Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = von Kármán vortex street

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6998 KB  
Article
Numerical Studies on the Hydrodynamic Patterns and Energy-Saving Advantages of Fish Swimming in Vortical Flows of an Upstream Cylinder
by Xing Chang, Bowen Ma and Jianjian Xin
J. Mar. Sci. Eng. 2024, 12(8), 1254; https://doi.org/10.3390/jmse12081254 - 25 Jul 2024
Cited by 4 | Viewed by 1442
Abstract
Fish in nature can extract the vortex energies from the environment to enhance their swimming performance. This paper numerically investigated the hydrodynamic characteristics and the energy-saving advantages of an undulating fish-like body behind the vortical flows generated by an upstream cylinder. The numerical [...] Read more.
Fish in nature can extract the vortex energies from the environment to enhance their swimming performance. This paper numerically investigated the hydrodynamic characteristics and the energy-saving advantages of an undulating fish-like body behind the vortical flows generated by an upstream cylinder. The numerical model was based on a robust ghost cell immersed boundary method for the solution of incompressible flows around arbitrary complex flexible boundaries. We examined the dynamic characteristics, the swimming performance, and the wake structures of the downstream fish under different locations and diameters of the cylinder in a wide range of Strouhal numbers. It was found that the average drag coefficient was significantly reduced in the presence of the upstream cylinder, while the RMS (root mean square) lift coefficients were very close for different locations and diameters of the cylinder as well as in the fish-only case. Therefore, the downstream fish gain efficiency and thrust enhancement by capturing energies from the vortex flows, which are more significant for smaller Strouhal numbers (St). However, the swimming efficiency converges to near 0.12 at St = 1.2 for different locations and diameters of the upstream cylinder, just slightly higher than that of the fish-only case. The fish can experience the thrust in not only the von-Kármán vortex street, but also the reversed one. In addition, the fish can be situated in the extended shear layer region and the fully developed wake region dependent on the position and diameter of the upstream cylinder, leading to abundant wake modes such as the splitting, coalescing, and competing of vortices. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 9812 KB  
Article
Vortex-Breakdown Efficiency of Planar Regular Grid Structures—Towards the Development of Design Guidelines
by Julien Sirois, Marlène Sanjosé, Fabian Sanchez and Vladimir Brailovski
Fluids 2024, 9(2), 43; https://doi.org/10.3390/fluids9020043 - 8 Feb 2024
Viewed by 2099
Abstract
The work presented here aims to provide design guidelines to create vortex-damping structures. A design of experiment was developed to investigate the individual and combined effects of the geometrical properties of planar regular grid structures, i.e., the wire diameter, the porosity, and the [...] Read more.
The work presented here aims to provide design guidelines to create vortex-damping structures. A design of experiment was developed to investigate the individual and combined effects of the geometrical properties of planar regular grid structures, i.e., the wire diameter, the porosity, and the inter-grid spacing, on their vortex-breakdown performance. The simulations were carried out using a commercial unsteady RANS solver. The model relies on the Von Karman street effect to generate vortices in a pipe which are convected downstream, where they interact with an array of grids. The vortex-breakdown efficiency is characterized by the pressure drop, the residual turbulent kinetic energy, the flow homogeneity, and the size of the transmitted vortices. The wire diameter is shown to be an important design lever as it affects the level of distortion of the transmitted vortices. Increasing the number of grids augments the pressure loss, but their contribution to vortex breakdown is otherwise limited when the wire diameter is small. The influence of grid spacing strongly depends on the wire diameter and grid alignment. For instance, minimizing this gap reduces the pressure drop for the inline configurations, but increases the pressure drop for the offset configurations. Full article
(This article belongs to the Special Issue Turbulence and Combustion)
Show Figures

Figure 1

17 pages, 4507 KB  
Article
Investigation of Hydrokinetic Tidal Energy Harvesting Using a Mangrove-Inspired Device
by Jafar Zanganeh, Kiva Gwynne, Zhengbiao Peng and Behdad Moghtaderi
Sustainability 2023, 15(22), 15886; https://doi.org/10.3390/su152215886 - 13 Nov 2023
Cited by 1 | Viewed by 2295
Abstract
There is a trend towards harvesting tidal energy in shallow water. This study examined how tidal energy can be harvested using a device of oscillating cylinders inspired by the roots of mangroves. A specific focus was placed on optimising the configuration of these [...] Read more.
There is a trend towards harvesting tidal energy in shallow water. This study examined how tidal energy can be harvested using a device of oscillating cylinders inspired by the roots of mangroves. A specific focus was placed on optimising the configuration of these devices, informed by the computational fluid dynamics (CFD) analysis of wake interference in the von Kármán vortex street of the cylinders. A maximum efficiency of 13.54% was achieved at a peak voltage of 16 mV, corresponding to an electrical power output of 0.0199 mW (13.5% of the hydrokinetic energy of the water) and a power density of 7.2 mW/m2 for a flow velocity of 0.04 m/s (Re=239). The configuration of upstream cylinders proved to have a significant impact on the power generation capacity, corroborated further in CFD simulations. The effect of wake interference was non-trivial on the magnitude and quality of power, with tandem arrangements showing the largest impact followed by staggered arrangements. Though with comparatively low energy densities, the device’s efficiencies found in this study indicate a great potential to harvest tidal energy in shallow water, which provides a consistent baseload power to supplement intermittent renewables (e.g., solar and wind). Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Simulation: Application in Industries)
Show Figures

Figure 1

20 pages, 4146 KB  
Article
Effects of Patch Density and Incoming Sediment on Flow Characteristics and Bed Morphology
by Dan Wang, Feng Li and Kejun Yang
Water 2023, 15(18), 3247; https://doi.org/10.3390/w15183247 - 12 Sep 2023
Viewed by 1828
Abstract
This study focuses on the effects of vegetation patch density, bed condition, and incoming sediment on flow structure and bed morphology within and around a patch. The variation in upstream adjustment velocity is not well defined for low-density vegetation patches but decreases with [...] Read more.
This study focuses on the effects of vegetation patch density, bed condition, and incoming sediment on flow structure and bed morphology within and around a patch. The variation in upstream adjustment velocity is not well defined for low-density vegetation patches but decreases with increasing patch density in high-density patches. The length of the upstream adjustment region is greater for high-density vegetation. Incoming sediment causes a reduction in both the steady wake velocity and the length of the steady wake at a low density. The length of the recovery region increases with density when vegetation is sparse, but remains constant in a dense patch. Additionally, the length of the recovery region decreases due to incoming sediment. Turbulent kinetic energy is not affected by the bedform and incoming sediment when reaching its first peak. However, the second maximum of the turbulent kinetic energy increases when the bed is movable. The evolution of bed morphology is closely related to the flow structure and the growth of the von Karman vortex street. Both the rising length and the adjusted length decrease with increasing patch density, while the incoming sediment causes an increase in the adjusted length. Behind the patch wake, the first minimum elevation, maximum elevation, and second minimum elevation decrease as the patch density increases. These values, in turn, increase with the sediment supply upstream of the flume. Full article
(This article belongs to the Special Issue Hydro-Sediment Dynamics in Vegetated Rivers)
Show Figures

Figure 1

22 pages, 7921 KB  
Article
Assessment of Aerodynamic Plates Subjected to Von Kármán Vortex Street for Enhancing the Wind Energy Generation in Blade-Less Devices
by John Zuluaga, Santiago Ricardo, Andrés Oostra, Gilberto Materano and Apostolos Spanelis
Resources 2023, 12(8), 90; https://doi.org/10.3390/resources12080090 - 1 Aug 2023
Cited by 1 | Viewed by 3052
Abstract
This study explores the feasibility of using an oscillating plate downstream of a cylindrical body to produce mechanical energy from a Von Kármán vortex street under sub-critical flow conditions (Re = 72,500). The study aims to quantify the impact of the plate length, [...] Read more.
This study explores the feasibility of using an oscillating plate downstream of a cylindrical body to produce mechanical energy from a Von Kármán vortex street under sub-critical flow conditions (Re = 72,500). The study aims to quantify the impact of the plate length, its separation from the cylinder, and a machine damping factor on the power coefficient and the blade’s displacement to identify the optimal configuration. This preliminary assessment assumes that the plate oscillation is small enough to avoid changes in the vortex dynamics. This assumption allows the construction of a surrogate model using Computational Fluid Dynamics (CFD) to evaluate the effect of plate length and separation from the cylinder on the fluctuating lift forces over the plate. Later, the surrogate model, combined with varying machine damping factors, facilitates the description of the device’s dynamics through the numerical integration of an angular momentum equation. The results showed that a plate with a length of 0.52D, a separation of 5.548D from the cylinder, and a damping factor of 0.013 achieved a power coefficient of 0.147 and a perpendicular displacement of 0.226D. These results demonstrate a substantial improvement in the performance of blade-less generators. Full article
(This article belongs to the Special Issue Assessment and Optimization of Energy Efficiency)
Show Figures

