Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = wind-driven gyres

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8218 KB  
Article
Seasonal Circulation Characteristics of Oceanic System in the Beibu Gulf Based on Observations and Numerical Simulations
by Gongpeng Liu, Na Zhang, Yuping Yang and Chenghao Wang
Water 2025, 17(16), 2365; https://doi.org/10.3390/w17162365 - 9 Aug 2025
Viewed by 329
Abstract
The Beibu Gulf’s ocean circulation system regulates regional marine ecosystems, sediment transport, and coastal geomorphology while also supporting vital economic activities. This study integrates one-year current observations from four in-situ current observation stations (B1−B4) with simulations using the Regional Ocean Modeling System (ROMS) [...] Read more.
The Beibu Gulf’s ocean circulation system regulates regional marine ecosystems, sediment transport, and coastal geomorphology while also supporting vital economic activities. This study integrates one-year current observations from four in-situ current observation stations (B1−B4) with simulations using the Regional Ocean Modeling System (ROMS) to characterize circulation dynamics in the gulf. Observations show persistent northward subtidal currents west of Hainan Island year-round, primarily sustained by tidal-induced residual currents. These currents briefly reverse southward during strong northerly wind events, whereas subtidal currents in the northern Beibu Gulf are more wind-dependent, showing pronounced seasonal variations. Numerical results confirm that winter circulation is dominated by a basin-wide cyclonic gyre driven by northeasterly monsoons. In summer, circulation in the northern gulf is cyclonic under southeasterly winds, but turns anticyclonic when southwesterly winds prevail, indicating strong sensitivity to summer monsoon wind direction. By combining multi-station observations and numerical simulations, this study provides a systematic characterization of the seasonal circulation of the oceanic system in the Beibu Gulf, offering new insights into its dynamic mechanisms. Full article
(This article belongs to the Special Issue Advanced Research on Marine Geology and Sedimentology)
Show Figures

Figure 1

13 pages, 1995 KB  
Article
Topographic Control of Wind- and Thermally Induced Circulation in an Enclosed Water Body
by Jinichi Koue
Geosciences 2025, 15(7), 244; https://doi.org/10.3390/geosciences15070244 - 30 Jun 2025
Viewed by 297
Abstract
The dynamics of large lake circulations are strongly modulated by wind forcing, thermal gradients, and shoreline topography, yet their integrated effects remain insufficiently quantified. To address this, numerical simulations were conducted in Lake Biwa to clarify the mechanisms underlying wind- and thermally driven [...] Read more.
The dynamics of large lake circulations are strongly modulated by wind forcing, thermal gradients, and shoreline topography, yet their integrated effects remain insufficiently quantified. To address this, numerical simulations were conducted in Lake Biwa to clarify the mechanisms underlying wind- and thermally driven gyres, with a focus on the influence of bathymetric asymmetry. In wind-driven cases, zonal and meridional wind stress gradients were imposed, revealing that cyclonic wind shear generated strong surface vorticity (up to 2.0 × 10−6 s−1) in regions with gently sloped shores, while steep slopes suppressed anticyclonic responses. Cyclonic forcing induced upwelling in the lake center, with baroclinic return flows stabilizing the vertical circulation structure. In windless thermal experiments, surface temperature gradients of ±2.5 °C were applied to simulate seasonal heating and cooling. Cyclonic circulation predominated in warm seasons due to convergence and heat accumulation along gently sloping shores, whereas winter cooling produced divergent flows and anticyclonic gyres. The southern and eastern lake margins, characterized by mild slopes, consistently enhanced convergence and vertical mixing, while steep western and northern slopes limited circulation intensity. These results demonstrate that shoreline slope asymmetry plays a decisive role in regulating both wind- and thermally induced circulations, offering insights into physical controls on transport and stratification in enclosed lake systems. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

