Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = wake traversing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5678 KB  
Article
Evaluation of a Serrated Edge to Mitigate the Adverse Effects of a Backward-Facing Step on an Airfoil
by Real J. KC, Trevor C. Wilson, Aaron S. Alexander, Jamey D. Jacob, Nicholas A. Lucido and Brian R. Elbing
Inventions 2023, 8(6), 160; https://doi.org/10.3390/inventions8060160 - 18 Dec 2023
Cited by 2 | Viewed by 2345
Abstract
Backward-facing steps are commonly formed on wings and blades due to misalignment between segments or the addition of protective films. A backward-facing step (BFS) is known to degrade the airfoil performance. To mitigate these adverse effects, a three-dimensional low-profile serrated pattern (termed sBFS) [...] Read more.
Backward-facing steps are commonly formed on wings and blades due to misalignment between segments or the addition of protective films. A backward-facing step (BFS) is known to degrade the airfoil performance. To mitigate these adverse effects, a three-dimensional low-profile serrated pattern (termed sBFS) was applied downstream of a BFS on an LA203A profile airfoil. The model drag was determined from wake surveys using a traversing Pitot-static probe within a subsonic wind tunnel operating at a chord-based Reynolds number of 300,000. The airfoil spanned the wind tunnel width (914 mm) and had a 197 mm chord length. Four different sBFS configurations were tested, each formed by applying a 1 mm thick film around the model leading edge. In addition, a BFS at various chord locations and a clean wing (i.e., no film applied) were tested for reference. The sBFS was able to reduce the drag relative the BFS by up to 8–10%, though not outperforming the clean wing configuration. In addition, the wake surveys showed the sBFS produced strong coherent structures that persist into the far-wake region (five chord length downstream of the model) with a scale that was much larger than the step height. Additionally, a computational study was carried out to further examine the flow behavior on the airfoil that produced the coherent structures. This showed that fluid near the surface gets entrained towards the sBFS downstream tip of the sBFS, which creates the initial rotation of these coherent structures that persist into the far-wake region. Full article
Show Figures

Figure 1

17 pages, 3018 KB  
Article
Effects of Periodic Incoming Wakes on the Aerodynamics of a High-Speed Low-Pressure Turbine Cascade
by Loris Simonassi, Gustavo Lopes and Sergio Lavagnoli
Int. J. Turbomach. Propuls. Power 2023, 8(3), 35; https://doi.org/10.3390/ijtpp8030035 - 13 Sep 2023
Cited by 7 | Viewed by 2643
Abstract
The influence of unsteady wakes incoming from the upstream stages is of high relevance in modern high-speed, low-pressure turbines (LPT) operating at transonic exit Mach numbers and low Reynolds numbers for their potential to trigger transition and influence the separation of the boundary [...] Read more.
The influence of unsteady wakes incoming from the upstream stages is of high relevance in modern high-speed, low-pressure turbines (LPT) operating at transonic exit Mach numbers and low Reynolds numbers for their potential to trigger transition and influence the separation of the boundary layer on the blade suction side. The aim of this paper is the experimental characterization of the influence of incoming wakes on the 2D aerodynamics of a high-speed LPT cascade operating at a low Reynolds number and transonic exit Mach number. A detailed analysis of the status of the flow along the blade under investigation and its impact on the profile loss are presented for a range of Mach numbers from 0.70 to 0.95 and Reynolds numbers from 70k to 120k under steady and unsteady inflow conditions. Tests were conducted at on- and off-design engine realistic conditions in the VKI S-1/C wind tunnel on the SPLEEN C1 transonic cascade. The wakes incoming from an upstream blade row have been replicated using a set of rotating bars, which shed wakes at an engine-representative reduced frequency (f+=0.95) and flow coefficient (Φ=0.80). A set of densely instrumented traversable blades were used to sample the surface pressure distributions. The development of the boundary layers along the blade suction side is examined through quasi-wall shear stress obtained with surface-mounted hot-film sensors. Wake traverses were carried out downstream of the cascade with a miniaturized L-shaped five-hole probe to characterize the blade losses. The introduction of periodic incoming wakes promotes variations in the flow topology over the blade. The effect on the suction side separation bubble is shown to depend on the exit flow conditions. At low Mach numbers, the incoming wakes determine a reduction in the size of the bubble; in contrast, this effect is not registered as the exit Mach number increases. Consistently, a high dependence of the unsteady wake effect on the profile loss on the exit Reynolds and Mach numbers is demonstrated. Full article
Show Figures

Figure 1

15 pages, 4675 KB  
Article
Reynolds Sensitivity of the Wake Passing Effect on a LPT Cascade Using Spectral/hp Element Methods
by Andrea Cassinelli, Andrés Mateo Gabín, Francesco Montomoli, Paolo Adami, Raul Vázquez Díaz and Spencer J. Sherwin
Int. J. Turbomach. Propuls. Power 2022, 7(1), 8; https://doi.org/10.3390/ijtpp7010008 - 22 Feb 2022
Cited by 2 | Viewed by 3950
Abstract
Reynolds-Averaged Navier–Stokes (RANS) methods continue to be the backbone of CFD-based design; however, the recent development of high-order unstructured solvers and meshing algorithms, combined with the lowering cost of HPC infrastructures, has the potential to allow for the introduction of high-fidelity simulations in [...] Read more.
Reynolds-Averaged Navier–Stokes (RANS) methods continue to be the backbone of CFD-based design; however, the recent development of high-order unstructured solvers and meshing algorithms, combined with the lowering cost of HPC infrastructures, has the potential to allow for the introduction of high-fidelity simulations in the design loop, taking the role of a virtual wind tunnel. Extensive validation and verification is required over a broad design space. This is challenging for a number of reasons, including the range of operating conditions, the complexity of industrial geometries and their relative motion. A representative industrial low pressure turbine (LPT) cascade subject to wake passing interactions is analysed, adopting the incompressible Navier–Stokes solver implemented in the spectral/hp element framework Nektar++. The bar passing effect is modelled by leveraging a spectral-element/Fourier Smoothed Profile Method. The Reynolds sensitivity is analysed, focusing in detail on the dynamics of the separation bubble on the suction surface as well as the mean flow properties, wake profiles and loss estimations. The main findings are compared with experimental data, showing agreement in the prediction of wake traverses and losses across the entire range of flow regimes, the latter within 5% of the experimental measurements. Full article
Show Figures

Figure 1

18 pages, 3049 KB  
Article
Detection of Adversarial DDoS Attacks Using Generative Adversarial Networks with Dual Discriminators
by Chin-Shiuh Shieh, Thanh-Tuan Nguyen, Wan-Wei Lin, Yong-Lin Huang, Mong-Fong Horng, Tsair-Fwu Lee and Denis Miu
Symmetry 2022, 14(1), 66; https://doi.org/10.3390/sym14010066 - 4 Jan 2022
Cited by 15 | Viewed by 5175
Abstract
DDoS (Distributed Denial of Service) has emerged as a serious and challenging threat to computer networks and information systems’ security and integrity. Before any remedial measures can be implemented, DDoS assaults must first be detected. DDoS attacks can be identified and characterized with [...] Read more.
DDoS (Distributed Denial of Service) has emerged as a serious and challenging threat to computer networks and information systems’ security and integrity. Before any remedial measures can be implemented, DDoS assaults must first be detected. DDoS attacks can be identified and characterized with satisfactory achievement employing ML (Machine Learning) and DL (Deep Learning). However, new varieties of aggression arise as the technology for DDoS attacks keep evolving. This research explores the impact of a new incarnation of DDoS attack–adversarial DDoS attack. There are established works on ML-based DDoS detection and GAN (Generative Adversarial Network) based adversarial DDoS synthesis. We confirm these findings in our experiments. Experiments in this study involve the extension and application of the GAN, a machine learning framework with symmetric form having two contending neural networks. We synthesize adversarial DDoS attacks utilizing Wasserstein Generative Adversarial Networks featuring Gradient Penalty (GP-WGAN). Experiment results indicate that the synthesized traffic can traverse the detection systems such as k-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP) and Random Forest (RF) without being identified. This observation is a sobering and pessimistic wake-up call, implying that countermeasures to adversarial DDoS attacks are urgently needed. To this problem, we propose a novel DDoS detection framework featuring GAN with Dual Discriminators (GANDD). The additional discriminator is designed to identify adversary DDoS traffic. The proposed GANDD can be an effective solution to adversarial DDoS attacks, as evidenced by the experimental results. We use adversarial DDoS traffic synthesized by GP-WGAN to train GANDD and validate it alongside three other DL technologies: DNN (Deep Neural Network), LSTM (Long Short-Term Memory) and GAN. GANDD outperformed the other DL models, demonstrating its protection with a TPR of 84.3%. A more sophisticated test was also conducted to examine GANDD’s ability to handle unseen adversarial attacks. GANDD was evaluated with adversarial traffic not generated from its training data. GANDD still proved effective with a TPR around 71.3% compared to 7.4% of LSTM. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

16 pages, 6561 KB  
Article
Experimental Evaluation of Axial Reaction Turbine Stage Bucket Losses
by Marek Klimko, Richard Lenhard, Pavel Žitek and Katarína Kaduchová
Processes 2021, 9(10), 1816; https://doi.org/10.3390/pr9101816 - 13 Oct 2021
Cited by 7 | Viewed by 1978
Abstract
The article describes the measurement methods and data evaluation from a single-stage axial turbine with high reaction (50%). Four operating modes of the turbine were selected, in which the wake traversing behind nozzle and bucket with five-hole pneumatic probes took place. The article [...] Read more.
The article describes the measurement methods and data evaluation from a single-stage axial turbine with high reaction (50%). Four operating modes of the turbine were selected, in which the wake traversing behind nozzle and bucket with five-hole pneumatic probes took place. The article further focuses on the evaluation of bucket losses for all four measured operating modes, including the analysis of measurement uncertainties. Full article
(This article belongs to the Special Issue Experimental and Numerical Methods in Fluid Mechanics and Energy)
Show Figures

Figure 1

26 pages, 8938 KB  
Article
On the Accuracy of uRANS and LES-Based CFD Modeling Approaches for Rotor and Wake Aerodynamics of the (New) MEXICO Wind Turbine Rotor Phase-III
by Shantanu Purohit, Ijaz Fazil Syed Ahmed Kabir and E. Y. K. Ng
Energies 2021, 14(16), 5198; https://doi.org/10.3390/en14165198 - 23 Aug 2021
Cited by 17 | Viewed by 4844
Abstract
This work presents a comparison study of the CFD modeling with two different turbulence modeling approaches viz. unsteady RANS and LES, on a full-scale model of the (New) MEXICO rotor wind turbine. The main emphasis of the paper is on the rotor and [...] Read more.
This work presents a comparison study of the CFD modeling with two different turbulence modeling approaches viz. unsteady RANS and LES, on a full-scale model of the (New) MEXICO rotor wind turbine. The main emphasis of the paper is on the rotor and wake aerodynamics. Simulations are carried out for the three wind speeds considered in the MEXICO experiment (10, 15, and 24 ms−1). The results of uRANS and LES are compared against the (New) MEXICO experimental measurements of pressure distributions, axial, radial, and azimuth traverse of three velocity components. The near wake characteristics and vorticity are also analyzed. The pressure distribution results show that the LES can predict the onset of flow separation more accurately than uRANS when the turbine operates in the stall condition. The LES can compute the flow structures in wake significantly better than the uRANS for the stall condition of the blade. For the design condition, the mean absolute error in axial and radial velocity components along radial traverse is less than 10% for both the modeling approaches, whereas tangential component error is less than 2% from the LES approach. The results also reveal that wake recovers faster in the uRANS approach, requiring further research of the far wake region using both CFD modeling approaches. Full article
(This article belongs to the Special Issue Advancement in Wind Turbine Technology)
Show Figures

Figure 1

24 pages, 7737 KB  
Article
Development of a Computational System to Improve Wind Farm Layout, Part I: Model Validation and Near Wake Analysis
by Rafael V. Rodrigues and Corinne Lengsfeld
Energies 2019, 12(5), 940; https://doi.org/10.3390/en12050940 - 12 Mar 2019
Cited by 17 | Viewed by 6443
Abstract
The first part of this work describes the validation of a wind turbine farm Computational Fluid Dynamics (CFD) simulation using literature velocity wake data from the MEXICO (Model Experiments in Controlled Conditions) experiment. The work is intended to establish a computational framework from [...] Read more.
The first part of this work describes the validation of a wind turbine farm Computational Fluid Dynamics (CFD) simulation using literature velocity wake data from the MEXICO (Model Experiments in Controlled Conditions) experiment. The work is intended to establish a computational framework from which to investigate wind farm layout, seeking to validate the simulation and identify parameters influencing the wake. A CFD model was designed to mimic the MEXICO rotor experimental conditions and simulate new operating conditions with regards to tip speed ratio and pitch angle. The validation showed that the computational results qualitatively agree with the experimental data. Considering the designed tip speed ratio (TSR) of 6.6, the deficit of velocity in the wake remains at rate of approximately 15% of the free-stream velocity per rotor diameter regardless of the free-stream velocity applied. Moreover, analysis of a radial traverse right behind the rotor showed an increase of 20% in the velocity deficit as the TSR varied from TSR = 6 to TSR = 10, corresponding to an increase ratio of approximately 5% m·s−1 per dimensionless unit of TSR. We conclude that the near wake characteristics of a wind turbine are strongly influenced by the TSR and the pitch angle. Full article
(This article belongs to the Special Issue Modeling of Wind Turbines and Wind Farms)
Show Figures

Figure 1

14 pages, 2376 KB  
Article
Active Boundary Layer Control on a Highly Loaded Turbine Exit Case Profile
by Julia Kurz, Martin Hoeger and Reinhard Niehuis
Int. J. Turbomach. Propuls. Power 2018, 3(1), 8; https://doi.org/10.3390/ijtpp3010008 - 6 Mar 2018
Cited by 4 | Viewed by 6060
Abstract
A highly loaded turbine exit guide vane with active boundary layer control was investigated experimentally in the High Speed Cascade Wind Tunnel at the University of the German Federal Armed Forces, Munich. The experiments include profile Mach number distributions, wake traverse measurements as [...] Read more.
A highly loaded turbine exit guide vane with active boundary layer control was investigated experimentally in the High Speed Cascade Wind Tunnel at the University of the German Federal Armed Forces, Munich. The experiments include profile Mach number distributions, wake traverse measurements as well as boundary layer investigations with a flattened Pitot probe. Active boundary layer control by fluidic oscillators was applied to achieve improved performance in the low Reynolds number regime. Low solidity, which can be applied to reduce the number of blades, increases the risk of flow separation resulting in increased total pressure losses. Active boundary layer control is supposed to overcome these negative effects. The experiments show that active boundary layer control by fluidic oscillators is an appropriate way to suppress massive open separation bubbles in the low Reynolds number regime. Full article
Show Figures

Figure 1

16 pages, 5987 KB  
Article
A Six Degrees of Freedom Dynamic Wire-Driven Traverse
by Thomas J. Lambert, Bojan Vukasinovic and Ari Glezer
Aerospace 2016, 3(2), 11; https://doi.org/10.3390/aerospace3020011 - 14 Apr 2016
Cited by 31 | Viewed by 9082
Abstract
A novel support mechanism for a wind tunnel model is designed, built, and demonstrated on an aerodynamic platform undergoing dynamic maneuvers, tested with periodic motions up to 20 Hz. The platform is supported by a 6-DOF (six degrees of freedom) traverse that utilizes [...] Read more.
A novel support mechanism for a wind tunnel model is designed, built, and demonstrated on an aerodynamic platform undergoing dynamic maneuvers, tested with periodic motions up to 20 Hz. The platform is supported by a 6-DOF (six degrees of freedom) traverse that utilizes eight thin wires, each mounted to a servo motor with an in-line load cell to accurately monitor or control the platform motion and force responses. The system is designed such that simultaneous control of the servo motors effects motion within ±50 mm translations, ±15° pitch, ±9° yaw, and ±8° roll at lower frequencies. The traverse tracks a desired trajectory and resolves the induced forces on the platform at 1 kHz. The effected motion of the platform is measured at 0.6 kHz with a motion capture system, which utilizes six near-infrared (NIR) cameras for full spatial and temporal resolution of the platform motion, which is used for feedback control. The traverse allows different platform model geometries to be tested, and the present work demonstrates its capabilities on an axisymmetric bluff body. Programmable timed outputs are synchronized relative to the model motion and can be used for triggering external systems and processes. In the present study, particle image velocimetry (PIV) is used to characterize the realized wakes of the platform undergoing canonical motions that are effected by this new wind tunnel traverse. Full article
(This article belongs to the Special Issue Innovations in Wind Tunnel Testing)
Show Figures

Graphical abstract

Back to TopTop