Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (364)

Search Parameters:
Keywords = waste reduction behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8329 KB  
Article
Ethylene Propylene Diene Monomer-Based Composites Resistant to the Corrosive Action of Acetic Acid
by Elena Manaila, Ion Bogdan Lungu, Marius Dumitru, Maria Mihaela Manea and Gabriela Craciun
Materials 2025, 18(19), 4557; https://doi.org/10.3390/ma18194557 - 30 Sep 2025
Viewed by 220
Abstract
The potential of elastomeric composites reinforced with natural fillers to replace traditional synthetic materials in applications involving exposure to acidic environments offers both economic and environmental advantages. On the one hand, these materials contribute to cost reduction and the valorization of organic waste [...] Read more.
The potential of elastomeric composites reinforced with natural fillers to replace traditional synthetic materials in applications involving exposure to acidic environments offers both economic and environmental advantages. On the one hand, these materials contribute to cost reduction and the valorization of organic waste through the development of value-added products. On the other hand, the presence of wood waste in the composite structure enhances biodegradation potential, making these materials less polluting and more consistent with the principles of the circular economy. The present study aims to evaluate the behavior of composites based on Ethylene Propylene Diene Monomer (EPDM) synthetic rubber, reinforced with silica and wood sawdust, in a weakly acidic yet strongly corrosive environment—specifically, acetic acid solutions with concentrations ranging from 10% to 30%. The study also investigates the extent to which varying the proportions of the two fillers affects the resistance of these materials under such environmental conditions. Physico-chemical, structural, and morphological analyses revealed that the materials underwent chemical modifications, such as acetylation of hydroxyl groups. This process reduced the hydrophilic character of the sawdust and, combined with the formation of stable interfaces between the elastomeric matrix and the fillers during vulcanization, limited acid penetration into the composite structure. The composites in which 20 phr or 30 phr of wood sawdust were used-replacing equivalent amounts of silica from the initial 50 phr formulation-demonstrated the highest resistance to the corrosive environments. After 14 days of exposure to a 20% acetic acid solution, the composite containing 30% wood sawdust exhibited a decrease in cross-link density of only 1.44%, accompanied by a reduction in Young’s modulus of just 0.95%. At the same time, tensile strength and specific elongation increased by 22.57% and 26.02%, respectively. FTIR and SEM analysis confirmed good rubber-filler interactions and the stability of the composite structure under acidic conditions. Full article
(This article belongs to the Special Issue Manufacturing and Recycling of Natural Fiber-Reinforced Composites)
Show Figures

Graphical abstract

16 pages, 345 KB  
Article
How Warm Glow and Altruistic Values Drive Consumer Perceptions of Sustainable Meal-Kit Brands
by Yoon Jung Jang
Sustainability 2025, 17(19), 8780; https://doi.org/10.3390/su17198780 - 30 Sep 2025
Viewed by 294
Abstract
The contribution of meal kits to the waste problem has become a significant concern, leading consumers to demand sustainable practices from meal-kit companies. This study proposes a framework to understand customer behavior toward sustainable meal-kit brands that promote practices such as recycling and [...] Read more.
The contribution of meal kits to the waste problem has become a significant concern, leading consumers to demand sustainable practices from meal-kit companies. This study proposes a framework to understand customer behavior toward sustainable meal-kit brands that promote practices such as recycling and waste reduction. This study applies warm glow theory to investigate how pure and impure altruism affect consumers’ perceptions of a meal-kit brand’s sustainability, perceived price fairness, and continuance intention. The findings confirmed that meal-kit brands’ sustainable practices significantly enhanced consumers’ perceptions of brand sustainability, which in turn influenced their perceived price fairness and continuance intention. Furthermore, warm glow and altruistic values were found to significantly moderate the relationship between consumers’ perceptions of brand sustainability and their continuance intention. However, no significant moderating effects were observed between consumers’ perceptions of brand sustainability and perceived price fairness. This study contributes to a deeper understanding of the psychological mechanisms underlying consumer attitudes and behaviors toward meal-kit brands’ sustainability efforts. Full article
Show Figures

Figure 1

23 pages, 9649 KB  
Article
Two-Phase Flow Simulation of Bubble Cross-Membrane Removal Dynamics in Boiling-Desorption Mode for Microchannel Membrane-Based Generators
by Jianrong Zhai, Hongtao Gao and Yuying Yan
Energies 2025, 18(19), 5156; https://doi.org/10.3390/en18195156 - 28 Sep 2025
Viewed by 155
Abstract
Compact and efficient absorption refrigeration systems can effectively utilize waste heat and renewable energy when operated in a boiling-desorption mode, which maximizes the desorption rate. Hydrophobic membranes play a critical role in microchannel membrane-based generators; however, limited research has addressed bubble cross-membrane removal [...] Read more.
Compact and efficient absorption refrigeration systems can effectively utilize waste heat and renewable energy when operated in a boiling-desorption mode, which maximizes the desorption rate. Hydrophobic membranes play a critical role in microchannel membrane-based generators; however, limited research has addressed bubble cross-membrane removal dynamics under boiling-desorption conditions, particularly the influence of membrane hydrophobicity. In this study, a two-phase flow bubble-removal model was developed to accurately represent boiling-desorption behavior. Numerical simulations were performed to investigate the effects of membrane hydrophobicity and heating power on bubble dynamics, wall temperature, venting rate, and channel pressure drop. Results show that bubble venting proceeds through four stages: nucleation and growth, liquid-film rupture with deformation, lateral spreading, and sustained vapor removal. Hydrophobicity effects become most significant from the third stage onwards. Increased hydrophobicity reduces wall temperature, with greater reductions at higher heat fluxes, and enhances venting performance by increasing total vapor removal and reducing removal time. Channel pressure fluctuations comprise high-frequency components from bubble growth and low-frequency components from venting-induced flow interruptions, with relative contributions dependent on hydrophobicity and heat flux. These findings provide new insights into bubble-removal mechanisms and offer guidance for the design and optimization of high-performance microchannel membrane-based generators. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

27 pages, 2775 KB  
Article
Performance, Combustion, and Emission Characteristics of a Diesel Engine Fueled with Preheated Coffee Husk Oil Methyl Ester (CHOME) Biodiesel Blends
by Kumlachew Yeneneh, Gadisa Sufe and Zbigniew J. Sroka
Sustainability 2025, 17(19), 8678; https://doi.org/10.3390/su17198678 - 26 Sep 2025
Viewed by 218
Abstract
The growing dependence on fossil fuels has raised concerns over energy security, resource depletion, and environmental impacts, driving the need for renewable alternatives. Coffee husk, a widely available agro-industrial residue, represents an underutilized feedstock for biodiesel production. In this study, biodiesel was synthesized [...] Read more.
The growing dependence on fossil fuels has raised concerns over energy security, resource depletion, and environmental impacts, driving the need for renewable alternatives. Coffee husk, a widely available agro-industrial residue, represents an underutilized feedstock for biodiesel production. In this study, biodiesel was synthesized from coffee husk oil using a two-step transesterification process to address its high free fatty acid content (21%). Physicochemical analysis showed that Coffee Husk Oil Methyl Ester (CHOME) possessed a density of 863 kg m−3, viscosity of 4.85 cSt, and calorific value of 33.51 MJ kg−1, compared to diesel with 812 kg m−3, 2.3 cSt, and 42.4 MJ kg−1. FTIR analysis confirmed the presence of ester carbonyl and C–O functional groups characteristic of CHOME, influencing its combustion behavior. Engine tests were then conducted using B0, B10, B30, B50, and B100 blends under different loads, both with and without fuel preheating. Results showed that neat CHOME (B100) exhibited 11.8% lower brake thermal efficiency (BTE) than diesel, but preheating at 95 °C improved BTE by 5%, with preheated B10 slightly surpassing diesel by 0.5%. Preheating also reduced brake-specific fuel consumption by up to 7.75%. Emission analysis revealed that B100 achieved reductions of 6.4% CO, 8.3% HC, and 7.0% smoke opacity, while NOx increased only marginally (2.86%). Overall, fuel preheating effectively mitigated viscosity-related drawbacks, enabling coffee husk biodiesel to deliver competitive performance with lower emissions, highlighting its potential as a sustainable waste-to-energy fuel. Full article
Show Figures

Figure 1

25 pages, 6099 KB  
Article
Marine Collagen from European Sea Bass (Dicentrarchus labrax) Waste for the Development of Chitosan/Collagen Scaffolds in Skin Tissue Engineering
by Alessandro Coppola, Maria Oliviero, Noemi De Cesare, Nello Russo, Noemi Nappo, Carmine Buonocore, Gerardo Della Sala, Pietro Tedesco, Fortunato Palma Esposito, Christian Galasso, Donatella de Pascale, Ugo D’Amora and Daniela Coppola
Mar. Drugs 2025, 23(10), 375; https://doi.org/10.3390/md23100375 - 25 Sep 2025
Viewed by 329
Abstract
Over the past years, with the growing interest in sustainable biomaterials, marine collagen has been emerging as an interesting alternative to bovine collagen. It is more easily absorbed by the body and has higher bioavailability. In this study, collagen was extracted from Dicentrarchus [...] Read more.
Over the past years, with the growing interest in sustainable biomaterials, marine collagen has been emerging as an interesting alternative to bovine collagen. It is more easily absorbed by the body and has higher bioavailability. In this study, collagen was extracted from Dicentrarchus labrax (sea bass) skin, a fishery by-product, thus valorizing waste streams while reducing environmental impact. To overcome the intrinsic weak mechanical of collagen, it was combined with chitosan to produce composite scaffolds for skin tissue engineering. The incorporation of collagen proved crucial for scaffold performance: (i) it promoted the formation of an open-pore architecture, favorable for cell infiltration and proliferation; (ii) it enhanced swelling behavior suitable for exudate absorption and maintenance of a moist wound environment; (iii) by tuning the chitosan/collagen ratio, it enabled us to control the degradation rate; (iv) it conferred antioxidant properties; and (iv) by adjusting collagen/chitosan concentrations, it allowed fine-tuning of mechanical properties, ensuring sufficient strength to resist stresses encountered during wound healing. In vitro assays demonstrated that the scaffolds were non-cytotoxic and effectively supported mouse adipose tissue fibroblasts’ adhesion and proliferation. Finally, all formulations exhibited marked bactericidal activity against the human pathogen Staphylococcus aureus and the methicillin-resistant Staphylococcus aureus, with a Log reduction greater than 3 (a reduction of at least 99.9% in bacterial growth) compared to the control. Collectively, these findings highlight collagen not only as a sustainable resource but also as a functional component that drives the structural, physicochemical, biological, and antimicrobial performance of chitosan/collagen scaffolds for skin tissue engineering. Full article
(This article belongs to the Special Issue Marine Collagen: From Biological Insights to Biomedical Breakthroughs)
Show Figures

Figure 1

20 pages, 3372 KB  
Article
Characterization and Performance Evaluation of Cotton Fabrics Functionalized via In Situ Green Synthesis of Silver Nanoparticles Using Solanum tuberosum Peel Extract
by Nonsikelelo Sheron Mpofu, Josphat Igadwa Mwasiagi, Cleophas Achisa Mecha and Eric Oyondi Nganyi
Polymers 2025, 17(19), 2598; https://doi.org/10.3390/polym17192598 - 25 Sep 2025
Viewed by 307
Abstract
The functionalization of textiles with nanomaterials through green synthesis offers a promising pathway for sustainable material innovation. This study explores the in situ green synthesis of silver nanoparticles (AgNPs) onto cotton fabrics using Solanum tuberosum (potato) peel extract as a natural reducing and [...] Read more.
The functionalization of textiles with nanomaterials through green synthesis offers a promising pathway for sustainable material innovation. This study explores the in situ green synthesis of silver nanoparticles (AgNPs) onto cotton fabrics using Solanum tuberosum (potato) peel extract as a natural reducing and stabilizing agent. The synthesis conditions were optimized by varying silver nitrate concentration, extract volume, temperature, pH, and reaction time, after which the optimized protocol was applied for fabric treatment. The presence and distribution of AgNPs were confirmed through UV-Visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy and dynamic light scattering. The treated fabrics demonstrated strong and durable antibacterial performance, with inhibition zones of 23 ± 0.02 against Escherichia coli and 16 ± 0.01 against Staphylococcus aureus. Notably, antibacterial activity was retained even after 20 washing cycles, demonstrating the durability of the treatment. Mechanical testing revealed a 32.25% increase in tensile strength and a corresponding 10.47% reduction in elongation at break compared to untreated fabrics, suggesting improved durability with moderate stiffness. Air permeability decreased by 8.8%, correlating with the rougher surface morphology observed in Scanning Electron Microscopy images. Thermal analysis showed a decrease in thermal stability relative to untreated cotton, highlighting the influence of AgNPs on degradation behavior. Overall, this work demonstrates that potato peel waste, an abundant and underutilized biomass, can be used as a sustainable source for the green synthesis of AgNP-functionalized textiles. The approach provides a cost-effective and environmentally friendly strategy for developing multifunctional fabrics, while supporting circular economy goals in textile engineering. Full article
(This article belongs to the Special Issue Sustainable Electrospinning Processes and Green Solvents)
Show Figures

Graphical abstract

28 pages, 2359 KB  
Article
Plasma Treatment of Simulated Operational Radioactive Waste: Characterization of Reaction Products and Tracking of Radioactive Surrogates
by Juan Ariel Pullao, Franco Emmanuel Benedetto, Yamila Soledad Vargas, Jorge Roque Issa Rios, Leonardo Andrés Neira Poblete, Diana Carolina Lago and Miguel Oscar Prado
Processes 2025, 13(10), 3029; https://doi.org/10.3390/pr13103029 - 23 Sep 2025
Viewed by 397
Abstract
This research demonstrates the high efficiency of thermal plasma gasification for the treatment of simulated operational radioactive waste (SORW), representative of the low-level radioactive waste (LLW) generated in Argentina. A prototype system with a 4.8 kW plasma torch was used to process SORW [...] Read more.
This research demonstrates the high efficiency of thermal plasma gasification for the treatment of simulated operational radioactive waste (SORW), representative of the low-level radioactive waste (LLW) generated in Argentina. A prototype system with a 4.8 kW plasma torch was used to process SORW composed of nitrile gloves, laboratory paper, and stable non-radioactive elements to simulate 60Co, 90Sr, 137Cs, and 144Ce. The process achieved vast volume reduction (99.6%), converting 5625 mL of waste into minimal volumes of four different solid residues (SR): SR1 (20 mL), SR2 (1 mL), SR3 (1 mL), and SR4 (3 mL), resulting in a volume reduction factor (VRF) of 225. Elemental analysis showed clear differences in retention behavior: excellent retention for Co (96 ± 10% inside the plasma reactor) and Ce (59 ± 6%), while more volatile Sr (39 ± 4%) and Cs (26 ± 3%). The latter were partially captured in downstream components (22.8 ± 1.1% Sr and 2.9 ± 0.15% Cs in quencher). The gases treatment system achieved >97% reduction for most plasma generated pollutants: NOx (98.9 ± 0.6%), CO (98.2 ± 0.8%), H2S (97.6 ± 0.6%), and H2 (98.1 ± 0.9%), with 80.6 ± 2.5% for SO2 and 75.0 ± 1.1% reduction for CO2. Full article
Show Figures

Figure 1

27 pages, 2408 KB  
Article
Analysis of the Environmental Compatibility of the Use of Porcelain Stoneware Tiles Manufactured with Waste Incineration Bottom Ash
by Luigi Acampora, Giulia Costa, Iason Verginelli, Francesco Lombardi, Claudia Mensi and Simone Malvezzi
Ceramics 2025, 8(3), 116; https://doi.org/10.3390/ceramics8030116 - 19 Sep 2025
Viewed by 265
Abstract
In line with circular economy principles and the reduction of primary material exploitation, waste-to-energy (WtE) by-products such as bottom ash (BA) are increasingly being used as raw materials in cement and ceramics manufacturing. However, it is critical to verify that the final product [...] Read more.
In line with circular economy principles and the reduction of primary material exploitation, waste-to-energy (WtE) by-products such as bottom ash (BA) are increasingly being used as raw materials in cement and ceramics manufacturing. However, it is critical to verify that the final product presents not only adequate technical properties but also that it does not pose negative impacts to the environment and human health during its use. This study investigates the environmental compatibility of the use of ceramic porcelain stoneware tiles manufactured with BA as partial replacement of traditional raw materials, with a particular focus on the leaching behavior of the tiles during their use, and also after crushing to simulate their characteristics at their end of life. To evaluate the latter aspect, compliance leaching tests were performed on crushed samples and compared with Italian End-of-Waste (EoW) thresholds for the use of construction and demolition waste as recycled aggregates. Whereas, to assess the environmental compatibility of the tiles during the utilization phase, a methodology based on the application of monolithic leaching tests to intact tiles, and the evaluation of the results through multi-scenario human health risk assessment and the analysis of the main mechanisms governing leaching at different stages, was employed. The results of the study indicate that the analyzed BA-based tiles showed no significant increase in the release of potential contaminants compared to traditional formulations and fully complied with End-of-Waste criteria. The results of the monolith tests used as input for site-specific risk assessment, simulating worst-case scenarios involving the potential contamination of the groundwater, indicated negligible risks to human health for both types of tiles, even considering very conservative assumptions. As for differences in the release mechanisms, tiles containing BA exhibited a shift toward depletion-controlled leaching and some differences in early element release compared to the ones with a traditional formulation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Figure 1

26 pages, 6112 KB  
Article
Preliminary Experimental Validation of Single-Phase Natural Circulation Loop Based on RELAP5-3D Code: Part I
by Hossam H. Abdellatif, Joshua Young, David Arcilesi and Richard Christensen
J. Nucl. Eng. 2025, 6(3), 38; https://doi.org/10.3390/jne6030038 - 19 Sep 2025
Viewed by 511
Abstract
The molten salt reactor (MSR) is a prominent Generation IV nuclear reactor concept that offers substantial advantages over conventional solid-fueled systems, including enhanced fuel utilization, inherent passive safety features, and significant reductions in long-lived radioactive waste. Central to its safety strategy is a [...] Read more.
The molten salt reactor (MSR) is a prominent Generation IV nuclear reactor concept that offers substantial advantages over conventional solid-fueled systems, including enhanced fuel utilization, inherent passive safety features, and significant reductions in long-lived radioactive waste. Central to its safety strategy is a reliance on natural circulation (NC) mechanisms, which eliminate the need for active pumping systems and enhance system reliability during normal and off-normal conditions. However, the challenges associated with molten salts, such as their high melting points, corrosivity, and material compatibility issues, render experimental investigations inherently complex and demanding. Therefore, the use of high-Pr-number surrogate fluids represents a practical alternative for studying molten salt behavior under safer and more accessible experimental conditions. In this study, a single-phase natural circulation loop setup at the University of Idaho’s Thermal–Hydraulics Laboratory was employed to investigate NC behavior under various operating conditions. The RELAP5-3D code was initially validated against water-based experiments before employing Therminol-66, a high-Prandtl-number surrogate for molten salts, in the natural circulation loop for the first time. The RELAP5-3D results demonstrated good agreement with both steady-state and transient experimental results, thereby confirming the code’s ability to model NC behavior in a single-phase flow regime. The results also highlighted certain experimental limitations that should be addressed to enhance the NC loop’s performance. These include increasing the insulation thickness to reduce heat losses, incorporating a dedicated mass flow measurement device for improved accuracy, and replacing the current heater with a higher-capacity unit to enable testing at elevated power levels. By identifying and addressing the main causes of these limitations and uncertainties during water-based experiments, targeted improvements can be implemented in both the RELAP5 model and the experimental setup, thereby ensuring that tests using a surrogate fluid for MSR analyses are conducted with higher accuracy and minimal uncertainty. Full article
(This article belongs to the Special Issue Advances in Thermal Hydraulics of Nuclear Power Plants)
Show Figures

Figure 1

16 pages, 1460 KB  
Article
Prediction of Losses in an Agave Liquor Production and Packaging System Using a Neural Network and Fuzzy Logic
by Alejandro Lozano Luna, Albino Martínez Sibaja, Angélica M. Bello Ramírez, José P. Rodríguez Jarquin, Miguel J. Heredia Roldán and Alejandro Alvarado Lassman
Processes 2025, 13(9), 2843; https://doi.org/10.3390/pr13092843 - 5 Sep 2025
Viewed by 514
Abstract
This study presents the development of a predictive system based on artificial neural networks (ANNs) and fuzzy logic to estimate losses in an agave liquor production and packaging plant. Currently, these losses are discharged into wastewater, generating not only finished product waste, but [...] Read more.
This study presents the development of a predictive system based on artificial neural networks (ANNs) and fuzzy logic to estimate losses in an agave liquor production and packaging plant. Currently, these losses are discharged into wastewater, generating not only finished product waste, but also greater environmental pollution and higher treatment costs. To address this, agave liquor waste is converted into methane biogas through anaerobic digestion and subsequently transformed into electrical energy. The system begins by collecting historical data from the production process, including production plans and shrinkage rates at each stage of the packaging line. These data are analyzed to identify behavioral patterns and correlations between process variables and losses, allowing a deeper understanding of the packaging process. Critical control points were identified throughout the production stages, and an ANN model was trained with historical data to predict losses. Outstanding results were achieved in the packaging and capping stage, where a significant impact on bottle loss was observed, with a 29% impact in the morning shift and a 35% impact in the afternoon shift. Fuzzy logic was used to manage the uncertainty and subjectivity associated with identifying the stages most susceptible to waste, translating qualitative assessments into quantitative metrics. Estimates allow for approximately 8% to 12% reductions by streamlining the process with this analysis obtained through the use of artificial intelligence tools. This integrated approach aims to optimize operational efficiency, reduce losses, minimize environmental impact, and promote sustainable practices within the agave liquor industry. Full article
Show Figures

Figure 1

29 pages, 5574 KB  
Article
Comprehensive Fish Feeding Management in Pond Aquaculture Based on Fish Feeding Behavior Analysis Using a Vision Language Model
by Divas Karimanzira
Aquac. J. 2025, 5(3), 15; https://doi.org/10.3390/aquacj5030015 - 3 Sep 2025
Viewed by 712
Abstract
For aquaculture systems, maximizing feed efficiency is a major challenge since it directly affects growth rates and economic sustainability. Feed is one of the largest costs in aquaculture, and feed waste is a significant environmental issue that requires effective management strategies. This paper [...] Read more.
For aquaculture systems, maximizing feed efficiency is a major challenge since it directly affects growth rates and economic sustainability. Feed is one of the largest costs in aquaculture, and feed waste is a significant environmental issue that requires effective management strategies. This paper suggests a novel approach for optimal fish feeding in pond aquaculture systems that integrates vision language models (VLMs), optical flow, and advanced image processing techniques to enhance feed management strategies. The system allows for the precise assessment of fish needs in connection to their feeding habits by integrating real-time data on biomass estimates and water quality conditions. By combining these data sources, the system makes informed decisions about when to activate automated feeders, optimizing feed distribution and cutting waste. A case study was conducted at a profit-driven tilapia farm where the system had been operational for over half a year. The results indicate significant improvements in feed conversion ratios (FCR) and a 28% reduction in feed waste. Our study found that, under controlled conditions, an average of 135 kg of feed was saved daily, resulting in a cost savings of approximately $1800 over the course of the study. The VLM-based fish feeding behavior recognition system proved effective in recognizing a range of feeding behaviors within a complex dataset in a series of tests conducted in a controlled pond aquaculture setting, with an F1-score of 0.95, accuracy of 92%, precision of 0.90, and recall of 0.85. Because it offers a scalable framework for enhancing aquaculture resource use and promoting sustainable practices, this study has significant implications. Our study demonstrates how combining language models and image processing could transform feeding practices, ultimately improving aquaculture’s environmental stewardship and profitability. Full article
Show Figures

Figure 1

21 pages, 308 KB  
Article
Effects of Solutions Centered Climate Education on Youth Beliefs and Behaviors: The University of California’s Bending the Curve Course
by Ananya R. Gupta, Satish Jaiswal, Suzanna Purpura, Seth Dizon, Markus Buan, Fatima Dong, Fonna Forman and Jyoti Mishra
Sustainability 2025, 17(17), 7831; https://doi.org/10.3390/su17177831 - 30 Aug 2025
Viewed by 828
Abstract
Per the United Nations, enhancing climate literacy can play an essential role in advancing climate mitigation, adaptation, and promoting sustainable human behaviors. Yet, there is a lack of empirical research explicitly studying the effects of climate solutions focused education. Here, we studied the [...] Read more.
Per the United Nations, enhancing climate literacy can play an essential role in advancing climate mitigation, adaptation, and promoting sustainable human behaviors. Yet, there is a lack of empirical research explicitly studying the effects of climate solutions focused education. Here, we studied the effects of a climate solutions focused course—the University of California Bending the Curve (BtC) course on: (1) climate change beliefs, (2) personal pro-environmental actions, and (3) psychological health, using baseline and post-course surveys. A total of 374 youth (median age 21 ± 1.7 years, 63% female) participated in the study, and data analysis focused on statistically comparing pre- versus post-course survey-based data. We observed that the BtC course enhanced climate change beliefs. Specifically, at post-relative to pre-course, we observed significantly increased belief that global warming will impact individuals personally as well as impact our future generations; it tripled the number of students who believe that humans can and will act to reduce global warming; it significantly increased the number of individuals who believe in a scientific basis for climate change. Notably, climate solutions education also enhanced belief in the efficacy of personal climate action and increased agreement amongst youth that many of their friends also share the same views on global warming. With regard to personal pro-environmental actions, the course significantly improved self-reported actions, including waste reduction, making food choices with reduced emissions, and purchase of carbon offsets. These actions reduced the carbon footprint per student at post- vs. pre-course by a significant 0.3 ± 0.1 CO2 tons/year, which is equivalent to the CO2 absorbed by about 15 trees per year. While psychological health outcomes did not show any significant post- vs. pre-course change, we found that enhanced personal pro-environmental actions as well as enhanced psychological health were predicted by course-related strengthening of climate change beliefs. Overall, our findings provide evidence that solutions-based climate education can be an important strategy to enhance individual climate change awareness as well as personal pro-environmental actions that lead to significant individual carbon footprint reduction, with potential for widespread scale-up. Full article
(This article belongs to the Section Sustainable Education and Approaches)
18 pages, 6559 KB  
Article
Fractal-Based Non-Linear Assessment of Crack Propagation in Recycled Aggregate Concrete Using 3D Response Surface Methodology
by Xiu-Cheng Zhang and Xue-Fei Chen
Fractal Fract. 2025, 9(9), 568; https://doi.org/10.3390/fractalfract9090568 - 29 Aug 2025
Cited by 1 | Viewed by 466
Abstract
This study investigates the fracture behavior of recycled aggregate concrete by integrating fractal theory and empirical modeling to quantify how recycled coarse aggregates (RCAs) and recycled fine aggregates (RFAs) influence crack complexity and maximum crack width under varying content and loads. The results [...] Read more.
This study investigates the fracture behavior of recycled aggregate concrete by integrating fractal theory and empirical modeling to quantify how recycled coarse aggregates (RCAs) and recycled fine aggregates (RFAs) influence crack complexity and maximum crack width under varying content and loads. The results reveal distinct scale-dependent behaviors between RCA and RFA. For RCA, moderate dosages enhance fractal complexity (a measure of surface roughness) by promoting micro-crack proliferation, while excessive RCA reduces complexity due to matrix homogenization. In contrast, RFA significantly increases both fractal complexity and crack width under equivalent loads, reflecting its susceptibility to micro-scale interfacial transition zone (ITZ) degradation. Non-linear thresholds are identified: RCA’s fractal complexity plateaus at high loads as cracks coalesce into fewer dominant paths, while RFA’s crack width growth decelerates at extreme dosages due to balancing effects like particle packing. Empirical models link aggregate dosage and load to fractal dimension and crack width with high predictive accuracy (R2 > 0.85), capturing interaction effects such as RCA’s load-induced complexity reduction and RFA’s load-driven crack width amplification. Secondary analyses further demonstrate that fractal dimension correlates with crack width through non-linear relationships, emphasizing the coupled nature of micro- and macro-scale damage. These findings challenge conventional design assumptions by differentiating the impacts of RCA (macro-crack coalescence) and RFA (micro-crack proliferation), providing actionable thresholds for optimizing mix designs. The study also advances sustainable material design by offering a scientific basis for updating standards to accommodate higher recycled aggregate percentages, supporting circular economy goals through reduced carbon emissions and waste diversion, and laying the groundwork for resilient, low-carbon infrastructure. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

17 pages, 1965 KB  
Article
Promoting Conservation Intentions Through Humanized Messaging in Green Advertisements: The Mediation Roles of Empathy and Responsibility
by Yangyang Chen and Alice Ling Jiang
Sustainability 2025, 17(16), 7465; https://doi.org/10.3390/su17167465 - 18 Aug 2025
Viewed by 684
Abstract
Plastic waste accumulation is a pressing environmental challenge that demands interdisciplinary solutions. This study investigated whether humanized messaging in green advertisements increases consumers’ conservation intentions. Grounded in self-expansion theory and dual-process theory, we propose a serial mediation model that integrates affective (empathy) and [...] Read more.
Plastic waste accumulation is a pressing environmental challenge that demands interdisciplinary solutions. This study investigated whether humanized messaging in green advertisements increases consumers’ conservation intentions. Grounded in self-expansion theory and dual-process theory, we propose a serial mediation model that integrates affective (empathy) and cognitive (perceived responsibility) pathways to explain conservation behavior in humanized environmental campaigns. We conducted a scenario-based experiment (N = 505) to test these mechanisms. Green ads that humanize marine animals significantly increased empathy, perceived responsibility, and conservation intentions. Moreover, the effect of humanized messaging on conservation intentions was sequentially mediated by heightened empathy, which in turn strengthened perceived responsibility. As a pioneering study aiming to propose and empirically test the affective–cognitive pathway, our work provides novel insights into how emotional and rational processes jointly shape environmental decision-making. The findings advance theory on consumers’ conservation behavior and provide actionable guidance for enterprises and policymakers to design evidence-based initiatives for plastic waste reduction. Full article
Show Figures

Figure 1

35 pages, 2113 KB  
Review
A Review of the Characteristics of Recycled Aggregates and the Mechanical Properties of Concrete Produced by Replacing Natural Coarse Aggregates with Recycled Ones—Fostering Resilient and Sustainable Infrastructures
by Gerardo A. F. Junior, Juliana C. T. Leite, Gabriel de P. Mendez, Assed N. Haddad, José A. F. Silva and Bruno B. F. da Costa
Infrastructures 2025, 10(8), 213; https://doi.org/10.3390/infrastructures10080213 - 14 Aug 2025
Viewed by 2119
Abstract
The construction industry is responsible for 50% of mineral resource extraction and 35% of greenhouse gas (GHG) emissions. In this context, concrete stands out as one of the most consumed materials in the world. More than 30 billion tons of this material are [...] Read more.
The construction industry is responsible for 50% of mineral resource extraction and 35% of greenhouse gas (GHG) emissions. In this context, concrete stands out as one of the most consumed materials in the world. More than 30 billion tons of this material are produced annually, resulting in the extraction of around 19.4 billion tons of aggregates (mainly sand and gravel) per year. Therefore, it is urgent to develop strategies that aim to minimize the environmental impacts arising from this production chain. Currently, one of the most widely adopted solutions is the production of concrete through the reuse of construction and demolition waste. Thus, the objective of this research is to conduct a systematic literature review (SLR) on the use of recycled aggregates in concrete production, aiming to increase urban resilience by reducing the consumption of natural aggregates. An extensive search was performed in one of the most respected scientific databases (Scopus), and after a careful selection process, the main articles related to the topic were considered eligible through the PRISMA protocol. The selected manuscripts were then subjected to bibliographic and bibliometric analyses, allowing us to reach the state-of-the-art on the subject. The results obtained on the replacement rates of natural aggregate by recycled aggregate indicate that the recommendations vary from 20 to 60%, and these rates may be higher as long as the recycled aggregate is characterized, and may reach up to 100% as long as the matric concrete has a minimum compressive strength of 60 MPa. The specific gravity of most recycled aggregates ranges from 1.91 to 2.70, maintaining an average density of 2.32 g/cm3. Residual mortar adhered to recycled aggregates ranges from 20 to 56%. The water absorption process of recycled aggregate can vary from 2 to 15%. The mechanical strength of mixtures with recycled aggregates is significantly reduced due to the amount of mortar adhered to the aggregates. The use of recycled aggregates results in a compressive strength approximately 2.6 to 43% lower than that of concrete with natural aggregates, depending on the replacement rate. The same behavior was identified in relation to tensile strength. The modulus of elasticity showed a reduction of 25%, and the flexural strength was reduced by up to 15%. Full article
(This article belongs to the Special Issue Smart, Sustainable and Resilient Infrastructures, 3rd Edition)
Show Figures

Figure 1

Back to TopTop