33 pages, 21153 KB  
Article
South China Sea SST Fronts, 2015–2022
by Igor M. Belkin and Yi-Tao Zang
Remote Sens. 2025, 17(5), 817; https://doi.org/10.3390/rs17050817 - 27 Feb 2025
Viewed by 1272
Abstract
High-resolution (2 km), high-frequency (hourly) SST data of the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 geostationary satellite were used to derive the monthly climatology of temperature fronts in the South China Sea. The SST data from 2015 to 2022 were [...] Read more.
High-resolution (2 km), high-frequency (hourly) SST data of the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 geostationary satellite were used to derive the monthly climatology of temperature fronts in the South China Sea. The SST data from 2015 to 2022 were processed with the Belkin–O’Reilly algorithm to generate maps of SST gradient magnitude GM. The GM maps were log-transformed to enhance contrasts in digital maps and reveal additional features (fronts). The combination of high-resolution, cloud-free, four-day-composite SST imagery from AHI, the advanced front-preserving gradient algorithm BOA, and digital contrast enhancement with the log-transformation of SST gradients allowed us to identify numerous mesoscale/submesoscale fronts (including a few fronts that have never been reported) and document their month-to-month variability and spatial patterns. The spatiotemporal variability of SST fronts was analyzed in detail in five regions: (1) In the Taiwan Strait, six fronts were identified: the China Coastal Front, Taiwan Bank Front, Changyun Ridge Front, East Penghu Channel Front, and Eastern/Western Penghu Islands fronts; (2) the Guangdong Shelf is dominated by the China Coastal Front in winter, with the eastern and western Guangdong fronts separated by the Pearl River outflow in summer; (3) Hainan Island is surrounded by upwelling fronts of various nature (wind-driven coastal and topographic) and tidal mixing fronts; in the western Beibu Gulf, the Red River Outflow Front extends southward as the Vietnam Coastal Front, while the northern Beibu Gulf features a tidal mixing front off the Guangxi coast; (4) Off SE Vietnam, the 11°N coastal upwelling gives rise to a summertime front, while the Mekong Outflow and associated front extend seasonally toward Cape Camau, close to the Gulf of Thailand Entrance Front; (5) In the Luzon Strait, the Kuroshio Front manifests as a chain of three fronts across the Babuyan Islands, while west of Luzon Island a broad offshore frontal zone persists in winter. The summertime eastward jet (SEJ) off SE Vietnam is documented from five-day mean SST data. The SEJ emerges in June–September off the 11°N coastal upwelling center and extends up to 114°E. The zonally oriented SEJ is observed to be located between two large gyres, each about 300 km in diameter. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

21 pages, 13112 KB  
Article
Singular Phenomenon Analysis of Wind-Driven Circulation System Based on Galerkin Low-Order Model
by Peihua Feng, Shengli Cao and Zhilong Liu
Appl. Sci. 2024, 14(16), 7329; https://doi.org/10.3390/app14167329 - 20 Aug 2024
Viewed by 858
Abstract
Ocean circulation plays an important role in the formation and occurrence of extreme climate events. The study shows that the periodic variation of ocean circulation under strong wind stress is closely related to climate oscillation. Ocean circulation is a nonlinear dynamic system, which [...] Read more.
Ocean circulation plays an important role in the formation and occurrence of extreme climate events. The study shows that the periodic variation of ocean circulation under strong wind stress is closely related to climate oscillation. Ocean circulation is a nonlinear dynamic system, which shows complex nonlinear characteristics, so the essence behind ocean circulation has not been clearly explained. Therefore, the response and evolution of the circulation system to wind stress are studied based on the bifurcation and catastrophe theories in nonlinear dynamics. First, the quasi-geostrophic gyre equation and the normalized gravity model are introduced and developed to study ocean circulation driven by wind stress, and solved using the Galerkin method. Then, the bifurcation and catastrophe behaviors of the system governed by the low-order ocean circulation model during the change in wind stress intensity and the coexistence of multiple equilibria in the circulation system are studied in detail. The results show that saddle and unstable nodes appear in the system after a cusp catastrophe. With the change in model parameters, the unstable node becomes the unstable focus, and then the subcritical Hopf bifurcation occurs. The system forms a bistable interval when the system undergoes a catastrophe twice, and the system shows hysteresis. In addition, multiple equilibrium states are coexisting in the circulating system, and the unstable equilibrium state always changes into a stable equilibrium state through vortex movement. Therefore, there is a route for the system to induce short-term climate oscillation, that is, in the multi-stable equilibrium state of the system, the vortex oscillates after being subject to small disturbances, and then triggers climate oscillation. Full article
Show Figures

Figure 1

20 pages, 13421 KB  
Article
Modulations of the South China Sea Ocean Circulation by the Summer Monsoon Intraseasonal Oscillation Inferred from Satellite Observations
by Zhiyuan Hu, Keiwei Lyu and Jianyu Hu
Remote Sens. 2024, 16(7), 1195; https://doi.org/10.3390/rs16071195 - 29 Mar 2024
Viewed by 1670
Abstract
The South China Sea (SCS) displays remarkable responses and feedback to the summer monsoon intraseasonal oscillation (ISO). This study investigates how the SCS summer ocean circulation responds to the monsoon ISO based on weekly satellite data. In summer, the largest amplitudes for intraseasonal [...] Read more.
The South China Sea (SCS) displays remarkable responses and feedback to the summer monsoon intraseasonal oscillation (ISO). This study investigates how the SCS summer ocean circulation responds to the monsoon ISO based on weekly satellite data. In summer, the largest amplitudes for intraseasonal (30–90 days) sea surface height variations in the SCS occur around the northeastward offshore current off southeast Vietnam between a north–south eddy dipole. Our results show that such strong intraseasonal sea surface height variations are mainly caused by the alternate enhancement of the two eddies of the eddy dipole. Specifically, in response to the intraseasonal intensification of southwesterly winds, the northern cyclonic eddy of the eddy dipole strengthens within 1–2 weeks, and its southern boundary tends to be more southerly. Afterwards, as the wind-driven southern anticyclonic gyre spins up, the southern anticyclonic eddy gradually intensifies and expands its northern boundary northward, while the northern cyclonic eddy weakens and retreats northward. Besides the local wind forcing, westward propagations of the eastern boundary-originated sea surface height anomalies, which exhibit latitude-dependent features that are consistent with the linear Rossby wave theory, play an important role in ocean dynamical adjustments to the monsoon ISO, especially in the southern SCS. Case studies further confirm our findings and indicate that understanding this wind-driven process makes the ocean more predictable on short-term timescales. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Second Edition))
Show Figures

Figure 1

31 pages, 14184 KB  
Article
Hydrodynamic Climate of Port Phillip Bay
by Huy Quang Tran, David Provis and Alexander V. Babanin
J. Mar. Sci. Eng. 2021, 9(8), 898; https://doi.org/10.3390/jmse9080898 - 20 Aug 2021
Cited by 16 | Viewed by 6877
Abstract
This study is dedicated to the hydrodynamic climate of Port Phillip Bay (PPB)—a largest coastal lagoon system in Victoria, Australia. Novelty of the present study includes long-term hydrodynamic hindcast simulations integrated with a spectral wave model. Specifically, a coupled unstructured grid wave–current modelling [...] Read more.
This study is dedicated to the hydrodynamic climate of Port Phillip Bay (PPB)—a largest coastal lagoon system in Victoria, Australia. Novelty of the present study includes long-term hydrodynamic hindcast simulations integrated with a spectral wave model. Specifically, a coupled unstructured grid wave–current modelling system (SCHISM + WWM) was built upon a high resolution and advanced wave physics (ST6). This coupling system was thoroughly calibrated and validated against field observations prior to applying for 27-year hindcast and case scenarios. Data from these simulations were then used to investigate the hydrodynamic climate of PPB focusing on three main aspects: water levels, waves and currents. For sea levels, this study shows that tidal and extreme sea levels (storm tides) across a large part of PPB have a similar magnitude. The highest storm tide level is found along eastern coasts of the bay in line with the wind pattern. In the vicinity of the entrance, the extreme sea level slightly reduced, in line with wave decay due to coupling effects. This extreme level is lower than results reported by previous studies, which were not built on a wave–current coupled system. For the wave field, the mean wave direction inside PPB is strongly affected by seasonality, in line with wind patterns. The 100-year return significant wave height is above 2 m along the eastern coasts. At PPH, waves get refracted after passing the narrow entrance. For currents, this study shows that both mean variations and high percentile currents are not affected by seasonality. This highlights the fact that tidal currents dominate flow movements in PPB. However, in extreme conditions, the circulation in PPB is also driven by wind patterns, forming two gyre systems. Based on case scenarios simulations, the strongest magnitude of wind-driven currents is above 0.5 m/s and found in the confined shallow region in the southern portion of PPB. Full article
(This article belongs to the Special Issue Sea Level Rise: Drivers, Variability and Impacts)
Show Figures

Figure 1

19 pages, 3922 KB  
Article
Resonantly Forced Baroclinic Waves in the Oceans: A New Approach to Climate Variability
by Jean-Louis Pinault
J. Mar. Sci. Eng. 2021, 9(1), 13; https://doi.org/10.3390/jmse9010013 - 24 Dec 2020
Cited by 7 | Viewed by 3540
Abstract
How variations in Earth’s orbit pace the glacial-interglacial cycles of the Quaternary are probably one of the greatest mysteries of modern climate science. These changes in the forcing are too small to explain the observed climate variations as simple linear responses. Consequently, to [...] Read more.
How variations in Earth’s orbit pace the glacial-interglacial cycles of the Quaternary are probably one of the greatest mysteries of modern climate science. These changes in the forcing are too small to explain the observed climate variations as simple linear responses. Consequently, to strictly apply the Milankovitch’s theory, a mediator involving positive feedbacks must be found, endowing the climate response with a resonant feature. This mediation should help explain the Mid-Pleistocene Transition (MPT) by involving orbital variations as the only external forcing, contrary to the current theory that supposes the coevolution of climate, ice sheets, and carbon cycle over the past 3 million years. Supported by both observational and theoretical considerations, recent work shows that long-period Rossby waves winding around subtropical ocean gyres meet the requirements of the sought mediator. Propagating cyclonically around the subtropical gyres, the so-called Gyral Rossby waves (GRWs) owe their origin to the gradient β of the Coriolis parameter relative to the mean radius of the gyres. The resulting modulated western boundary current, whose velocity is added to that of the steady anticyclonic wind-driven current, accelerates/decelerates according to the phase of GRWs. This amplifies the oscillation of the thermocline because of a positive feedback loop ensuing from the temperature gradient between the high and low latitudes of the gyres. Multi-frequency GRWs overlap, behaving as coupled oscillators with inertia resonantly forced by solar and orbital cycles in subharmonic modes. So, the efficiency of forcing increases considerably as the forcing period approaches a natural period of the GRWs. Taking advantage of (1) the alkenone paleothermometer in sediment cores sampled in the Tasman Sea floor, we show that, in the same way as during the MPT, but with periods 10 times longer, a transition occurred at the hinge of Pliocene-Pleistocene. Both transitions as well as the observed adjustment of the South Pacific gyre to the resonance conditions during the MPT are explained from orbital forcing alone—(2) data set of individual Globigerinoides ruberδO 18 spanning the Holocene and the Last Glacial Maximum from sediment core in the eastern equatorial Pacific, we show how the El Niño–Southern Oscillation (ENSO) activity is modulated according to subharmonic modes. Periods of warming induce a decrease in ENSO activity while periods of cooling induce an increase. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

16 pages, 3682 KB  
Article
Long-Term Monitoring of the Atlantic Jet through the Strait of Gibraltar with HF Radar Observations
by Pablo Lorente, Silvia Piedracoba, Marcos G. Sotillo and Enrique Álvarez-Fanjul
J. Mar. Sci. Eng. 2019, 7(1), 3; https://doi.org/10.3390/jmse7010003 - 2 Jan 2019
Cited by 16 | Viewed by 4294
Abstract
The present work focuses on the long-term coastal monitoring of the Atlantic surface inflow into the Mediterranean basin through the Strait of Gibraltar. Hourly current maps provided during 2016–2017 by a High Frequency radar (HFR) system were used to characterize the Atlantic Jet [...] Read more.
The present work focuses on the long-term coastal monitoring of the Atlantic surface inflow into the Mediterranean basin through the Strait of Gibraltar. Hourly current maps provided during 2016–2017 by a High Frequency radar (HFR) system were used to characterize the Atlantic Jet (AJ) since changes in its speed and direction modulate the upper-layer circulation of the Western Alboran Gyre (WAG). The AJ pattern was observed to follow a marked seasonal cycle. A stronger AJ flowed north-eastwards during autumn and winter, while a weaker AJ was directed more southwardly during the middle of the year, reaching a minimum of intensity during summertime. A strong relationship between AJ speeds and angles was evidenced: the AJ appeared to be frequently locked at an angle around 63°, measured clockwise from the North. The AJ speed usually fluctuated between 50 cm·s−1 and 170 cm·s−1, with occasional drops below 50 cm·s−1 which were coincident with abrupt modifications in AJ orientation. Peaks of current speed clearly reached values up to 250 cm·s−1, regardless of the season. A number of persistent full reversal episodes of the surface inflow were analyzed in terms of triggering synoptic conditions and the related wind-driven circulation patterns. High sea level pressures and intense (above 10 m·s−1), permanent and spatially-uniform easterlies prevailed over the study domain during the AJ collapse events analyzed. By contrast, tides seemed to play a secondary role by partially speeding up or slowing down the westward currents, depending on the phase of the tide. A detailed characterization of this unusual phenomenon in the Strait of Gibraltar is relevant from diverse aspects, encompassing search and rescue operations, the management of accidental marine pollution episodes or efficient ship routing. Full article
(This article belongs to the Special Issue Radar Technology for Coastal Areas and Open Sea Monitoring)
Show Figures

Figure 1

23 pages, 4156 KB  
Article
Modulated Response of Subtropical Gyres: Positive Feedback Loop, Subharmonic Modes, Resonant Solar and Orbital Forcing
by Jean-Louis Pinault
J. Mar. Sci. Eng. 2018, 6(3), 107; https://doi.org/10.3390/jmse6030107 - 19 Sep 2018
Cited by 16 | Viewed by 5028
Abstract
Evidence of long-term variability in the upper ocean has emerged for two decades. Most of the issues discussed raise a lot of questions. What is the driver of the decadal oscillation of rainfall in Europe that has been observed since the end of [...] Read more.
Evidence of long-term variability in the upper ocean has emerged for two decades. Most of the issues discussed raise a lot of questions. What is the driver of the decadal oscillation of rainfall in Europe that has been observed since the end of the 20th century? How to explain low-frequency variability as observed in the Atlantic Multidecadal Oscillation (AMO)? More generally, how does solar and orbital forcing occur during very long-term climate change? The observations suggest that both a positive feedback loop amplifies the effects of the insolation gradient on the climate system and a resonance phenomenon occurs, filtering out some frequencies in favour of others. Throughout this paper, some answers to these problems are given from a new concept based on the modulated response of subtropical gyres to solar and orbital forcing. Subtropical gyres turn out to be the main driver of long-term climate variability because they tightly control, via the western boundary currents, heat transport from the tropics into middle and high latitudes. Specifically, the theoretical foundations of long-period Rossby waves winding around the subtropical gyres are laid, suggested by the observations of persistent sea surface temperature anomalies at mid-latitudes. Multi-frequency Gyral Rossby Waves (GRWs) exhibit properties resulting from their annular structure and their coupling. Using a β-cone approximation, the momentum equations are solved in polar coordinates. The gradient β of the Coriolis parameter depends on the mean radius of the annulus and remains constant all around the latter. GRWs result from the variation in the Coriolis Effect with the mean radius of the annulus. The speed of the anti-cyclonically wind-driven circulation being higher than the phase velocity of cyclonically propagating GRWs, amplified forcing effects occur as well as resonances for periods consistent with the observations. Full article
Show Figures

Figure 1

32 pages, 13334 KB  
Article
Multiscale Stuart-Landau Emulators: Application to Wind-Driven Ocean Gyres
by Dmitri Kondrashov, Mickaël D. Chekroun and Pavel Berloff
Fluids 2018, 3(1), 21; https://doi.org/10.3390/fluids3010021 - 6 Mar 2018
Cited by 26 | Viewed by 6700
Abstract
The multiscale variability of the ocean circulation due to its nonlinear dynamics remains a big challenge for theoretical understanding and practical ocean modeling. This paper demonstrates how the data-adaptive harmonic (DAH) decomposition and inverse stochastic modeling techniques introduced in (Chekroun and Kondrashov, (2017), [...] Read more.
The multiscale variability of the ocean circulation due to its nonlinear dynamics remains a big challenge for theoretical understanding and practical ocean modeling. This paper demonstrates how the data-adaptive harmonic (DAH) decomposition and inverse stochastic modeling techniques introduced in (Chekroun and Kondrashov, (2017), Chaos, 27), allow for reproducing with high fidelity the main statistical properties of multiscale variability in a coarse-grained eddy-resolving ocean flow. This fully-data-driven approach relies on extraction of frequency-ranked time-dependent coefficients describing the evolution of spatio-temporal DAH modes (DAHMs) in the oceanic flow data. In turn, the time series of these coefficients are efficiently modeled by a family of low-order stochastic differential equations (SDEs) stacked per frequency, involving a fixed set of predictor functions and a small number of model coefficients. These SDEs take the form of stochastic oscillators, identified as multilayer Stuart–Landau models (MSLMs), and their use is justified by relying on the theory of Ruelle–Pollicott resonances. The good modeling skills shown by the resulting DAH-MSLM emulators demonstrates the feasibility of using a network of stochastic oscillators for the modeling of geophysical turbulence. In a certain sense, the original quasiperiodic Landau view of turbulence, with the amendment of the inclusion of stochasticity, may be well suited to describe turbulence. Full article
(This article belongs to the Special Issue Reduced Order Modeling of Fluid Flows)
Show Figures

Figure 1

14 pages, 1549 KB  
Article
The Effects of Mesoscale Ocean–Atmosphere Coupling on the Quasigeostrophic Double Gyre
by Ian Grooms and Louis-Philippe Nadeau
Fluids 2016, 1(4), 34; https://doi.org/10.3390/fluids1040034 - 21 Oct 2016
Cited by 3 | Viewed by 4964
Abstract
We investigate the effects of sea surface temperature (SST)-dependent wind stress on the wind-driven quasigeostrophic (QG) double gyre. The main effects are to reduce the strength of the circulation and to shift the inter-gyre jet to the south. The SST front across the [...] Read more.
We investigate the effects of sea surface temperature (SST)-dependent wind stress on the wind-driven quasigeostrophic (QG) double gyre. The main effects are to reduce the strength of the circulation and to shift the inter-gyre jet to the south. The SST front across the inter-gyre jet induces a zonal wind stress anomaly over the jet that accelerates the southern flank of the jet and decelerates the northern flank. This local wind stress anomaly causes the jet to shift southwards. Shifting the jet south, away from the peak wind stress, reduces the net power input to the ocean circulation. Allowing the wind stress to depend on the difference between the atmospheric and oceanic velocity also reduces the net wind power input, and has a larger impact than SST dependence. When wind stress depends only on SST, the impact on the circulation is stronger than when wind stress depends on both SST and ocean surface velocity. Ocean surface velocity dependence leads to direct extraction of mesoscale energy by the winds. In contrast, SST dependence leads to injection (extraction) of mesoscale energy in the subtropical (subpolar) gyres, with almost complete cancellation because of the symmetric wind field. Full article
(This article belongs to the Collection Geophysical Fluid Dynamics)
Show Figures

Figure 1

16 pages, 11419 KB  
Article
Eddy Backscatter and Counter-Rotating Gyre Anomalies of Midlatitude Ocean Dynamics
by Igor Shevchenko and Pavel Berloff
Fluids 2016, 1(3), 28; https://doi.org/10.3390/fluids1030028 - 2 Sep 2016
Cited by 15 | Viewed by 4907
Abstract
This work concerns how two competing mechanisms—eddy backscatter and counter-rotating gyre anomalies—influence the midlatitude ocean dynamics, as described by the eddy-resolving quasi-geostrophic (QG) model of wind-driven gyres. We analyzed dynamical balances and effects of different eddy forcing components, as well as their dependencies [...] Read more.
This work concerns how two competing mechanisms—eddy backscatter and counter-rotating gyre anomalies—influence the midlatitude ocean dynamics, as described by the eddy-resolving quasi-geostrophic (QG) model of wind-driven gyres. We analyzed dynamical balances and effects of different eddy forcing components, as well as their dependencies on increasing vertical resolution and decreasing eddy viscosity and found that the eastward jet and its adjacent recirculation zones are maintained mostly by the eddy forcing via the eddy backscatter mechanism, whereas the time-mean eddy-forcing component plays not only direct jet-supporting but also indirect jet-inhibiting role. The latter is achieved by inducing zonally elongated anticyclonic/cyclonic Counter-rotating Gyre Anomaly (CGA) in the subpolar/subtropical gyre. The indirect effect of CGAs on the eastward jet is found to be moderate relative to the dominant eddy backscatter mechanism. We also found that the higher the vertical baroclinic mode, the weaker its backscatter role and the stronger its CGA-driving role. Although the barotropic and first baroclinic modes are the most efficient ones in maintaining the backscatter, the higher, up to the fifth baroclinic modes also have significant but reverse impact that reduces the backscatter. Full article
(This article belongs to the Collection Geophysical Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop