Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (678)

Search Parameters:
Keywords = wind and wave energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4629 KB  
Article
Zak-Phase Dislocations in Trimer Lattices
by Tileubek Uakhitov, Abdybek Urmanov, Serik E. Kumekov and Anton S. Desyatnikov
Symmetry 2025, 17(10), 1631; https://doi.org/10.3390/sym17101631 - 2 Oct 2025
Abstract
Wave propagation in periodic media is governed by energy–momentum relations and geometric phases characterizing band topology, such as Zak phase in one-dimensional lattices. We demonstrate that, in the off-diagonal trimer lattices, Zak phase carries quantized screw-type dislocations winding around degeneracies in parameter space. [...] Read more.
Wave propagation in periodic media is governed by energy–momentum relations and geometric phases characterizing band topology, such as Zak phase in one-dimensional lattices. We demonstrate that, in the off-diagonal trimer lattices, Zak phase carries quantized screw-type dislocations winding around degeneracies in parameter space. If the lattice evolves in time periodically, as in adiabatic Thouless pumps, the corresponding closed trajectory in parameter space is characterized by a Chern number equal to the negative total winding number of Zak phase dislocations enclosed by the trajectory. We discuss the correspondence between bulk Chern numbers and the edge states in a finite system evolving along various pumping cycles. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Topological Phases)
Show Figures

Figure 1

19 pages, 7379 KB  
Article
Criterion Circle-Optimized Hybrid Finite Element–Statistical Energy Analysis Modeling with Point Connection Updating for Acoustic Package Design in Electric Vehicles
by Jiahui Li, Ti Wu and Jintao Su
World Electr. Veh. J. 2025, 16(10), 563; https://doi.org/10.3390/wevj16100563 - 2 Oct 2025
Abstract
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods [...] Read more.
This research is based on the acoustic package design of new energy vehicles, investigating the application of the hybrid Finite Element–Statistical Energy Analysis (FE-SEA) model in predicting the high-frequency dynamic response of automotive structures, with a focus on the modeling and correction methods for hybrid point connections. New energy vehicles face unique acoustic challenges due to the special nature of their power systems and operating conditions, such as high-frequency noise from electric motors and electronic devices, wind noise, and road noise at low speeds, which directly affect the vehicle’s ride comfort. Therefore, optimizing the acoustic package design of new energy vehicles to reduce in-cabin noise and improve acoustic quality is an important issue in automotive engineering. In this context, this study proposes an improved point connection correction factor by optimizing the division range of the decision circle. The factor corrects the dynamic stiffness of point connections based on wave characteristics, aiming to improve the analysis accuracy of the hybrid FE-SEA model and enhance its ability to model boundary effects. Simulation results show that the proposed method can effectively improve the model’s analysis accuracy, reduce the degrees of freedom in analysis, and increase efficiency, providing important theoretical support and reference for the acoustic package design and NVH performance optimization of new energy vehicles. Full article
Show Figures

Figure 1

26 pages, 14492 KB  
Article
Experimental and Numerical Study of a Towing Test for a Barge-Type Floating Offshore Wind Turbine
by Samuel Davis, Anthony Viselli and Amrit Verma
Energies 2025, 18(19), 5228; https://doi.org/10.3390/en18195228 - 1 Oct 2025
Abstract
Several experimental and numerical studies have been conducted on the towing behavior of floating offshore wind turbines (FOWTs); however, these studies mainly focus on tension-leg platform (TLP) and semi-submersible designs with cylindrical features. The University of Maine’s VolturnUS+ concept is a cruciform-shaped barge-type [...] Read more.
Several experimental and numerical studies have been conducted on the towing behavior of floating offshore wind turbines (FOWTs); however, these studies mainly focus on tension-leg platform (TLP) and semi-submersible designs with cylindrical features. The University of Maine’s VolturnUS+ concept is a cruciform-shaped barge-type FOWT with distinctive hydrodynamic properties that have not been characterized in previous research. This study presents basin-scale experiments that characterize the hydrodynamic drag properties of the VolturnUS+ platform, as well as observing the motion behavior of the platform and added resistance during towing in calm water and waves. The towing experiments are conducted in two towing configurations, with differing platform orientations and towline designs. The basin experiments are supplemented with a numerical study using computational fluid dynamic (CFD) simulations to explore flow-induced motion (FIM) on the platform during towing. In both the experiments and the CFD simulations, it was determined that the towing configuration significantly impacted the drag and motion characteristics of the platform, with the cruciform shape producing FIM phenomena. Observations from the towing tests confirmed the feasibility of towing the VolturnUS+ platform in the two orientations. The results and observations developed from the experimental and numerical towing studies will be used to inform numerical models for planning towing operations, as well as develop informed recommendations for towing similar cruciform-shaped structures in the future. Full article
Show Figures

Figure 1

29 pages, 5691 KB  
Article
Conceptual Analysis of Vortex Contributions to Rogue Wave Formation in the Agulhas Current
by Dirk J. Pons
J. Mar. Sci. Eng. 2025, 13(10), 1875; https://doi.org/10.3390/jmse13101875 - 30 Sep 2025
Abstract
Harmonic summation and amplification by winds blowing contrary to currents are known contributions to rogue waves in the region of the Agulhas current, but the causes of the observed wave steepness, asymmetric form, and non-breaking are poorly understood. The potential effect of bathymetric [...] Read more.
Harmonic summation and amplification by winds blowing contrary to currents are known contributions to rogue waves in the region of the Agulhas current, but the causes of the observed wave steepness, asymmetric form, and non-breaking are poorly understood. The potential effect of bathymetric and meteorological features has not been addressed. Vortex theory was applied to develop a theory of wave formation, based on conceptual reasoning. Rogue wave formation is attributed to the following: (1) wind lee vortices causing steepening of a wave’s leeward face, and suppressing wave breaking; (2) boundary layer vortices from the meteorological cold front transferring energy to the wind lee vortices thereby sharpening the wave; (3) Agulhas current boundary layer vortices interacting with water lee vortices to accelerate a jet of water between them, thereby steepening the wave and enhancing the preceding trough; (4) bathymetric topology, especially a canyon on the continental slope, generating a vortex in the Agulhas current. This vortex is detached from the canyon by prising of the coastal downwelling current (induced by the meteorological cold front) and combines with the water lee vortex to heighten the wave, and (5) jetting, which arises when the canyon vortex and the Agulhas current boundary layer vortices pass each other, thereby accentuating wave height, steepness, and asymmetry. Full article
(This article belongs to the Special Issue Air-Sea Interaction and Marine Dynamics)
Show Figures

Figure 1

27 pages, 15345 KB  
Article
Advanced Drone Routing and Scheduling for Emergency Medical Supply Chains in Essex
by Shabnam Sadeghi Esfahlani, Sarinova Simanjuntak, Alireza Sanaei and Alex Fraess-Ehrfeld
Drones 2025, 9(9), 664; https://doi.org/10.3390/drones9090664 - 22 Sep 2025
Viewed by 202
Abstract
Rapid access to defibrillators, blood products, and time-critical medicines can improve survival, yet urban congestion and fragmented infrastructure delay deliveries. We present and evaluate an end-to-end framework for beyond-visual-line-of-sight (BVLOS) UAV logistics in Essex (UK), integrating (I) strategic depot placement, (II) a hybrid [...] Read more.
Rapid access to defibrillators, blood products, and time-critical medicines can improve survival, yet urban congestion and fragmented infrastructure delay deliveries. We present and evaluate an end-to-end framework for beyond-visual-line-of-sight (BVLOS) UAV logistics in Essex (UK), integrating (I) strategic depot placement, (II) a hybrid obstacle-aware route planner, and (III) a time-window-aware (TWA) Mixed-Integer Linear Programming (MILP) scheduler coupled to a battery/temperature feasibility model. Four global planners—Ant Colony Optimisation (ACO), Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), and Rapidly Exploring Random Tree* (RRT*)—are paired with lightweight local refiners, Simulated Annealing (SA) and Adaptive Large-Neighbourhood Search (ALNS). Benchmarks over 12 destinations used real Civil Aviation Authority no-fly zones and energy constraints. RRT*-based hybrids delivered the shortest mean paths: RRT* + SA and RRT* + ALNS tied for the best average length, while RRT* + SA also achieved the co-lowest runtime at v=60kmh1. The TWA-MILP reached proven optimality in 0.11 s, showing that a minimum of seven UAVs are required to satisfy all 20–30 min delivery windows in a single wave; a rolling demand of one request every 15 min can be sustained with three UAVs if each sortie (including service/recharge) completes within 45 min. To validate against a state-of-the-art operations-research baseline, we also implemented a Vehicle Routing Problem with Time Windows (VRPTW) in Google OR-Tools, confirming that our hybrid planners generate competitive or shorter NFZ-aware routes in complex corridors. Digital-twin validation in AirborneSIM confirmed CAP 722-compliant, flyable trajectories under wind and sensor noise. By hybridising a fast, probabilistically complete sampler (RRT*) with a sub-second refiner (SA/ALNS) and embedding energy-aware scheduling, the framework offers an actionable blueprint for emergency medical UAV networks. Full article
Show Figures

Figure 1

15 pages, 3968 KB  
Article
Numerical Simulation and Theoretical Analysis of Wave Loads on Truss Legs for Offshore Energy Platforms
by Haoxun Yuan, Yingchun Xie, Di-Lin Chen, Jintong Huang, Cheng-Long Zhou, Xiangkun Li, Guijie Liu and Jinchi Zhu
Energies 2025, 18(18), 5032; https://doi.org/10.3390/en18185032 - 22 Sep 2025
Viewed by 164
Abstract
Jack-up offshore platforms, supported by truss legs, are integral to the development of marine energy resources, including oil, gas, and offshore wind. Due to the structural complexity of truss legs, accurately quantifying wave loads is crucial for ensuring the safety and efficiency of [...] Read more.
Jack-up offshore platforms, supported by truss legs, are integral to the development of marine energy resources, including oil, gas, and offshore wind. Due to the structural complexity of truss legs, accurately quantifying wave loads is crucial for ensuring the safety and efficiency of energy extraction operations. In this work, a numerical wave tank approach combined with theoretical analysis is employed comprehensively to investigate wave loads on truss legs, with a particular emphasis on the effects of component forces and inflow angle. The results demonstrate that wave loads are not solely dependent on member dimensions. The influencing factors affecting component forces include water depth and phase differences between structural units, which amplify the contribution of the component forces of members near the free surface and without phase difference to the total force. Furthermore, the total force varies periodically with the inflow angle in cycles of 60°. Notably, the influence of inflow angle on the total force becomes negligible when the wavelength substantially exceeds the pile spacing. This framework fundamentally provides a theoretical basis for the structural optimization of Jack-up offshore platform support systems, thereby enhancing the safety and reliability of energy infrastructure. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 4602 KB  
Article
Typhoon-Induced Wave–Current Coupling Dynamics in Intertidal Zones: Impacts on Protective Device of Ancient Forest Relics
by Lihong Zhao, Dele Guo, Chaoyang Li, Zhengfeng Bi, Yi Hu, Hongqin Liu and Tongju Han
J. Mar. Sci. Eng. 2025, 13(9), 1831; https://doi.org/10.3390/jmse13091831 - 22 Sep 2025
Viewed by 181
Abstract
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a [...] Read more.
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a semi-enclosed bay that hosts multiple ancient forest relics within its intertidal zone. A two-tier numerical modeling framework was developed, comprising a regional-scale hydrodynamic model and a localized high-resolution model centered on a protective structure. Validation data were obtained from in situ field observations. Three structural scenarios were tested: fully intact, bottom-blocked, and damaged. Results indicate that wave-induced radiation stress plays a dominant role in enhancing flow velocities when wind speeds exceed 6 m/s, with wave contributions approaching 100% across all water depths. However, the linear relationship between water depth and wave contribution observed under non-typhoon conditions breaks down under typhoon forcing. A critical depth range was identified, within which wave contribution peaked before declining with further increases in depth—highlighting its potential sensitivity to storm energy. Moreover, structural simulations revealed that bottom-blocked devices, although seemingly more enclosed, may be vulnerable to vertical pressure loading due to insufficient water exchange. In contrast, perforated designs facilitate an internal–external hydrodynamic balance, thereby enhancing protective effect. This study provides both theoretical and practical insights into intertidal structure design and paleo-heritage conservation under extreme hydrodynamic stress. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

20 pages, 4544 KB  
Article
Numerical Study on the Hydrodynamic Performance of Offshore Wind Turbine Jacket Foundation Under Extreme Wave–Current: A Case Study
by Haoran Zhou, Ben He, Peng Gao, Wei Jin, Dan Zhang, Chong Zhang, Wenqi Sa, Chunhui He and Jianhong Ye
J. Mar. Sci. Eng. 2025, 13(9), 1819; https://doi.org/10.3390/jmse13091819 - 19 Sep 2025
Viewed by 169
Abstract
As offshore wind energy industry advances into deeper water recently, jacket foundations become one of the predominant support structure types for far-sea wind farms. To ensure the safety and reliability of offshore wind turbine (OWT) jacket foundations in the complex environments of far-seas, [...] Read more.
As offshore wind energy industry advances into deeper water recently, jacket foundations become one of the predominant support structure types for far-sea wind farms. To ensure the safety and reliability of offshore wind turbine (OWT) jacket foundations in the complex environments of far-seas, the investigation of their resistance capabilities to extreme ocean wave is essential. In this study, the OWT jacket foundations in the sea area of Cangnan and Lianjiang are adopted to conduct a typical case study. This study employs a full-scale jacket foundation to carry out some full-scenario, large-scale hydrodynamic numerical simulations considering the combined action of wave and current. It is revealed that for OWT jacket foundations in Cangnan and Lianjiang, China, under an extreme condition with approximately 26 m wave height and 18 s wave period, the peak wave impact and horizontal force on the jacket foundation are approximately 190 kPa and 18,000 kN, respectively. Furthermore, this study discusses the wave profile evolution characteristics around the jacket foundation and the correlation between wave run-up and wave height. These findings provide a good case study and technical reference for the full-scale fine simulation of wave forces on OWT jacket foundations in far-sea areas. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 6249 KB  
Review
Computational Fluid Dynamics and Potential Flow Modelling Techniques for Floating Photovoltaic Systems: A Systematic Review
by Aditya Nair, Luofeng Huang and Patrick G. Verdin
Symmetry 2025, 17(9), 1508; https://doi.org/10.3390/sym17091508 - 10 Sep 2025
Viewed by 387
Abstract
Land availability constraints limit the installation of conventional ground-mounted solar installations. As a result, Floating Photovoltaic (FPV) systems are gaining popularity as an alternative to renewable energy generation. FPV consist of individual solar panels that are commonly symmetrical and modular. However, the hydrodynamic [...] Read more.
Land availability constraints limit the installation of conventional ground-mounted solar installations. As a result, Floating Photovoltaic (FPV) systems are gaining popularity as an alternative to renewable energy generation. FPV consist of individual solar panels that are commonly symmetrical and modular. However, the hydrodynamic behaviour of FPVs in water surface waves is understudied to ensure their stability and optimal performance under varying environmental conditions. This literature review examines various modelling techniques applied in studying FPV hydrodynamics. Specifically, the application of Computational Fluid Dynamics (CFD) solvers and potential flow theory solvers is investigated for their effectiveness in capturing the behaviour of FPVs and mooring dynamics under the impact of wind and waves. The review highlights the advantages and limitations of each approach. Findings suggest that a combined CFD-potential flow approach offers a perfect balance between accuracy and computational efficiency, offering valuable insights into the performance of FPVs. However, extensive research is notably absent in hydrodynamic modelling for large-scale FPVs. This lack of research represents a significant gap in our current study on multiscale FPV systems. Full article
(This article belongs to the Special Issue Symmetry in Marine Hydrodynamics: Applications to Ocean Engineering)
Show Figures

Figure 1

29 pages, 8271 KB  
Review
A Review of Offshore Renewable Energy for Advancing the Clean Energy Transition
by Annette von Jouanne, Emmanuel Agamloh and Alex Yokochi
Energies 2025, 18(18), 4798; https://doi.org/10.3390/en18184798 - 9 Sep 2025
Viewed by 713
Abstract
Offshore renewable energy resources are abundant and widely available worldwide, offering significant contributions to the clean energy net-zero carbon emission targets. This paper reviews strong and emerging offshore renewable energy sources, including wind (fixed bottom and floating), hydrokinetic wave and tidal energy, floating [...] Read more.
Offshore renewable energy resources are abundant and widely available worldwide, offering significant contributions to the clean energy net-zero carbon emission targets. This paper reviews strong and emerging offshore renewable energy sources, including wind (fixed bottom and floating), hydrokinetic wave and tidal energy, floating solar photovoltaics (FPVs) and hybrid energy systems. A literature review of recent sources yields a timely comprehensive comparison of the levelized cost of electricity (LCOE), technology readiness levels (TRLs), capacity factors (CFs) and global generation installed and potential, where offshore wind is recognized as being the strongest contributor to the clean energy transition and thus receives the most attention. Offshore wind grid integration, converter technologies, criticality, resiliency and energy storage integration are presented, in addition to challenges and research directions. While wave, tidal and FPV will never dominate the global grid, they have vital roles to play in the global energy transition; thus, they are reviewed, including technologies, installations, potential, challenges and research directions. Offshore hybrid energy systems, combining different offshore renewable energy sources, are also discussed along with example installations. The paper concludes with a discussion of the potential environmental impacts of offshore renewable energy development, including recommendations. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

23 pages, 9439 KB  
Article
Compressive Sensing Convolution Improves Long Short-Term Memory for Ocean Wave Spatiotemporal Prediction
by Lingxiao Zhao, Yijia Kuang, Junsheng Zhang and Bin Teng
J. Mar. Sci. Eng. 2025, 13(9), 1712; https://doi.org/10.3390/jmse13091712 - 4 Sep 2025
Viewed by 416
Abstract
This study proposes a Compressive Sensing Convolutional Long Short-Term Memory (CSCL) model that aims to improve short-term (12–24 h) forecast accuracy compared to standard ConvLSTM. It is especially useful when subtle spatiotemporal variations complicate feature extraction. CSCL uses uniform sampling to partially mask [...] Read more.
This study proposes a Compressive Sensing Convolutional Long Short-Term Memory (CSCL) model that aims to improve short-term (12–24 h) forecast accuracy compared to standard ConvLSTM. It is especially useful when subtle spatiotemporal variations complicate feature extraction. CSCL uses uniform sampling to partially mask spatiotemporal wave fields. The model training strategy integrates both complete and masked samples from pre- and post-sampling. This design encourages the network to learn and amplify subtle distributional differences. Consequently, small variations in convolutional responses become more informative for feature extraction. We considered the theoretical explanations for why this sampling-augmented training enhances sensitivity to minor signals and validated the approach experimentally. For the region 120–140° E and 20–40° N, a four-layer CSCL model using the first five moments as inputs achieved the best prediction performance. Compared to ConvLSTM, the R2 for significant wave height improved by 2.2–43.8% and for mean wave period by 3.7–22.3%. A wave-energy case study confirmed the model’s practicality. CSCL may be extended to the prediction of extreme events (e.g., typhoons, tsunamis) and other oceanic variables such as wind, sea-surface pressure, and temperature. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

21 pages, 8646 KB  
Article
Influence of Varying Fractal Characteristics on the Dynamic Response of a Semi-Submersible Floating Wind Turbine Platform
by Wanyong Zhang, Haoda Huang, Qingsong Liu, Yangtian Yan, Chun Li, Weipao Miao, Minnan Yue and Wanfu Zhang
J. Mar. Sci. Eng. 2025, 13(9), 1708; https://doi.org/10.3390/jmse13091708 - 4 Sep 2025
Viewed by 395
Abstract
Offshore wind turbines positioned in deepwater areas are increasingly favored due to them providing superior and stable wind resources. However, the dynamic stability of floating offshore wind turbines (FOWTs) under complex environmental loading remains challenging. This study proposes a novel semi-submersible platform featuring [...] Read more.
Offshore wind turbines positioned in deepwater areas are increasingly favored due to them providing superior and stable wind resources. However, the dynamic stability of floating offshore wind turbines (FOWTs) under complex environmental loading remains challenging. This study proposes a novel semi-submersible platform featuring a fractal structure inspired by the venation of Victoria Amazonica and investigates the effects of fractal branching level and biomimetic structural height on platform motions, with the aim of enhancing the overall system stability of FOWTs. Within a high-fidelity computational fluid dynamics (CFD) framework coupled with a dynamic fluid–body interaction (DFBI) model and a volume-of-fluid (VOF) wave model, the dynamic responses of the biomimetic platform are investigated under varying fractal dimensions (Df) and structural heights. The results indicate that increasing fractal complexity enhances the local wall viscosity effect, significantly improving energy dissipation capabilities within the fractal cavities. Specifically, an eight-level fractal structure shows optimal performance, achieving reductions of approximately 16.94%, 23.26%, and 35.63% in heave, pitch, and rotational energy responses, respectively. Additionally, the increasing fractal height further strengthens energy dissipation, markedly enhancing stability, particularly in pitch motion. These findings underscore the substantial potential of biomimetic fractal designs in enhancing the dynamic stability of FOWTs. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 6273 KB  
Article
Numerical Investigation of an Ocean Brick System
by Hari Bollineni, Xiuling Wang and Joshua Toblas
Fluids 2025, 10(9), 231; https://doi.org/10.3390/fluids10090231 - 1 Sep 2025
Viewed by 376
Abstract
A three-dimensional Computational Fluid Dynamics (CFD) model is developed to simulate an Ocean Brick System (OBS) placed in a wave tank. When stacked, ocean bricks are designed to withstand wave forces and ocean currents, enhancing the stability of offshore support structures, such as [...] Read more.
A three-dimensional Computational Fluid Dynamics (CFD) model is developed to simulate an Ocean Brick System (OBS) placed in a wave tank. When stacked, ocean bricks are designed to withstand wave forces and ocean currents, enhancing the stability of offshore support structures, such as base supports of offshore wind turbines. In this study, the commercial software Ansys Fluent 2022 R1 is used for the simulations. A user-defined function (UDF) is developed to generate numerical waves that closely replicate those observed in experimental conditions. The numerical wave model is first validated against theoretical wave data, showing good agreement. The CFD model is then validated using experimental data from OBS tests conducted in the wave tank. Subsequently, the study investigates how OBS structures influence tidal waves—specifically, how they reduce the wave amplitude, and the pressure exerted on the bricks. Specifically, the wave amplitude reduction is more effective for waves with shorter wavelengths than for those with longer wavelengths, achieving up to a 70% reduction for waves with an amplitude of 0.785 m, a period of 5 s. Finally, a modification to the original brick geometry is proposed to further reduce wave amplitude and improve the stability of OBS platforms. For the same wave input, the modified brick geometry reduces wave energy effectively, achieving an 89.2% decrease in wave amplitude. Full article
Show Figures

Figure 1

24 pages, 4629 KB  
Review
Wave Energy Conversion Technology Based on Liquid Metal Magnetohydrodynamic Generators and Its Research Progress
by Lingzhi Zhao and Aiwu Peng
Energies 2025, 18(17), 4615; https://doi.org/10.3390/en18174615 - 30 Aug 2025
Viewed by 613
Abstract
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end [...] Read more.
Wave energy is a highly concentrated energy resource with five times higher energy density than wind and at least ten times the power density of solar energy. It is expected to make a major contribution to addressing climate change and to help end our dependency on fossil fuels. Many ingenious wave energy conversion methods have been put forward, and a large number of wave energy converters (WECs) have been developed. However, to date, wave energy conversion technology is still in the demonstration application stage. Key issues such as survivability, reliability, and efficient conversion still need to be solved. The major hurdle is the fact that ocean waves provide a slow-moving, high-magnitude force, whereas most electric generators operate at high rotary speed and low torque. Coupling the slow-moving, high-magnitude force of ocean waves normally requires conversion to a high-speed, low-magnitude force as an intermediate step before a rotary generator is applied. This, in general, tends to severely limit the overall efficiency and reliability of the converter and drives the capital cost of the converter well above an acceptable commercial target. Magnetohydrodynamic (MHD) wave energy conversion makes use of MHD generators in which a conducting fluid passes through a very strong magnetic field to produce an electric current. In contrast to alternatives, the relatively slow speed at which the fluid traverses the magnetic field makes it possible to directly couple to ocean waves with a high-magnitude, slowly moving force. The MHD generator provides an excellent match to the mechanical impedance of an ocean wave, and therefore, an MHD WEC has no rotating mechanical parts with high speeds, no complex control process, and has good response to low sea states and high efficiency under all working conditions. This review introduces the system composition, working process, and technical features of WECs based on MHD generators first. Then, the research development, key points, and issues of wave energy conversion technology based on MHD generators are presented in detail. Finally, the problems to be solved and the future research directions of wave energy conversion based on MHD generators are pointed out. Full article
(This article belongs to the Special Issue Advances in Ocean Energy Technologies and Applications)
Show Figures

Figure 1

34 pages, 9260 KB  
Review
Recent Advances in the Analysis of Functional and Structural Polymer Composites for Wind Turbines
by Francisco Lagos, Brahim Menacer, Alexis Salas, Sunny Narayan, Carlos Medina, Rodrigo Valle, César Garrido, Gonzalo Pincheira, Angelo Oñate, Renato Hunter-Alarcón and Víctor Tuninetti
Polymers 2025, 17(17), 2339; https://doi.org/10.3390/polym17172339 - 28 Aug 2025
Viewed by 1274
Abstract
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application [...] Read more.
Achieving the full potential of wind energy in the global renewable transition depends critically on enhancing the performance and reliability of polymer composite components. This review synthesizes recent advances from 2022 to 2025, including the development of next-generation hybrid composites and the application of high-fidelity computational methods—finite element analysis (FEA), computational fluid dynamics (CFD), and fluid–structure interaction (FSI)—to optimize structural integrity and aerodynamic performance. It also explores the transformative role of artificial intelligence (AI) in structural health monitoring (SHM) and the integration of Internet of Things (IoT) systems, which are becoming essential for predictive maintenance and lifecycle management. Special focus is given to harsh offshore environments, where polymer composites must withstand extreme wind and wave conditions. This review further addresses the growing importance of circular economy strategies for managing end-of-life composite blades. While innovations such as the geometric redesign of floating platforms and the aerodynamic refinement of blade components have yielded substantial gains—achieving up to a 30% mass reduction in PLA prototypes—more conservative optimizations of internal geometry configurations in GFRP blades provide only around 7% mass reduction. Nevertheless, persistent challenges related to polymer composite degradation and fatigue under severe weather conditions are driving the adoption of real-time hybrid predictive models. A bibliometric analysis of over 1000 publications confirms more than 25 percent annual growth in research across these interconnected areas. This review serves as a comprehensive reference for engineers and researchers, identifying three strategic frontiers that will shape the future of wind turbine blade technology: advanced composite materials, integrated computational modeling, and scalable recycling solutions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop