Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (82)

Search Parameters:
Keywords = warm-mix asphalt modifiers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6706 KB  
Article
Effect of Warm-Mix Additive USP on the Performance of Rubberized Asphalt and Fiber-Reinforced Rubberized Asphalt RAP Interlayer
by Jianhang Han, Bin Ding, Yong Hua, Wenbo Liu and Jun Li
Polymers 2025, 17(19), 2616; https://doi.org/10.3390/polym17192616 - 27 Sep 2025
Viewed by 311
Abstract
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance [...] Read more.
To address the dual challenges of cryogenic performance degradation and excessive VOC emissions in rubberized asphalt, this study proposes a synergistic optimization strategy using a polymer-based warm-mix additive (USP). The effects of USP on the rheological behavior, VOC emission characteristics, and mechanical performance of polymer-modified asphalt and fiber-reinforced RAP interlayers were systematically investigated. The results indicate that 5% USP optimally improves low-temperature flexibility (141.1% increase in ductility, 28.48% reduction in creep stiffness) while maintaining adequate high-temperature stability, and simultaneously achieves an 82.01% reduction in total VOC emissions at 150 °C. Microscopic analysis and DIC tests confirm that USP enhances polymer–asphalt–aggregate interactions, leading to improved adhesion, reduced water permeability, and extended fatigue life. This work provides a fundamental understanding of polymer–binder–aggregate synergy and offers a practical pathway toward greener, high-performance recycled asphalt pavement technologies. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

27 pages, 2204 KB  
Article
Study on the Volatile Organic Compound Emission Characteristics of Crumb Rubber-Modified Asphalt
by Hu Feng, Haisheng Zhao, Dongfang Zhang, Peiyu Zhang, Yindong Ding, Yanping Liu, Chunhua Su, Qingjun Han and Yiran Li
Coatings 2025, 15(9), 1043; https://doi.org/10.3390/coatings15091043 - 5 Sep 2025
Viewed by 920
Abstract
Crumb rubber used in asphalt modification can generally improve the road performance of asphalt mixture pavement while offering substantial environmental and economic benefits. This study investigates the volatile organic compound emissions from crumb rubber-modified asphalt binders via gas chromatography–mass spectrometry, focusing on the [...] Read more.
Crumb rubber used in asphalt modification can generally improve the road performance of asphalt mixture pavement while offering substantial environmental and economic benefits. This study investigates the volatile organic compound emissions from crumb rubber-modified asphalt binders via gas chromatography–mass spectrometry, focusing on the effects of crumb rubber types (e.g., activated crumb rubber, non-activated crumb rubber), contents, and additives (warm-mix agents, deodorants, styrene–butadiene–styrene (SBS)). The analysis encompasses total volatile organic compound emissions, compositional variations, secondary organic aerosol and ozone formation potentials, and carcinogenic risks. Results indicate that non-activated crumb rubber increases volatile organic compound emissions initially, peaking at a 15% content (3.99 times higher than base asphalt), dominated by trichloroethylene. The surfactant-based warm-mix additive significantly reduces emissions by 73%, whereas deodorants exhibited limited efficacy. At equivalent contents, activated crumb rubber-modified asphalt emits more volatile organic compounds than non-activated crumb rubber-modified asphalt and leads to a higher ozone formation potential. Activated crumb rubber/SBS-modified asphalt blends reduce emissions by 69%–81% due to synergistic effects. In contrast, non-activated crumb rubber/SBS blends increase emissions, likely due to phase separation. All samples contain carcinogens, primarily trichloroethylene (20%–79%) and benzene (0.1%–9%). These findings underscore the critical importance of crumb rubber activation status and SBS addition in controlling volatile organic compound diffusion. The activated crumb rubber/SBS combination achieves a synergistic reduction exceeding the sum of individual effects (“1 + 1 > 2”). These findings provide valuable insights for designing eco-friendly asphalt. Full article
(This article belongs to the Special Issue Advances in Pavement Materials and Civil Engineering)
Show Figures

Figure 1

18 pages, 1918 KB  
Article
Development of Low Rolling Resistance Asphalt Mixtures with RAP and WMA Technologies
by Judita Škulteckė, Ovidijus Šernas, Donatas Čygas, Igoris Kravcovas, Laura Žalimienė and Rafal Mickevič
Buildings 2025, 15(17), 3203; https://doi.org/10.3390/buildings15173203 - 5 Sep 2025
Viewed by 479
Abstract
The development of sustainable and energy-efficient asphalt pavements is essential to address the growing demand for climate-neutral transportation infrastructure. This study investigates the structural design and functional performance of low rolling resistance asphalt mixtures utilizing reclaimed asphalt pavement (RAP) and warm mix asphalt [...] Read more.
The development of sustainable and energy-efficient asphalt pavements is essential to address the growing demand for climate-neutral transportation infrastructure. This study investigates the structural design and functional performance of low rolling resistance asphalt mixtures utilizing reclaimed asphalt pavement (RAP) and warm mix asphalt (WMA) technologies. Ten mixtures with WMA additive—including asphalt concrete (AC) and stone mastic asphalt (SMA) with and without RAP—were evaluated for volumetric and mechanical performance. Laboratory results show that RAP addition did not compromise compaction nor indirect tensile strength ratio (ITSR), and in some cases improved these properties. SMA and SMA RAP-modified mixtures achieved the highest resistance to rutting (as low as 5.0% rut depth), while AC and SMA mixtures both demonstrated low rolling resistance (coefficients of energy loss 0.00604–0.00636). Resistance to low-temperature cracking was strong for all mixtures, with thermal stress restrained specimen test (TSRST) fracture temperatures ranging from −32.8 °C to −36.0 °C. SMA mixtures generally exhibited superior resistance to fatigue (up to 63 με at 1 million cycles). Overall, three asphalt mixtures with different particle size distribution containing 14% RAP and a WMA additive (SMA 8 S_1 R, SMA 8 S_3 R, and AC 11 VS_2 R) demonstrated the best balance of rolling resistance, durability, and circularity, and are recommended for field trials to support climate-neutral and sustainable road infrastructure. These results encourage broader adoption of circular practices in road infrastructure projects, contributing to lower emissions and life-cycle costs. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure: 2nd Edition)
Show Figures

Figure 1

17 pages, 1914 KB  
Systematic Review
Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review
by Giuseppe Loprencipe, Laura Moretti and Mario Saltaren Daniel
Designs 2025, 9(5), 104; https://doi.org/10.3390/designs9050104 - 1 Sep 2025
Cited by 1 | Viewed by 732
Abstract
The use of Reclaimed Asphalt Pavement (RAP) in asphalt mixtures offers environmental and economic advantages by reducing reliance on virgin aggregates and minimizing construction waste. However, the aged binder in RAP increases mixture stiffness, which can compromise fatigue resistance. This systematic review evaluates [...] Read more.
The use of Reclaimed Asphalt Pavement (RAP) in asphalt mixtures offers environmental and economic advantages by reducing reliance on virgin aggregates and minimizing construction waste. However, the aged binder in RAP increases mixture stiffness, which can compromise fatigue resistance. This systematic review evaluates the influence of RAP content on fatigue performance compared to conventional mixtures, with a focus on the Indirect Tensile Test (IDT) as the primary assessment method. Following the parameters of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, five studies published between 2014 and 2024 were identified through searches in Web of Science, ScienceDirect, ASCE, and Scopus. Study quality was assessed using the Cochrane Risk of Bias tool. The results indicate that although RAP enhances rutting resistance, higher contents (>30%) often lead to reduced fatigue performance due to binder hardening and reduced mixture flexibility. The incorporation of rejuvenators—such as heavy paraffinic extracts—and modifiers, including high-modulus agents, polymers, and epoxy binders, can partially restore aged binder properties and improve performance. Sustainable innovations, such as lignin-based industrial by-products and warm-mix asphalt technologies, show promise in balancing mechanical performance with reduced environmental impact. Variability in material sources, modification strategies, and test protocols limits direct comparability among studies, underscoring the need for standardized evaluation frameworks. Overall, this review highlights that optimizing RAP content and selecting effective rejuvenation or modification strategies are essential for achieving durable, cost-effective, and environmentally responsible asphalt pavements. Future research should integrate advanced laboratory methods with performance-based design to enable high RAP utilization without compromising fatigue resistance. Full article
Show Figures

Figure 1

22 pages, 3743 KB  
Article
Mechanical and Performance Characteristics of Warm Mix Asphalt Modified with Phase Change Materials and Recycled Cigarette Filters
by Zahraa Ahmed al-Mammori, Israa Mohsin Kadhim Al-Janabi, Ghadeer H. Abbas, Doaa Hazim Aziz, Fatin H. Alaaraji, Elaf Salam Abbas, Beshaer M. AL-shimmery, Tameem Mohammed Hashim, Ghanim Q. Al-Jameel, Ali Shubbar and Mohammed Salah Nasr
CivilEng 2025, 6(3), 41; https://doi.org/10.3390/civileng6030041 - 5 Aug 2025
Cited by 1 | Viewed by 897
Abstract
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric [...] Read more.
With rising global temperatures and increasing sustainability demands, the need for advanced pavement solutions has never been greater. This study breaks new ground by integrating phase change materials (PCMs), including paraffin-based wax (Rubitherm RT55), hydrated salt (Climator Salt S10), and fatty acid (lauric acid), as binder modifiers within warm mix asphalt (WMA) mixtures. Moving beyond the traditional focus on binder-only modifications, this research utilizes recycled cigarette filters (CFs) as a dual-purpose fiber additive, directly reinforcing the asphalt mixture while simultaneously transforming a major urban waste stream into valuable infrastructure. The performance of the developed WMA mixture has been evaluated in terms of stiffness behavior using an Indirect Tensile Strength Modulus (ITSM) test, permanent deformation using a static creep strain test, and rutting resistance using the Hamburg wheel-track test. Laboratory tests demonstrated that the incorporation of PCMs and recycled CFs into WMA mixtures led to remarkable improvements in stiffness, deformation resistance, and rutting performance. Modified mixes consistently outperformed the control, achieving up to 15% higher stiffness after 7 days of curing, 36% lower creep strain after 4000 s, and 64% reduction in rut depth at 20,000 passes. Cost–benefit analysis and service life prediction show that, despite costing USD 0.71 more per square meter with 5 cm thickness, the modified WMA mixture delivers much greater durability and rutting resistance, extending service life to 19–29 years compared to 10–15 years for the control. This highlights the value of these modifications for durable, sustainable pavements. Full article
Show Figures