Figure 1

18 pages, 12279 KB  
Article
Solution of Shallow-Water Equations by a Layer-Integrated Hydrostatic Least-Squares Finite-Element Method
by Shin-Jye Liang, Dong-Jiing Doong and Wei-Ting Chao
Water 2022, 14(4), 530; https://doi.org/10.3390/w14040530 - 10 Feb 2022
Cited by 1 | Viewed by 3195
Abstract
A multi-layer hydrostatic shallow-water model was developed in the present study. The layer-integrated hydrostatic nonlinear shallow-water was solved with θ time integration and the least-squares finite element method. Since the least-squares formulation was employed, the resulting system of equations was symmetric and positive–definite; [...] Read more.
A multi-layer hydrostatic shallow-water model was developed in the present study. The layer-integrated hydrostatic nonlinear shallow-water was solved with θ time integration and the least-squares finite element method. Since the least-squares formulation was employed, the resulting system of equations was symmetric and positive–definite; therefore, it could be solved efficiently by the preconditioned conjugate gradient method. The model was first applied to simulate the von Karman vortex shedding. A well-organized von Karman vortex street was reproduced. The model was then applied to simulate the Kuroshio current-induced Green Island vortex street. A swirling recirculation was formed and followed by several pairs of alternating counter-rotating vortices. The size of the recirculation, as well as the temporal and spatial scale of the vortex shedding, were found to be consistent with ADCP-CDT measurements, X-band radar measurements, and analysis of the satellite images. It was also revealed that Green Island vortices were affected by the upstream Orchid Island vortices. Full article
(This article belongs to the Special Issue Hydrodynamics in Ocean Environment: Experiment and Simulation)
Show Figures

Figure 1

27 pages, 5879 KB  
Article
Effect of Manufacturing Inaccuracies on the Wake Past Asymmetric Airfoil by PIV
by Daniel Duda, Vitalii Yanovych, Volodymyr Tsymbalyuk and Václav Uruba
Energies 2022, 15(3), 1227; https://doi.org/10.3390/en15031227 - 8 Feb 2022
Cited by 17 | Viewed by 2952
Abstract
The effect of manufacturing geometry deviations on the flow past a NACA 64(3)-618 asymmetric airfoil is studied. This airfoil is 3D printed according to the coordinates from a public database. An optical high-precision 3D scanner, GOM Atos, measures the difference from the idealized [...] Read more.
The effect of manufacturing geometry deviations on the flow past a NACA 64(3)-618 asymmetric airfoil is studied. This airfoil is 3D printed according to the coordinates from a public database. An optical high-precision 3D scanner, GOM Atos, measures the difference from the idealized model. Based on this difference, another model is prepared with a physical output closer to the ideal model. The velocity in the near wake (0–0.4 chord) is measured by using the Particle Image Velocimetry (PIV) technique. This work compares the wakes past three airfoil realizations, which differ in their similarity to the original design (none of the realizations is identical to the original design). The chord-based Reynolds number ranges from 1.6×104 to 1.6×105. The ensemble average velocity is used for the determination of the wake width and for the rough estimation of the drag coefficient. The lift coefficient is measured directly by using force balance. We discuss the origin of turbulent kinetic energy in terms of anisotropy (at least in 2D) and the length-scales of fluctuations across the wake. The spatial power spectral density is shown. The autocorrelation function of the cross-stream velocity detects the regime of the von Karmán vortex street at lower velocities. Full article
(This article belongs to the Special Issue Investigation, Optimization, and Discussion of Turbulence)
Show Figures

Graphical abstract

20 pages, 9132 KB  
Article
Flow Structures Identification through Proper Orthogonal Decomposition: The Flow around Two Distinct Cylinders
by Ângela M. Ribau, Nelson D. Gonçalves, Luís L. Ferrás and Alexandre M. Afonso
Fluids 2021, 6(11), 384; https://doi.org/10.3390/fluids6110384 - 25 Oct 2021
Cited by 7 | Viewed by 4354
Abstract
Numerical simulations of fluid flows can produce a huge amount of data and inadvertently important flow structures can be ignored, if a thorough analysis is not performed. The identification of these flow structures, mainly in transient situations, is a complex task, since such [...] Read more.
Numerical simulations of fluid flows can produce a huge amount of data and inadvertently important flow structures can be ignored, if a thorough analysis is not performed. The identification of these flow structures, mainly in transient situations, is a complex task, since such structures change in time and can move along the domain. With the decomposition of the entire data set into smaller sets, important structures present in the main flow and structures with periodic behaviour, like vortices, can be identified. Therefore, through the analysis of the frequency of each of these components and using a smaller number of components, we show that the Proper Orthogonal Decomposition can be used not only to reduce the amount of significant data, but also to obtain a better and global understanding of the flow (through the analysis of specific modes). In this work, the von Kármán vortex street is decomposed into a generator base and analysed through the Proper Orthogonal Decomposition for the 2D flow around a cylinder and the 2D flow around two cylinders with different radii. We consider a Newtonian fluid and two non-Newtonian power-law fluids, with n=0.7 and n=1.3. Grouping specific modes, a reconstruction is made, allowing the identification of complex structures that otherwise would be impossible to identify using simple post-processing of the fluid flow. Full article
(This article belongs to the Collection Non-Newtonian Fluid Mechanics)
Show Figures

Figure 1

16 pages, 3504 KB  
Article
Formation of Coherent Flow Structures beyond Vegetation Patches in Channel
by Masoud Kazem, Hossein Afzalimehr and Jueyi Sui
Water 2021, 13(20), 2812; https://doi.org/10.3390/w13202812 - 10 Oct 2021
Cited by 12 | Viewed by 2838
Abstract
By using model vegetation (e.g., synthetic bars), vortex structures in a channel with vegetation patches have been studied. It has been reported that vortex structures, including both the vertical and horizontal vortexes, may be produced in the wake in the channel bed with [...] Read more.
By using model vegetation (e.g., synthetic bars), vortex structures in a channel with vegetation patches have been studied. It has been reported that vortex structures, including both the vertical and horizontal vortexes, may be produced in the wake in the channel bed with a finite-width vegetation patch. In the present experimental study, both velocity and TKE have been measured (via Acoustic Doppler Velocimeter—ADV) to study the formation of vortexes behind four vegetation patches in the channel bed. These vegetation patches have different dimensions, from the channel-bed fully covered patch to small-sized patches. Model vegetation used in this research is closely similar to vegetation in natural rivers with a gravel bed. The results show that, for a channel with a small patch (Lv/Dc = 0.44 and Dv/Dc = 0.33; where Lv and Dv are the length and width of patch and Dc is the channel width, respectively), both the flow passing through the patch and side flow around the patch have a considerable effect on the formation of flow structures beyond the patch. The results of further analysis via 3D classes of the bursting events show that the von Karman vortex street splits into two parts beyond the vegetation patch as the strong part near the surface and the weak part near the bed; while the middle part of the flow is completely occupied by the vertical vortex formed at a distance of 0.8–1 Hv beyond the vegetation patch, and thus, the horizontal vortexes cannot be detected in this region. The octant analysis is conducted for the coherent shear stress analysis that confirms the results of this experimental study. Full article
(This article belongs to the Special Issue Fluvial Hydraulics Affected by River Ice and Hydraulic Structures)
Show Figures

Figure 1

19 pages, 5681 KB  
Article
Understanding the Influence of Wake Cavitation on the Dynamic Response of Hydraulic Profiles under Lock-In Conditions
by Rafel Roig, Jian Chen, Oscar de la Torre and Xavier Escaler
Energies 2021, 14(19), 6033; https://doi.org/10.3390/en14196033 - 22 Sep 2021
Cited by 7 | Viewed by 2534
Abstract
To accelerate the integration of fluctuating renewable energy technologies in the power systems, it is necessary to increase the flexibility of hydropower by operating turbines at off-design conditions. Unfortunately, this strategy causes deleterious flow phenomena such as von Kármán’s vortices at the wake [...] Read more.
To accelerate the integration of fluctuating renewable energy technologies in the power systems, it is necessary to increase the flexibility of hydropower by operating turbines at off-design conditions. Unfortunately, this strategy causes deleterious flow phenomena such as von Kármán’s vortices at the wake of the vanes and/or blades. When their shedding frequency lies in the vicinity of a structure’s natural frequency, lock-in occurs and vibration amplitudes increase significantly. Moreover, if cavitation occurs at the centers of these vortices, the structure’s dynamic response will be modified. In order to understand this interaction and to avoid its negative consequences, the vibration behavior of a NACA 0009 hydrofoil under a torsional lock-in condition was numerically simulated for cavitation-free and cavitating-flow conditions. The results showed that the presence of vortex cavitation modified the formation and growth process of shed von Kármán vortices in the near-wake region which, in turn, caused an increase of the work performed by the hydrofoil deformation on the surrounding flow and a sharp decrease of the maximum vibration amplitude under resonance conditions. Full article
(This article belongs to the Special Issue Experimental and Numerical Investigations of Hydraulic Machines)
Show Figures

Figure 1

20 pages, 5599 KB  
Article
Analysis of the Influence of the Vortex Shedder Shape on the Metrological Properties of the Vortex Flow Meter
by Mariusz R. Rzasa and Beata Czapla-Nielacna
Sensors 2021, 21(14), 4697; https://doi.org/10.3390/s21144697 - 9 Jul 2021
Cited by 20 | Viewed by 5242
Abstract
Vortex flow meters are used to measure the flow of gases and liquids. The flow meters of this type measure the frequency of vortices that arise behind an obstacle set in the path of the flowing fluid. The frequency is a function of [...] Read more.
Vortex flow meters are used to measure the flow of gases and liquids. The flow meters of this type measure the frequency of vortices that arise behind an obstacle set in the path of the flowing fluid. The frequency is a function of the speed of the flowing fluid. This obstacle is called the vortex shedder bar. The advantage of this solution is that the frequency of vortices does not viscose on the rheological properties of the fluid, such as viscosity or density. As a result, the indications of the vortex flowmeter do not depend on the temperature and type of fluid. The work includes numerical and experimental studies of the effect of changing the shape of a vortex generator on the stability of vortex generation in a vortex flowmeter. The article presents a numerical analysis of the influence of selected surfaces of the vortex shedder on the parameters of the vortex flowmeter. In order to determine the influence of the shape of the vortex shedder on the type of generated vortices, simulations were carried out for various flow velocities. Numerical calculations were experimentally verified for a cylinder-shaped vortex shedder. The experimental tests consist in determining the velocity field behind the vortex shedder. For this purpose, a proprietary method of determining local liquid velocities and the visualization of local vortices were used. On the basis of the conducted research, the influence of the shape of the vortex shedder on the width of the von Karman vortex street was determined and the optimal longitudinal distance from the shedder was determined in which it is most useful to measure the frequency of the vortices. This place ensures the stability of the frequency of the generated vortices. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 8362 KB  
Article
Sediment Erosion Characteristics and Mechanism on Guide Vane End-Clearance of Hydro Turbine
by Yu Chen, Rennian Li, Wei Han, Tao Guo, Min Su and Sanze Wei
Appl. Sci. 2019, 9(19), 4137; https://doi.org/10.3390/app9194137 - 2 Oct 2019
Cited by 12 | Viewed by 3473
Abstract
Sediment erosion caused by the collision of solid particles is a challenge for the safety, reliability, unit efficiency, and vibration noise of the hydroelectric engineering system located at China’s Yellow River and northwest inland basin. The sediment-laden flow of the guide vane end-clearance [...] Read more.
Sediment erosion caused by the collision of solid particles is a challenge for the safety, reliability, unit efficiency, and vibration noise of the hydroelectric engineering system located at China’s Yellow River and northwest inland basin. The sediment-laden flow of the guide vane end-clearance of the Francis Turbine at Dongshuixia hydroelectric station was used as the research object, and the large eccentric shaft structure of a guide vane was considered. Numerical calculations with the large eddy simulation (LES) and discrete phase models (DPMs) were carried out to study the erosion characteristics and mechanism of the end-surface of the guide vane and head cover, the flow mechanism of adverse erosion behind the shaft, and the influence law of the turbulence integral scale, turbulent kinetic energy, and turbulent flow angle on erosion. The flow field with a 1 mm clearance should set the number of particle trajectory per unit inlet area at about 1/mm2 to ensure the accuracy of calculation. The von Kármán vortex street is the main reason for adverse erosion behind the shaft and the low frequency energy of the turbulence plays a leading role in erosion. The above results provide a reference for the optimization design of an anti-wear guide vane and wear-protection of the clearance with sediment-laden water. Full article
Show Figures

Figure 1

20 pages, 6523 KB  
Article
Research on the Hydrodynamic Performance of a Vertical Axis Current Turbine with Forced Oscillation
by Yong Ma, Chao Hu, Yulong Li and Rui Deng
Energies 2018, 11(12), 3349; https://doi.org/10.3390/en11123349 - 30 Nov 2018
Cited by 8 | Viewed by 2944
Abstract
For a current turbine fixed on a floating platform, the wave-induced motion responses of the platform change the hydrodynamic performance of the current turbine. In this paper, a numerical simulation method based on commercial computational fluid dynamics software-CFX is established to systematically analyze [...] Read more.
For a current turbine fixed on a floating platform, the wave-induced motion responses of the platform change the hydrodynamic performance of the current turbine. In this paper, a numerical simulation method based on commercial computational fluid dynamics software-CFX is established to systematically analyze the turbine loads condition and power output efficiency of the turbine subject to the wave-induced motion. This method works well in terms of 2D hydrodynamic performance analysis and is verified by an experiment. In addition, the method is applied to investigate the hydrodynamic performance of a vertical axis current turbine under forced oscillation by a combining sliding mesh with moving mesh technique. This research mainly focusses on the effects of oscillation frequency and oscillation amplitude on the hydrodynamic performance and the flow field. It is found that a wake flow similar to the Von Karman Vortex Street appears under sway oscillation. Spacing between vortex in the wake flow changes under surge oscillation. The fluctuations of the blade load coefficients can be decomposed into a low frequency part and a high frequency part. The low frequency part is related to the frequency of the forced oscillation, while the high frequency part is a consequence of the rotational frequency of the turbine. The oscillation amplitudes of the turbine load coefficients increase linearly with the growth of oscillation frequency and oscillation amplitude. This paper can provide a useful reference for similar research on the turbine loads condition and power out efficiency of the turbine subject to wave-induced motion. This paper can also provide a reference on the structural design or electronic control of vertical axis current turbines. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

15 pages, 6815 KB  
Article
Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow
by Marco Demori, Marco Ferrari, Arianna Bonzanini, Pietro Poesio and Vittorio Ferrari
Sensors 2017, 17(9), 2100; https://doi.org/10.3390/s17092100 - 13 Sep 2017
Cited by 24 | Viewed by 8722
Abstract
In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by [...] Read more.
In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s. Full article
(This article belongs to the Special Issue Energy Harvesting Sensors for Long Term Applications in the IoT Era)
Show Figures

Figure 1

13 pages, 4750 KB  
Article
Study the Flow behind a Semi-Circular Step Cylinder (Laser Doppler Velocimetry (LDV) and Computational Fluid Dynamics (CFD))
by S. M. Sayeed-Bin-Asad, Tord Staffan Lundström and Anders Gustav Andersson
Energies 2017, 10(3), 332; https://doi.org/10.3390/en10030332 - 9 Mar 2017
Cited by 11 | Viewed by 7075
Abstract
Laser Doppler Velocimetry (LDV) measurements, flow visualizations and unsteady Reynolds-Averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations have been carried out to study the turbulent wake that is formed behind a semi-circular step cylinder at a constant flow rate. The semi-circular cylinder has [...] Read more.
Laser Doppler Velocimetry (LDV) measurements, flow visualizations and unsteady Reynolds-Averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations have been carried out to study the turbulent wake that is formed behind a semi-circular step cylinder at a constant flow rate. The semi-circular cylinder has two diameters, a so-called step cylinder. The results from the LDV measurements indicate that wake length and vortex shedding frequency varies with the cylinder diameter. This implies that a step cylinder can be used to attract fish of different size. By visualizations of the formation of a recirculation region and the well-known von Kármán vortex street behind the cylinder are disclosed. The simulation results predict the wake length and shedding frequency well for the flow behind the large cylinder but fail to capture the dynamics of the flow near the step in diameter to some extent and the flow behind the small cylinder to a larger extent when compared with measurements. Full article
(This article belongs to the Special Issue Engineering Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop