Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = wheat-related diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 797 KB  
Article
The TOX2 Gene Is Responsible for Conidiation and Full Virulence in Fusarium pseudograminearum
by Sen Han, Shaobo Zhao, Yajiao Wang, Qiusheng Li, Mengwei Sun, Lingxiao Kong, Xianghong Chen, Jianhai Gao and Yuxing Wu
Curr. Issues Mol. Biol. 2025, 47(9), 714; https://doi.org/10.3390/cimb47090714 - 2 Sep 2025
Abstract
Fusarium crown rot, a widespread and destructive disease affecting cereal crops (particularly wheat and barley), is primarily caused by the soil-borne fungal pathogen Fusarium pseudograminearum. Secondary metabolites (SMs) play a crucial role in colonization and host tissue invasion by pathogenic fungi. In this [...] Read more.
Fusarium crown rot, a widespread and destructive disease affecting cereal crops (particularly wheat and barley), is primarily caused by the soil-borne fungal pathogen Fusarium pseudograminearum. Secondary metabolites (SMs) play a crucial role in colonization and host tissue invasion by pathogenic fungi. In this study, we investigated the functional role of FpTox2, a secondary metabolite-related gene in F. pseudograminearum. An FpTox2 deletion mutant exhibited significantly reduced radial growth compared to wild-type F. pseudograminearum. Notably, the mutant strain completely lost conidiation capacity under induced conditions. Furthermore, although it showed decreased sensitivity to the cell membrane inhibitor sodium dodecyl sulfate (SDS), the mutant demonstrated enhanced susceptibility to NaCl, a metal ion stressor. Most importantly, the pathogen’s virulence was markedly attenuated in wheat stem base infections following FpTox2 deletion, and we demonstrated that FpTox2 regulates pathogen virulence by influencing deoxynivalenol production. In conclusion, FpTox2 is crucial for vegetative growth, asexual development, abiotic stress responses, and full virulence in F. pseudograminearum. Full article
(This article belongs to the Section Molecular Microbiology)
17 pages, 1886 KB  
Article
Early Detection of Wheat Fusarium Head Blight During the Incubation Period Using FTIR-PAS
by Gaoqiang Lv, Jiaqi Li, Didi Shan, Fei Liu, Hanping Mao and Weihong Sun
Agronomy 2025, 15(9), 2100; https://doi.org/10.3390/agronomy15092100 - 30 Aug 2025
Viewed by 108
Abstract
The apparent normalcy of wheat during the incubation period of Fusarium head blight (FHB) makes early diagnosis challenging. This study employed Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) to conduct layer-by-layer scanning of wheat leaves during the disease outbreak stage and performed a differential [...] Read more.
The apparent normalcy of wheat during the incubation period of Fusarium head blight (FHB) makes early diagnosis challenging. This study employed Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) to conduct layer-by-layer scanning of wheat leaves during the disease outbreak stage and performed a differential spectral analysis. Spectral information was collected from five sites (D0~D4) on diseased leaves at reducing distances from the lesion caused by the Fusarium graminearum pathogen. The results revealed that the disease caused an increase in spectral similarity between deeper and shallower layers. The spectra of leaves, after removing the D0 background, showed a correlation of 83.5% to that of the pathogen, and the similarity increased at sites closer to the lesion, suggesting that the original spectra captured a large amount of hidden information related to the pathogen. With the threshold for the absorption intensity ratio of R1650/1050 for background-subtracted spectra set at 0.5, the optimal overall accuracy and F1-score were 86.0% and 0.89 for diagnosing outbreak-stage samples, respectively, while for incubation-period samples, they were 82.5% and 0.83. These results elucidate the mechanism of using FTIR-PAS to diagnose FHB during its incubation period, providing a theoretical and technical foundation for detecting disease information in other crops. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 8783 KB  
Article
Pseudomonas chlororaphis YTBTa14 as a Multifunctional Biocontrol Agent: Simultaneous Growth Enhancement and Systemic Resistance Induction in Vitis vinifera Against Downy Mildew
by Baoyan Li, Qihua Sun, Jie Shi, Wei Zhang, Huafei Zhou, Yingzi Wang, Peisong Wang, Meiling Tang, Yuanpeng Du, Baoyou Liu and Jizhuang Wu
Agriculture 2025, 15(17), 1822; https://doi.org/10.3390/agriculture15171822 - 27 Aug 2025
Viewed by 306
Abstract
Biological control serves as a crucial strategy for crop disease management. The biocontrol potential and plant growth-promoting effects of the strain YTBTa14 were investigated. Genetic sequencing confirmed YTBTa14 as Pseudomonas chlororaphis, which exhibited broad-spectrum antifungal activity against multiple pathogens affecting grapevine, apple, [...] Read more.
Biological control serves as a crucial strategy for crop disease management. The biocontrol potential and plant growth-promoting effects of the strain YTBTa14 were investigated. Genetic sequencing confirmed YTBTa14 as Pseudomonas chlororaphis, which exhibited broad-spectrum antifungal activity against multiple pathogens affecting grapevine, apple, cherry, and wheat. YTBTa14 significantly enhanced the growth of wheat and grapevine, specifically increasing wheat seed germination rates and improving root and coleoptile development. In grapevine plant, significant increases in root length, stem length, and fresh weight were observed. The strain demonstrated robust adaptability and stable antagonism under varying sodium chloride (NaCl) concentrations, pH levels, and temperatures. YTBTa14 modulated plant hormone levels, elevating the content of indole-3-acetic acid (IAA), gibberellins (GA), and cytokinins (CTK). Furthermore, it effectively stimulated the production of key plant defense enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Pretreatment of grape leaves with YTBTa14 triggered plant cell defense response and upregulated the expression of defense-related genes PR1 (pathogenesis-related protein 1) and PAL1 (phenylalanine ammonia-lyase 1), thereby mitigating the severity of downy mildew disease and inducing systemic resistance. These findings demonstrate that YTBTa14 is a highly promising candidate for development as a multifunctional agricultural biocontrol agent. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

18 pages, 6210 KB  
Article
A Non-Destructive System Using UVE Feature Selection and Lightweight Deep Learning to Assess Wheat Fusarium Head Blight Severity Levels
by Xiaoying Liang, Shuo Yang, Lin Mu, Huanrui Shi, Zhifeng Yao and Xu Chen
Agronomy 2025, 15(9), 2051; https://doi.org/10.3390/agronomy15092051 - 26 Aug 2025
Viewed by 315
Abstract
Fusarium head blight (FHB), a globally significant agricultural disaster, causes annual losses of dozens of millions of tons of wheat toxins produced by FHB, such as deoxyroscyliaceol, further pose serious threats to human and livestock health. Consequently, rapid and non-destructive determination of FHB [...] Read more.
Fusarium head blight (FHB), a globally significant agricultural disaster, causes annual losses of dozens of millions of tons of wheat toxins produced by FHB, such as deoxyroscyliaceol, further pose serious threats to human and livestock health. Consequently, rapid and non-destructive determination of FHB severity is crucial for implementing timely and precise scientific control measures, thereby ensuring wheat supply security. Therefore, this study adopts hyperspectral imaging (HSI) combined with a lightweight deep learning model. Firstly, the wheat ears were inoculated with Fusarium fungi at the spike’s midpoint, and HSI data were acquired, yielding 1660 samples representing varying disease severities. Through the integration of multiplicative scatter correction (MSC) and uninformative variable elimination (UVE) methods, features are extracted from spectral data in a manner that optimizes the reduction of feature dimensionality while preserving elevated classification accuracy. Finally, a lightweight FHB severity discrimination model based on MobileNetV2 was developed and deployed as an easy-to-use analysis system. Analysis revealed that UVE-selected characteristic bands for FHB severity predominantly fell within 590–680 nm (chlorophyll degradation related), 930–1043 nm (water stress related) and 738 nm (cell wall polysaccharide decomposition related). This distribution aligns with the synergistic effect of rapid chlorophyll degradation and structural damage accompanying disease progression. The resulting MobileNetV2 model achieved a mean average precision (mAP) of 99.93% on the training set and 98.26% on the independent test set. Crucially, it maintains an 8.50 MB parameter size, it processes data 2.36 times faster, significantly enhancing its suitability for field-deployed equipment by optimally balancing accuracy and operational efficiency. This advancement empowers agricultural workers to implement timely control measures, dramatically improving precision alongside optimized field deployment. Full article
Show Figures

Figure 1

46 pages, 1120 KB  
Review
From Morphology to Multi-Omics: A New Age of Fusarium Research
by Collins Bugingo, Alessandro Infantino, Paul Okello, Oscar Perez-Hernandez, Kristina Petrović, Andéole Niyongabo Turatsinze and Swarnalatha Moparthi
Pathogens 2025, 14(8), 762; https://doi.org/10.3390/pathogens14080762 - 1 Aug 2025
Viewed by 948
Abstract
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, [...] Read more.
The Fusarium genus includes some of the most economically and ecologically impactful fungal pathogens affecting global agriculture and human health. Over the past 15 years, rapid advances in molecular biology, genomics, and diagnostic technologies have reshaped our understanding of Fusarium taxonomy, host–pathogen dynamics, mycotoxin biosynthesis, and disease management. This review synthesizes key developments in these areas, focusing on agriculturally important Fusarium species complexes such as the Fusarium oxysporum species complex (FOSC), Fusarium graminearum species complex (FGSC), and a discussion on emerging lineages such as Neocosmospora. We explore recent shifts in species delimitation, functional genomics, and the molecular architecture of pathogenicity. In addition, we examine the global burden of Fusarium-induced mycotoxins by examining their prevalence in three of the world’s most widely consumed staple crops: maize, wheat, and rice. Last, we also evaluate contemporary management strategies, including molecular diagnostics, host resistance, and integrated disease control, positioning this review as a roadmap for future research and practical solutions in Fusarium-related disease and mycotoxin management. By weaving together morphological insights and cutting-edge multi-omics tools, this review captures the transition into a new era of Fusarium research where integrated, high-resolution approaches are transforming diagnosis, classification, and management. Full article
(This article belongs to the Special Issue Current Research on Fusarium: 2nd Edition)
Show Figures

Figure 1

27 pages, 3370 KB  
Review
Sourdough Fermentation and Gluten Reduction: A Biotechnological Approach for Gluten-Related Disorders
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo and Emma Mani-López
Microbiol. Res. 2025, 16(7), 161; https://doi.org/10.3390/microbiolres16070161 - 17 Jul 2025
Viewed by 1564
Abstract
Sourdough fermentation has emerged as a promising biotechnological approach to reducing gluten content and modifying gluten proteins in wheat-based products. This review assesses the current scientific literature on the enzymatic degradation and hydrolysis of gluten during lactic acid bacteria (LAB) sourdough fermentation. It [...] Read more.
Sourdough fermentation has emerged as a promising biotechnological approach to reducing gluten content and modifying gluten proteins in wheat-based products. This review assesses the current scientific literature on the enzymatic degradation and hydrolysis of gluten during lactic acid bacteria (LAB) sourdough fermentation. It explores implications for individuals with gluten-related disorders, including celiac disease, non-celiac gluten sensitivity and intolerance, as well as irritable bowel syndrome (IBS). In addition, LAB sourdough effect on fermentable oligo-, di-, monosaccharides and polyols (FODMAPs), amylase-trypsin inhibitors (ATIs), and phytate are revised. Selected homo- and heterofermentative LAB are capable of degrading gluten proteins, especially the polypeptides derived from the action of native cereal proteases. Mixed cultures of LAB degrade gluten peptides more effectively than monocultures. However, LAB sourdough is not sufficient to remove the toxic peptides to the minimal level (<20 ppm). This goal is achieved only if sourdough is combined with fungal proteases during sourdough fermentation. LAB sourdough directly contributes to lower FODMAPs but not ATIs and phytate. Phytate is reduced by the endogenous cereal phytases activated at acidic pHs (pH < 5.0), conditions generated during sourdough fermentation. ATIs are also lowered by endogenous cereal proteases instead of LAB proteases/peptidases. Despite LAB sourdough not fully degrading the gluten or directly reducing the ATIs and phytate, it participates through peptidases activity and acidic pH that trigger the action of endogenous cereal proteases and phytases. Full article
Show Figures

Figure 1

11 pages, 1134 KB  
Article
Consumer Acceptability of Various Gluten-Free Scones with Rice, Buckwheat, Black Rice, Brown Rice, and Oat Flours
by Jihyuk Chae, Sukyung Kim, Jeok Yeon, Sohui Shin and Seyoung Ju
Foods 2025, 14(14), 2464; https://doi.org/10.3390/foods14142464 - 14 Jul 2025
Viewed by 642
Abstract
Due to consumer needs and the prevalence of gluten-related disorders such as celiac disease, the gluten-free food market is expanding rapidly and is expected to surpass USD 2.4 billion by 2036. The objective of this study was to substitute wheat flour with oat, [...] Read more.
Due to consumer needs and the prevalence of gluten-related disorders such as celiac disease, the gluten-free food market is expanding rapidly and is expected to surpass USD 2.4 billion by 2036. The objective of this study was to substitute wheat flour with oat, black rice, brown rice, buckwheat, and rice flours in the production of gluten-free scones, to assess consumer acceptability, and to identify factors contributing to consumer acceptability using check-all-that-apply questions. The 10 attributes of appearance, color, texture, grainy flavor, sweetness, familiar flavor, novelty, familiarity, moistness, and consistency exhibited statistically significant differences among the samples (p < 0.001). One hundred consumers evaluated 18 attributes using a nine-point hedonic scale, and all attributes demonstrated statistically significant differences across six samples (p < 0.001). The samples from buckwheat and wheat scored the highest in consumer acceptability. The results indicate a strong positive correlation between overall liking and purchase intention, with sensory attributes such as nutty flavor, cohesiveness, appearance, moistness, color, texture, and inner softness positively influencing consumer acceptability. The attributes affecting negatively were thick throat sensation, unique flavor, and stuffiness. This study is expected to provide data to aid in the development of better-tasting gluten-free products that meet customer and market needs. Full article
Show Figures

Figure 1

22 pages, 52413 KB  
Systematic Review
Micronutrient Deficiencies Associated with a Gluten-Free Diet in Patients with Celiac Disease and Non-Celiac Gluten or Wheat Sensitivity: A Systematic Review and Meta-Analysis
by Lindsey A. Russell, Paige Alliston, David Armstrong, Elena F. Verdu, Paul Moayyedi and Maria Ines Pinto-Sanchez
J. Clin. Med. 2025, 14(14), 4848; https://doi.org/10.3390/jcm14144848 - 8 Jul 2025
Viewed by 1180
Abstract
Background: A gluten-free diet (GFD) has been shown to be nutritionally inadequate for those with wheat-related disorders. However, the differences in findings and the absence of quantitative analysis limits the interpretation of previous reviews. Objectives: We conducted a systematic review and meta-analysis to [...] Read more.
Background: A gluten-free diet (GFD) has been shown to be nutritionally inadequate for those with wheat-related disorders. However, the differences in findings and the absence of quantitative analysis limits the interpretation of previous reviews. Objectives: We conducted a systematic review and meta-analysis to identify the risk of micronutrient deficiencies in patients with celiac disease (CeD) and non-celiac gluten or wheat sensitivity (NCWS). Methods: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, and Web of Science (Ovid) databases. The risk of bias was determined using the ROBINS-1, and the quality of evidence was assessed using the GRADE approach. Results We identified 7940 studies; 46 observational studies (11 cohort, 9 cross-sectional, and 26 case–control) were eligible for analysis. CeD patients had an increased risk of vitamin D and E deficiencies compared with the non-CeD controls. CeD on a GFD had a decreased risk of vitamin D, B12, E, calcium, and iron deficiencies compared with untreated CeD. NCWS had an increased risk of vitamin B12, folate, and iron deficiency compared to the controls. The overall quality of evidence was rated very low. Conclusions: The risk of various micronutrient deficiencies is increased in CeD but is decreased for some after a GFD. Adequately powered studies with a rigorous methodology are needed to inform the risk of nutrient deficiencies in patients with CeD and NCWS. Protocol registration: Prospero-CRD42022313508. Full article
(This article belongs to the Special Issue Future Trends in the Diagnosis and Management of Celiac Disease)
Show Figures

Figure 1

15 pages, 2035 KB  
Article
Effect of Tricholoma matsutake Powder and Colored Rice Flour on Baking Quality and Volatile Aroma Compound of Cookie
by Yuyue Qin, Shu Wang, Haiyan Chen, Yongliang Zhuang, Qiuming Liu, Shanshan Xiao and Charles Brennan
Foods 2025, 14(13), 2182; https://doi.org/10.3390/foods14132182 - 22 Jun 2025
Viewed by 518
Abstract
In recent years, the consumers’ demand for healthy foods has been increased. To address the dietary related diseases, the food products enriched with mushroom or colored rice were promoted. The effects of Tricholoma matsutake powder and colored rice flour on baking quality and [...] Read more.
In recent years, the consumers’ demand for healthy foods has been increased. To address the dietary related diseases, the food products enriched with mushroom or colored rice were promoted. The effects of Tricholoma matsutake powder and colored rice flour on baking quality and volatile aroma compound of cookies were investigated. Texture analyzer, and electronic nose (e-nose) were used to analyze the physicochemical, structural, and digestibility properties and volatile aroma compound of cookie. With the content of Tricholoma matsutake powder and colored rice flour increased, the hardness and free amino acid content increased. Cookie in terms of weaker network structure, relatively crispy cookie texture, and better in vitro digestion activity was obtained with appropriate amount replacement. The cookie sample contained with 5% Tricholoma matsutake and 20% red rice exhibited acceptable hardness and lowest starch hydrolysis rate. The volatile aroma compounds were also affected by the wheat flour substitution. The results indicated that Tricholoma matsutake powder and colored rice flour substitution improved the baking quality of cookie. Full article
Show Figures

Figure 1

16 pages, 278 KB  
Article
Antioxidant Activity, Total Polyphenol Content, and Cytotoxicity of Various Types of Starch with the Addition of Different Polyphenols
by Dominika Kwaśny, Barbara Borczak, Paweł Zagrodzki, Joanna Kapusta-Duch, Ewelina Prochownik and Ivo Doskočil
Molecules 2025, 30(11), 2458; https://doi.org/10.3390/molecules30112458 - 4 Jun 2025
Cited by 1 | Viewed by 874
Abstract
Given the high incidence of diet-related diseases, including type 2 diabetes and cancer, there is a growing need to explore new strategies for their prevention. Although polyphenols are known to reduce starch digestibility and lower the in vitro glycemic index, their antioxidant capacity [...] Read more.
Given the high incidence of diet-related diseases, including type 2 diabetes and cancer, there is a growing need to explore new strategies for their prevention. Although polyphenols are known to reduce starch digestibility and lower the in vitro glycemic index, their antioxidant capacity and cytotoxic properties, when complexed with starches, remain underexplored. Therefore, this study aimed to investigate the antioxidant activity, total polyphenol content, and cytotoxic potential of polyphenol–starch complexes formed using common dietary polyphenols—(+)-catechin, epigallocatechin gallate, hesperidin, naringenin, trans-ferulic acid, p-coumaric acid, quercetin, and kaempferol—and widely consumed starches from wheat, rice, potato, and maize. Antioxidant activity (FRAP and DPPH) together with the total polyphenols content (Folin–Ciocalteu) were tested: (1) before (undigested) enzymatic hydrolysis of the tested sample; (2) after (digested) enzymatic hydrolysis of the tested sample and (3) after hydrolysis of the sample and its centrifugation (supernatant). Cytotoxicity against colon cancer (Caco-2, HT29) and normal colon (CCD 841CoN) cell lines were determined in vitro by the MTT method. In undigested samples, the highest antioxidant activity was obtained with the addition of quercetin to wheat, rice, and maize starch (6735.8 µmol Fe2+/g d.m., 678.8, 539.4 µmol Trolox/g d.m., respectively), and epigallocatechin gallate to wheat, rice, potato, and maize starch (692.1, 538.0, 625.8, 573.6 µmol Trolox/g d.m., respectively). In digested samples, the highest antioxidant activity was obtained with the addition of quercetin to wheat and rice starch (2104.5 µmol Fe2+/g d.m., 742.1 µmol Trolox/g d.m., respectively). In the case of the natant of the digested samples, the highest value was recorded for the addition of (+)-catechin to potato starch and trans-ferulic acid to maize starch (823.7 µmol Fe2+/g d.m., 245.1 µmol Trolox/g d.m., respectively). The addition of quercetin to wheat and rice starch and (+)-catechin to potato starch (0.239, 0.151, 0.085 g gallic acid/g d.m., respectively) resulted in the highest total polyphenol content. Furthermore, quercetin demonstrated the most significant level of cytotoxic activity against the tumor cell line Caco-2 (IC50 = 275.6 µg/mL; potato starch). Overall, quercetin was identified as the most significant or one of the most significant for all parameters evaluated. Full article
(This article belongs to the Special Issue Analyses and Applications of Phenolic Compounds in Food—2nd Edition)
24 pages, 12291 KB  
Article
Isolation and Identification of Burkholderia stagnalis YJ-2 from the Rhizosphere Soil of Woodsia ilvensis to Explore Its Potential as a Biocontrol Agent Against Plant Fungal Diseases
by Xufei Zhu, Wanqing Ning, Wei Xiao, Zhaoren Wang, Shengli Li, Jinlong Zhang, Min Ren, Chengnan Xu, Bo Liu, Yanfeng Wang, Juanli Cheng and Jinshui Lin
Microorganisms 2025, 13(6), 1289; https://doi.org/10.3390/microorganisms13061289 - 31 May 2025
Viewed by 718
Abstract
Plant fungal diseases remain a major threat to global agricultural production, necessitating eco-friendly and sustainable strategies. Conventional chemical fungicides often lead to the development of resistant pathogen strains and cause environmental contamination. Therefore, the development of biocontrol agents is particularly important. In this [...] Read more.
Plant fungal diseases remain a major threat to global agricultural production, necessitating eco-friendly and sustainable strategies. Conventional chemical fungicides often lead to the development of resistant pathogen strains and cause environmental contamination. Therefore, the development of biocontrol agents is particularly important. In this study, we identified Burkholderia stagnalis YJ-2 from the rhizosphere soil of Woodsia ilvensis as a promising biocontrol strain using 16S rRNA and whole-genome sequencing. This strain demonstrated broad-spectrum antifungal activity against plant fungal pathogens, with its bioactive extracts maintaining high stability across a temperature range of 25–100 °C and pH range of 2–12. We used in vitro assays to further show that the metabolites of B. stagnalis YJ-2 disrupted the hyphal morphology of Valsa mali, resulting in swelling, reduced branching, and increased pigmentation. Fluorescence labeling confirmed that B. stagnalis YJ-2 stably colonized the roots and stems of tomato and wheat plants. Furthermore, various formulations of microbial agents based on B. stagnalis YJ-2 were evaluated for their efficacy against plant pathogens. The seed-coating formulation notably protected tomato seedlings from Alternaria solani infection without affecting germination (p > 0.1), while the wettable powder exhibited significant control effects on early blight in tomatoes, with the preventive treatment showing better efficacy than the therapeutic treatment. Additionally, the B. stagnalis YJ-2 bone glue agent showed a substantial inhibitory effect on apple tree canker. Whole-genome analysis of B. stagnalis YJ-2 revealed a 7,705,355 bp genome (67.68% GC content) with 6858 coding genes and 20 secondary metabolite clusters, including three clusters (YJ-2_GM002015-YJ-2_GM002048, YJ-2_GM0020090-YJ-2_GM002133, and YJ-2_GM06534-YJ-2_GM006569) that are related to the antifungal activity of YJ-2 and are homologous to the biosynthetic gene clusters of known secondary metabolites, such as icosalide, ornibactin, and sinapigladioside. We further knocked out core biosynthetic genes of two secondary metabolic gene clusters and found that only the YJ-2_GM006534-YJ-2_GM006569 gene cluster had a corresponding function in two potential antifungal gene clusters. In contrast to the wild-type strain YJ-2, only deletion of the YJ-2_GM006563 gene reduced the antifungal activity of B. stagnalis YJ-2 by 8.79%. These findings highlight the biocontrol potential of B. stagnalis YJ-2, supporting a theoretical foundation for its development as a biocontrol agent against plant fungal diseases and thereby promoting sustainable agricultural disease management. Full article
(This article belongs to the Special Issue Rhizosphere Bacteria and Fungi That Promote Plant Growth)
Show Figures

Figure 1

12 pages, 981 KB  
Article
QTL Mapping of Adult Plant Resistance to Leaf Rust in the N. Strampelli × Huixianhong RIL Population
by Man Li, Zhanhai Kang, Xue Li, Jiaqi Zhang, Teng Gao and Xing Li
Agronomy 2025, 15(6), 1322; https://doi.org/10.3390/agronomy15061322 - 28 May 2025
Viewed by 588
Abstract
Leaf rust (LR) is a devastating foliar disease that impacts common wheat (Triticum aestivum L.) globally. For optimal disease protection, wheat cultivars should possess adult plant resistance (APR) to leaf rust. In the current study, the objective was to map quantitative trait [...] Read more.
Leaf rust (LR) is a devastating foliar disease that impacts common wheat (Triticum aestivum L.) globally. For optimal disease protection, wheat cultivars should possess adult plant resistance (APR) to leaf rust. In the current study, the objective was to map quantitative trait loci (QTL) related to leaf rust resistance. This was achieved by using 193 recombinant inbred line (RIL) populations which were developed from the cross between N. Strampelli and Huixianhong. Four trials were conducted in China (three in Baoding, Hebei province, and one in Zhoukou, Henan province) to assesses the leaf rust response of the RILs and parental lines. The wheat 660K SNP array and additional SSR markers were used to genotype the RIL populations. Through inclusive composite interval mapping (ICIM), three QTL related to leaf rust (LR) resistance were detected. ICIM was also employed to reevaluate previously published data in order to identify QTL with pleiotropic effects. To determine the physical positions, the flanking sequences of all SNP probes were compared against the Chinese Spring wheat reference sequence through BLAST searches. Three leaf rust resistance loci, two on chromosome 2A and 5B, were contributed by N. Strampelli. QLr.hbau-2AL.1 was detected in three leaf rust environments with phenotypic variance explained (PVE of 12.2–17%); QLr.hbau-2AL.2 was detected in two environments with 12.5–13.2% of the PVE; and QLr.hbau-5BL was detected in all leaf rust environments with phenotypic variance explained (PVE) of 17.8–19.1%. QLr.hbau-5BL exhibited potentially pleiotropic responses to multiple diseases. The QTL and the associated flanking markers discovered in this study could prove valuable for purposes such as fine mapping, the exploration of candidate genes, and marker-assisted selection (MAS). Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

21 pages, 584 KB  
Article
A Multiple Regression Model Analysing Additional Sources of Dietary Fibre as a Factor Affecting the Development of the Gastrointestinal Tract in Broiler Chickens
by Tomasz Hikawczuk, Patrycja Wróblewska, Anna Szuba-Trznadel, Agnieszka Rusiecka, Andrii Zinchuk and Krystyna Laszki-Szcząchor
Appl. Sci. 2025, 15(9), 4994; https://doi.org/10.3390/app15094994 - 30 Apr 2025
Viewed by 531
Abstract
The objective of this study was to compare the effects of applying a 50% wheat grain diet with those of a diet with 3% additional dietary fibre from various sources on the development of broiler chickens’ gastrointestinal tract and its related organs and [...] Read more.
The objective of this study was to compare the effects of applying a 50% wheat grain diet with those of a diet with 3% additional dietary fibre from various sources on the development of broiler chickens’ gastrointestinal tract and its related organs and to model this phenomenon based on data obtained from 35-day-old chickens using multiple regression equations. The use of various structural components, including oat hull (OH), sunflower hull (SH), sugar beet pulp (SBP), and wheat bran (WB), in proportions of 3% of the diet not only affects digestive processes in broiler chickens’ gastrointestinal tract but also causes a change in the length of their intestinal sections or the weight of related organs. These effects can be taken into account when creating an experimental model, the results of which can at least be partially applicable to human studies. The use of OH and SH (3%) in the birds’ diets resulted in a significantly higher body weight (p < 0.05) compared with the use of SBP and WB. OH in the diet significantly increased (p < 0.01) the weight of the chicken’s gizzards compared with the other dietary fibre sources, apart from SH. On the other hand, the weight of the proventriculus in chickens fed the diet containing OH was significantly lower than that of the chickens fed the diet containing SBP (p < 0.05). The use of SH in the diet caused a significant decrease (p < 0.01) in the weight of the chickens’ heart. Compared with other additional sources of dietary fibre, OH in the diet also significantly increased (p < 0.05) the lengths of the small and large intestines, as well as the total length of the intestines. A correlation analysis showed a significant, average, positive relationship (p < 0.05) between the content of TDF in the diet and the weight of the gizzard and indicated a significant positive correlation between the lengths of the jejunum and the remaining sections of the intestines. Additionally, the regression equation models indicated a significant effect (p < 0.01) of all the independent variables on the jejunal, ileal, and caecal lengths and the liver weight. The application of the regression model confirmed significant changes in the small intestine and liver weight depending on the type of dietary fibre and other independent variables, which can also be taken into account when assessing diseases in people with thin intestines. However, further studies with separate models still need to be conducted using experiments including both soluble and insoluble fibre. Full article
Show Figures

Figure 1

18 pages, 2973 KB  
Article
Trichoderma longibrachiatum TG1 Colonization and Signal Pathway in Alleviating Salinity and Fusarium pseudograminearum Stress in Wheat
by Solomon Boamah, Shuwu Zhang, Bingliang Xu, Na Zhu and Enchen Li
Int. J. Mol. Sci. 2025, 26(9), 4018; https://doi.org/10.3390/ijms26094018 - 24 Apr 2025
Cited by 1 | Viewed by 568
Abstract
Fusarium pseudograminearum (Fp) and soil salinity are two types of stress that interact in complex ways, potentially leading to more severe consequences on wheat growth and productivity. However, little is known about the colonization efficiency and the signal pathways of the beneficial Trichoderma [...] Read more.
Fusarium pseudograminearum (Fp) and soil salinity are two types of stress that interact in complex ways, potentially leading to more severe consequences on wheat growth and productivity. However, little is known about the colonization efficiency and the signal pathways of the beneficial Trichoderma longibrachiatum TG1 (TG1) in controlling wheat Fusarium crown rot caused by Fp, and enhancing wheat seedling growth under combined salinity and Fp stresses. Therefore, the present study aims to determine the colonization, phytohormone profile, and signaling pathway in TG1-treated wheat seedlings under salinity and Fp stresses. In a dual culture assay, TG1 exhibited a mycoparasitic effect on Fp growth by coiling, conidial attachment, and parasitism observed under fluorescent microscopy. In addition, TG1 colonized the outermost layers of the wheat seedling roots with biomass consisting of conidia and hyphae. Under 100 mM NaCl stress, the combined TG1+Fp-treated seedlings recorded a control efficacy of 47.01% for the wheat crown rot disease compared with Fp-alone-treated seedlings. The contents of indole-3-acetic acid (IAA), gibberellic acid (GA3), abscisic acid (ABA) and jasmonic acid (JA) significantly increased by 72.16%, 86.91%, 20.04%, and 50.40%, respectively, in the combined TG1+Fp treatments, whereas the ethylene (ET) content decreased by 39.07% compared with Fp alone at day 14; and 5.07 and 2.78-fold increases in the expression of salicylic acid (SA) signaling pathway genes, such as pathogenesis-related protein 1 (PR1) and isochorismate synthase 1 (ICS1) genes were recorded respectively, in the combined TG1+Fp-treated seedlings compared with the control at day 14. Full article
(This article belongs to the Special Issue Advances in Plant–Pathogen Interactions: 3rd Edition)
Show Figures

Figure 1

17 pages, 9471 KB  
Article
Characterization and Fine Mapping of the Stay-Green-Related Spot Leaf Gene TaSpl1 with Enhanced Stripe Rust and Powdery Mildew Resistance in Wheat
by Xiaomin Xu, Xin Du, Yanlong Jin, Yanzhen Wang, Zhenyu Wang, Jixin Zhao, Changyou Wang, Xinlun Liu, Chunhuan Chen, Pingchuan Deng, Tingdong Li and Wanquan Ji
Int. J. Mol. Sci. 2025, 26(9), 4002; https://doi.org/10.3390/ijms26094002 - 23 Apr 2025
Viewed by 533
Abstract
Lesion mimic phenotypes, characterized by leaf spots formed in the absence of pathogens or pests, are often associated with reactive oxygen species (ROS) accumulation and cell necrosis. This study identified a novel and stable homozygous spotted phenotype (HSP) from the F8 population [...] Read more.
Lesion mimic phenotypes, characterized by leaf spots formed in the absence of pathogens or pests, are often associated with reactive oxygen species (ROS) accumulation and cell necrosis. This study identified a novel and stable homozygous spotted phenotype (HSP) from the F8 population of common wheat (XN509 × N07216). The yellow spots that appeared at the booting stage were light-sensitive, and accompanied by cell necrosis and H2O2 accumulation. Compared with homozygous normal plants (HNPs), HSPs exhibited enhanced resistance to stripe rust and powdery mildew without compromising yield. RNA-Seq analysis at three stages revealed that differentially expressed genes (DEGs) between HSPs and HNPs were significantly enriched in KEGG pathways related to photosynthesis and photosynthesis-antenna proteins. GO analysis highlighted chloroplast and light stimulus-related down-regulated DEGs. Fine mapping identified TaSpl1 within a 0.91 Mb interval on chromosome 3DS, flanked by the markers KASP188 and KASP229, using two segregating populations comprising 1117 individuals. The candidate region contained 42 annotated genes, including 14 DEGs based on previous BSR-Seq data. PCR amplification and qRT-PCR verification identified the expression of TraesCS3D02G022100 was consistent with RNA-Seq data. Gene homology analysis and silencing experiments confirmed that TraesCS3D02G022100 was associated with stay-green traits. These findings provide new insights into the genetic regulation of lesion mimics, photosynthesis, and disease resistance in wheat. Full article
(This article belongs to the Special Issue Wheat Genetics and Genomics: 3rd Edition)
Show Figures

Figure 1

Back to TopTop