Figure 1

18 pages, 3861 KB  
Article
Investigating the Rheological Impact of USP Warm Mix Modifier on Asphalt Binder
by Yali Liu, Jingfei Ping, Hao Guo, Yikai Kang and Yali Ye
Coatings 2025, 15(7), 784; https://doi.org/10.3390/coatings15070784 - 3 Jul 2025
Viewed by 648
Abstract
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway [...] Read more.
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway engineering. This article systematically investigates the impact of different dosages of USP warm mix modifier on asphalt binders through rheological and microstructural analysis. Base asphalt and SBS-modified asphalt were blended with USP at varying ratios. Conventional tests (penetration, softening point, ductility) were combined with dynamic shear rheometry (DSR, AASHTO T315) and bending beam rheometry (BBR, AASHTO T313) to characterize temperature/frequency-dependent viscoelasticity. High-temperature performance was quantified via multiple stress creep recovery (MSCR, ASTM D7405), while fluorescence microscopy and FTIR spectroscopy elucidated modification mechanisms. Key findings reveal that (1) optimal USP thresholds exist at 4.0% for base asphalt and 4.5% for SBS modified asphalt, beyond which the rutting resistance factor (G*/sin δ) decreases by 20–31% due to plasticization effects; (2) USP significantly improves low-temperature flexibility, reducing creep stiffness at −12 °C by 38% (USP-modified) and 35% (USP/SBS composite) versus controls; (3) infrared spectroscopy displays that no new characteristic peaks appeared in the functional group region of 4000–1300 cm−1 for the two types of modified asphalt after the incorporation of USP, indicating that no chemical changes occurred in the asphalt; and (4) fluorescence imaging confirmed that the incorporation of USP led to disintegration of the spatial network structure of the control asphalt, explaining the reason for the deterioration of high-temperature performance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

21 pages, 3164 KB  
Article
Microscopic Mechanism of Asphalt Mixture Reinforced by Polyurethane and Silane Coupling Agent: A Molecular Dynamics Simulation-Based Study
by Zhi Lin, Weiping Sima, Xi’an Gao, Yu Liu and Jin Li
Polymers 2025, 17(12), 1602; https://doi.org/10.3390/polym17121602 - 9 Jun 2025
Cited by 1 | Viewed by 607
Abstract
Most modified asphalts require high-temperature shearing and prolonged mixing to achieve a uniform structure, often resulting in substantial exhaust gas pollution. This study explores the utilization of polyurethane (PU) as a warm mix asphalt modifier, leveraging its favorable compatibility with asphalt at lower [...] Read more.
Most modified asphalts require high-temperature shearing and prolonged mixing to achieve a uniform structure, often resulting in substantial exhaust gas pollution. This study explores the utilization of polyurethane (PU) as a warm mix asphalt modifier, leveraging its favorable compatibility with asphalt at lower temperatures to mitigate emissions. To address the inherent limitations of PU-modified asphalt mixtures, namely, poor low-temperature performance and susceptibility to water damage, silane coupling agents (SCAs) are introduced to reinforce the asphalt–aggregate interfacial strength. At the microscopic level, the optimal PU content (20.8%) was determined through analysis of micro-viscosity and radial distribution functions (RDFs). SCA effects on interfacial properties were assessed using adhesion work, adhesion depth, and interfacial thermal stability. At the macroscopic level, performance metrics—including strength, high-temperature resistance, low-temperature resistance, and water stability—were evaluated against a benchmark hot mix SBS-modified asphalt mixture. The results indicate that PU-modified asphalts exhibit superior high-temperature performance and strength but slightly lower low-temperature performance and insufficient water stability. The addition of SCAs improved both low-temperature and water stability attributes, enabling the mixtures to meet specification requirements. The simulation results suggest that KH-550, which chemically reacts with isocyanate groups (-OCN) in PU, exhibits a better interfacial reinforcement effect than KH-570. Therefore, KH-550 is recommended as the preferred SCA for PU-modified asphalt mixtures in practical applications. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

31 pages, 3743 KB  
Article
Dynamic Mechanical Characterization of Warm-Mixed Steel Slag-Crumb Rubber Modified Asphalt Mixture in Wide- and Narrow-Frequency Domains
by Fei Zhang, Bingyuan Huo, Chao Li, Heng Liu, Pengzhi Li, Yongming Xing, Lan Wang and Pucun Bai
Polymers 2025, 17(11), 1449; https://doi.org/10.3390/polym17111449 - 23 May 2025
Viewed by 632
Abstract
To investigate the dynamic mechanical properties of warm-mix steel slag-crumb rubber modified asphalt mixtures across wide- and narrow-frequency domains and evaluate the applicability of warm-mix technology, four distinct mixtures were prepared. The dynamic modulus characteristics under measured temperatures and frequencies were initially analyzed [...] Read more.
To investigate the dynamic mechanical properties of warm-mix steel slag-crumb rubber modified asphalt mixtures across wide- and narrow-frequency domains and evaluate the applicability of warm-mix technology, four distinct mixtures were prepared. The dynamic modulus characteristics under measured temperatures and frequencies were initially analyzed through complex modulus testing to elucidate narrow-frequency-domain mechanical behavior. Subsequently, leveraging the linear viscoelastic (LVE) theory and time–temperature superposition principle (TTSP), both the 2 Springs, 2 Parabolic Elements and 1 Dashpot (2S2P1D) mechanical element model and Modified Havriliak–Negami (MHN) mathematical model were established based on experimental data to characterize wide-frequency-domain dynamic responses. The results demonstrate substantial consistency in mechanical interpretation between narrow- and wide-frequency domain datasets, with enhanced information resolution achieved in wide-frequency analysis. Both models demonstrate comparable accuracy in characterizing the thermomechanical behavior of warm-mix steel slag-crumb rubber modified asphalt mixture across extended frequency and temperature ranges, while showing negligible performance discrepancies between the 2S2P1D and MHN formulations. Furthermore, both Cole–Cole and Black diagrams convincingly demonstrate the reliability of model predictions. This systematic investigation confirms the technical viability of warm-mix steel slag-crumb rubber modified asphalt mixture while establishing a dual-validated modeling framework for comprehensive performance prediction. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

24 pages, 5501 KB  
Article
Design and Construction Control of Warm Mix Epoxy Asphalt Mixture with Low Epoxy Content for Service Area Pavements
by Bo Chen, Kai Chen, Xuetang Xiong, Yi Deng, Zicong Chen, Weixiong Li and Huayang Yu
Buildings 2025, 15(10), 1673; https://doi.org/10.3390/buildings15101673 - 15 May 2025
Viewed by 805
Abstract
Highway service area pavements are exposed to severe conditions such as heavy traffic, oil infiltration, and temperature fluctuations, which lead to issues like rutting and cracking in conventional asphalt mixtures. Although warm mix epoxy asphalt mixtures have high strength and corrosion resistance, their [...] Read more.
Highway service area pavements are exposed to severe conditions such as heavy traffic, oil infiltration, and temperature fluctuations, which lead to issues like rutting and cracking in conventional asphalt mixtures. Although warm mix epoxy asphalt mixtures have high strength and corrosion resistance, their high epoxy content and stringent construction requirements limit their engineering applications. To address these challenges, a design and construction method for warm mix epoxy asphalt mixtures with low epoxy content (≤20%) was proposed. The mineral aggregate gradation was optimized using the CAVF volumetric method, and the impact of different epoxy asphalt-aggregate ratios was analyzed through various performance tests, including Marshall stability, high-temperature stability, low-temperature bending, and oil resistance tests. The construction available time was determined using viscosity tests, and process parameters were optimized based on infrared thermography and real-time compaction monitoring. The results show that a 5.4% epoxy asphalt-aggregate ratio yields the best overall performance, with significantly better dynamic stability, tensile strain, and oil resistance compared to SBS-modified asphalt mixtures. The recommended construction parameters, including temperature control and compaction process, ensure optimal performance and durability. The proposed methods provide essential technical support for the effective application of warm mix epoxy asphalt in service area pavements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 6157 KB  
Article
Preliminary Characterization of Lignin-Modified Binder for Half-Warm-Mix Asphalt
by Ana M. Rodríguez Pasandín, Pablo Orosa Iglesias, Ignacio Pérez Pérez and Ana M. Rodríguez-Alloza
Polymers 2025, 17(8), 1019; https://doi.org/10.3390/polym17081019 - 9 Apr 2025
Viewed by 797
Abstract
There is a growing trend to promote circular economy practices and reduce petroleum-derived product consumption in the paving sector. In this context, a liquid lignin-rich industrial waste was incorporated at 0% (control), 5%, 10%, 15%, and 20% into a bitumen emulsion to manufacture [...] Read more.
There is a growing trend to promote circular economy practices and reduce petroleum-derived product consumption in the paving sector. In this context, a liquid lignin-rich industrial waste was incorporated at 0% (control), 5%, 10%, 15%, and 20% into a bitumen emulsion to manufacture a lignin-based biobinder for half-warm-mix asphalt (HWMA). The mix of the bitumen emulsion and the industrial waste was made using an Ultra-turrax device, with the final mixing temperature monitored using a thermographic camera. Microstructure analysis was conducted using scanning electron microscopy (SEM). The bitumen was extracted and characterized using needle penetration tests at several temperatures. Additionally, the ring-and-ball softening point, penetration index, and ductility were assessed. Incorporating up to 5% of lignin-rich industrial waste led to a lignin-based biobinder that could be used for a more sustainable and bitumen-efficient HWMA production. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

29 pages, 3472 KB  
Article
Study on Composition Design and Performance Characteristics of Warm-Mixed Rubber–Asphalt Mixture for Cold-Region Stress Absorption Layers
by Rui Pan, Jifeng Chang and Yu Chen
Buildings 2025, 15(7), 1164; https://doi.org/10.3390/buildings15071164 - 2 Apr 2025
Cited by 1 | Viewed by 526
Abstract
Reflection cracks significantly compromise the service life of half-rigid asphalt pavements in cold regions. This study introduces SAKIII warm-mixed rubber–asphalt mixture (SAKIII WMRA Mix) as a stress absorption layer to address this issue. Through orthogonal tests, regression analysis, and performance comparisons with SBS-modified [...] Read more.
Reflection cracks significantly compromise the service life of half-rigid asphalt pavements in cold regions. This study introduces SAKIII warm-mixed rubber–asphalt mixture (SAKIII WMRA Mix) as a stress absorption layer to address this issue. Through orthogonal tests, regression analysis, and performance comparisons with SBS-modified asphalt, the material composition, low-temperature cracking resistance, and fatigue performance of WMRAM were systematically evaluated. The results show that SAKIII WMRA Mix maintains superior road performance with 30 °C lower mixing/compaction temperatures compared to traditional hot-mix asphalt mixture. At −10 °C, its low-temperature cracking resistance improves by 40% and fatigue life extends by 35% over the SBS-modified asphalt mixture. Mechanistically, SAKIII WMRA Mix reduces reflection crack propagation by 30% and prolongs pavement service life by over 25% under equivalent traffic/climate conditions. Additionally, it decreases energy consumption by 15–20% and provides a sustainable solution for cold-region road construction. This research establishes optimized mix design methods and performance criteria for WMRAM, offering theoretical support and practical guidance for reflective crack mitigation in cold climates. The proposed technology effectively balances mechanical properties, energy efficiency, and environmental benefits, making it especially suitable for cold areas where thermal stress dominates road damage. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 28066 KB  
Article
Performance Evaluation of Warm-Mix Asphalt Binders with an Emphasis on Rutting and Intermediate-Temperature Cracking Resistance
by Jiangbo Pang, Yu Chen, Longfei Jing, Haoran Song and Ziyang Liu
Materials 2025, 18(7), 1571; https://doi.org/10.3390/ma18071571 - 30 Mar 2025
Viewed by 651
Abstract
Warm-mix asphalt (WMA) technology is gaining popularity worldwide due to its benefits of considerable emissions reduction and energy savings when compared with hot-mix asphalt (HMA). Currently, there is a wide range of WMA products with considerable variability in the corresponding pavement performances. It [...] Read more.
Warm-mix asphalt (WMA) technology is gaining popularity worldwide due to its benefits of considerable emissions reduction and energy savings when compared with hot-mix asphalt (HMA). Currently, there is a wide range of WMA products with considerable variability in the corresponding pavement performances. It has also been difficult to reach a unified conclusion regarding the effects of various WMA additives on asphalt binder properties. In this study, two categories of warm-mix additives, including six organic additives and three chemical additives, were evaluated in terms of their effects on asphalt binder properties, with a focus on rutting and intermediate-temperature cracking. It was found that the viscosity-reducing effect of organic additives was more significant in comparison to chemical additives. In addition, the binders modified with the organic additives obtained enhanced rutting resistance at high temperatures but compromised cracking resistance at intermediate temperatures, as shown by the increasing complex modulus (G*) and non-recoverable creep compliance (Jnr) and decreasing binder fracture energy (BFE). Meanwhile, the very limited effect of chemical additives on rutting resistance was observed while the cracking resistance was slightly improved. The findings will assist in the selection and application of WMA additives for the production of asphalt mixture. Full article
Show Figures

Figure 1

28 pages, 6455 KB  
Article
Optimizing Bitumen Performance in Warm Mix Asphalt Using Cecabase RT BIO10: A Taguchi-Based Experimental Approach
by Mustafa Çakı and Fatih İrfan Baş
Appl. Sci. 2025, 15(4), 1761; https://doi.org/10.3390/app15041761 - 9 Feb 2025
Cited by 2 | Viewed by 2084
Abstract
Flexible pavements stand out as the most commonly used worldwide, compared to rigid and composite pavements, owing to their versatility and widespread application. The use of hot mix asphalt (HMA) in flexible pavements causes significant environmental concerns due to high CO2 emissions [...] Read more.
Flexible pavements stand out as the most commonly used worldwide, compared to rigid and composite pavements, owing to their versatility and widespread application. The use of hot mix asphalt (HMA) in flexible pavements causes significant environmental concerns due to high CO2 emissions and energy consumption, whereas warm mix asphalt (WMA) technologies have gained popularity in recent decades, offering a more sustainable alternative by enabling asphalt production at lower temperatures. WMA technologies can be categorized into three main groups: foaming, organic additives, and chemical additives, with each offering distinct benefits for performance and environmental impact. One of the chemical additives used in WMA production is Cecabase RT BIO10. In this study, virgin bitumen with 50/70 penetration was modified by adding Cecabase RT BIO10 at four levels: 0%, 0.3%, 0.4%, and 0.5% by weight. The experimental design employed a Taguchi L16 orthogonal array to systematically evaluate the effects of various factors on modified bitumen performance. Binders were prepared at four temperatures (110 °C, 120 °C, 130 °C, and 140 °C), four mixing durations (15, 20, 25, and 30 min), and four mixing speeds (1000, 2000, 3000, and 4000 rpm), enabling an efficient analysis of each parameter’s impact. The prepared binders were subjected to a series of tests, including penetration, softening point, flash point, rotational thin film oven test (RTFOT), elastic recovery, Marshall stability, ultrasonic pulse velocity (UPV), and FTIR analysis. These tests were conducted to investigate the effects of various parameters and levels on the binder properties. Additionally, stiffness and seismic modules were evaluated to provide a more comprehensive understanding of the binder’s performance. The experiment results revealed that the penetration, elastic recovery percentage, and Marshall stability increased with increasing additive content while the softening point and RTFOT mass loss decreased. At a high service temperature of 40 °C, the stiffness modulus of the modified bitumen decreased slightly. At a low service temperature of −10 °C, it decreased further. Additionally, the incorporation of Cecabase RT BIO10 led to an increase in the seismic modulus. Through optimization using the Taguchi method, the optimal levels were determined to be a 0.4% Cecabase RT BIO10 ratio, 140 °C mixing temperature, 30 min mixing time, and 1000 RPM mixing speed. The optimal responses for each test were identified and integrated into a unified optimal response, resulting in a comprehensive design guide with 95% confidence level estimates for all possible level combinations. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 4833 KB  
Article
Application of NaP1 Zeolite Modified with Silanes in Bitumen Foaming Process
by Szymon Malinowski, Roman Pacholak, Krzysztof Kołodziej and Agnieszka Woszuk
Materials 2024, 17(23), 5902; https://doi.org/10.3390/ma17235902 - 2 Dec 2024
Cited by 1 | Viewed by 1084
Abstract
In recent years, global climate change has caused worldwide trends in science and industry toward a focus on the development of modern technologies with reduced environmental impact, including reduced CO2 emissions into the atmosphere. The technology for producing asphalt mixtures (AM) at [...] Read more.
In recent years, global climate change has caused worldwide trends in science and industry toward a focus on the development of modern technologies with reduced environmental impact, including reduced CO2 emissions into the atmosphere. The technology for producing asphalt mixtures (AM) at lower temperatures (WMA—warm asphalt mix) using zeolite materials for the bitumen foaming process fits perfectly into these trends. Therefore, towards the development of this technology, the research presented in this paper presents the modification process of zeolite NaP1 from fly ash with silanes of different chemical structures (TEOS, MPTS, TESPT) and their application in the foaming process of bitumen modified with polymers (PMB 45/80-55). The scope of the work includes two main novelty elements: (1) the use of zeolite–silane composites in bitumen foaming and (2) polymer-modified bitumen foaming. Chemical characterisation carried out by EDS-XRF, FTIR, and XPS analysis clearly demonstrated the success of the zeolite matrix modification process, which directly resulted in textural changes. Simultaneously, mineralogical analysis carried out by XRD showed the complete retention of the initial phase composition of zeolite matrix. Further studies have shown that the application of zeolite–oxide composites results in less PMB 45/80-55 stiffening without imposing negative effects on its softening point and dynamic viscosity. Full article
(This article belongs to the Special Issue Advances in Asphalt Materials (Second Volume))
Show Figures

Figure 1

23 pages, 3580 KB  
Article
Fatigue Performance Evaluation of Warm-Mixed Rubber Asphalt Mixture for Stress Absorption Layer in Cold Area
by Rui Pan
Buildings 2024, 14(12), 3817; https://doi.org/10.3390/buildings14123817 - 28 Nov 2024
Cited by 1 | Viewed by 891
Abstract
Based on the composition design of warm-mixed rubber asphalt mixture and the analysis of the influence of warm mixing on the road performance of warm-mixed rubber asphalt mixture, the fatigue performance of warm-mixed rubber asphalt mixture is studied in this paper. The effects [...] Read more.
Based on the composition design of warm-mixed rubber asphalt mixture and the analysis of the influence of warm mixing on the road performance of warm-mixed rubber asphalt mixture, the fatigue performance of warm-mixed rubber asphalt mixture is studied in this paper. The effects of gradation, asphalt dosage, and strain level on the fatigue life of the mixture are analyzed. Based on a comparative analysis of the fatigue life of warm-mixed and hot-mixed rubber asphalt mixture before aging, it is concluded that the fatigue performance of hot-mixed rubber asphalt mixture is slightly better than that of warm-mixed rubber asphalt mixture. The effect of aging on the fatigue performance of warm-mixed and hot-mixed rubber asphalt mixture is analyzed, and it is concluded that the fatigue durability of aging hot-mixed rubber asphalt mixture decreases much faster than that of warm-mixed rubber asphalt mixture. Based on a comparative analysis of the fatigue performance of three kinds of asphalt mixture used as a stress absorption layer, it is concluded that the fatigue performance of warm-mixed rubber asphalt mixture is basically the same as that of hot-mixed rubber asphalt mixture, but much higher than that of SBS-modified asphalt mixture. A warm-mixed agent can slow down the decreasing rate of fatigue performance of rubber asphalt mixture and improve the aging resistance of rubber asphalt mixture. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop