behavior, due to a poor compatibility and weak interfacial adhesion between the two phases, is however promising in view of common processing technologies as extrusion or injection molding. Full article
(This article belongs to the Special Issue Mechanical Performance of Sustainable Bio-Based Compounds)
Show Figures

Graphical abstract

12 pages, 1356 KB  
Article
Fault Tolerant Control of Electronic Throttles with Friction Changes
by Haiying Qi, Clifford Mayhew, Yujia Zhai, Shuangxin Wang, Dingli Yu, J. Barry Gomm and Qian Zhang
Electronics 2019, 8(9), 918; https://doi.org/10.3390/electronics8090918 - 22 Aug 2019
Cited by 1 | Viewed by 3182
Abstract
To enhance the reliability of the electronic throttle and consequently the vehicles driven by the internal combustion engines, a fault tolerant control strategy is developed in this paper. The proposed method employs a full-order terminal sliding mode control in conjunction with an adaptive [...] Read more.
To enhance the reliability of the electronic throttle and consequently the vehicles driven by the internal combustion engines, a fault tolerant control strategy is developed in this paper. The proposed method employs a full-order terminal sliding mode control in conjunction with an adaptive radial basis function network to estimate change rate of the fault. Fault tolerant control to abrupt and incipient changes in the throttle viscous friction torque coefficient and the throttle coulomb friction torque coefficient is achieved. Whilst the throttle position is driven to track the reference signal, the post-fault dynamics are guaranteed to converge to the equilibrium point in finite time, and the control is smooth without chattering. A nonlinear Simulink model of an electronic throttle is developed with real physical parameters and is used for evaluation of the developed method. A significant change of the throttle friction torque is simulated, and the fault tolerant control system keeps system stability and tracking the reference signal in the presence of the fault. Full article
(This article belongs to the Special Issue Fault Detection and Diagnosis of Intelligent Mechatronic Systems)
Show Figures

Figure 1

17 pages, 4221 KB  
Article
Adaptive Sliding Mode Control for PMSG Wind Turbine Systems
by Sung-Won Lee and Kwan-Ho Chun
Energies 2019, 12(4), 595; https://doi.org/10.3390/en12040595 - 13 Feb 2019
Cited by 47 | Viewed by 5831
Abstract
In this paper, variable speed PMSG wind turbine systems with unknown system parameters, such as vicious friction coefficient and total inertia, are considered. The errors and variations of wind speed are modeled as a disturbance in mechanical torque. In general, the optimum rotating [...] Read more.
In this paper, variable speed PMSG wind turbine systems with unknown system parameters, such as vicious friction coefficient and total inertia, are considered. The errors and variations of wind speed are modeled as a disturbance in mechanical torque. In general, the optimum rotating speed is given based on the MPPT (Maximum Power Point Tracking) algorithm and the designed controller tracks the reference (optimum) rotating speed in spite of these parametric uncertainties and disturbances. In order to have a desired rotor speed, a sliding mode current controller is proposed to have robustly stabilizing torque input. From the robustly stabilizing q-axis current i q , q-axis voltage input u q is obtained. Additionally, the d-axis control input u d is designed to regulate the d-axis current i d . The adaptive estimator, for the total inertia J and the viscous friction coefficient F , is designed by a backstepping control technique. The robust stability of the closed-loop system is shown using a Lyapunov function. The proposed controller is verified via a simulation using MATLAB/Simulink. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop