Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (689)

Search Parameters:
Keywords = zooplankton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2426 KB  
Article
Unravelling the Role of Predator Diversity in Shaping Plankton Dynamics: Evidence from a Mesocosm Study
by Robyn Shaylee Fabian and William Froneman
Diversity 2025, 17(9), 591; https://doi.org/10.3390/d17090591 - 22 Aug 2025
Viewed by 91
Abstract
Predation plays a key organizational role in structuring plankton communities. However, predator diversity can lead to emergent effects in which the outcomes of predator–prey interactions are modified. The response of the plankton community to three different predator regimes at natural densities was investigated [...] Read more.
Predation plays a key organizational role in structuring plankton communities. However, predator diversity can lead to emergent effects in which the outcomes of predator–prey interactions are modified. The response of the plankton community to three different predator regimes at natural densities was investigated over a 10-day mesocosm experiment in a temperate, temporarily open/closed estuary in South Africa. The regimes included: (1) predation by the mysid, Mesopodopsis wooldridgei; (2) predation by larval Rhabdosargus holubi and (3) a combination of the two predators. M. wooldridgei are primarily copepod feeders, and juvenile R. holubi consume a broader diet including zooplankton, algae and invertebrate fauna. In the absence of predators, zooplankton grazing contributed to a significant decline in the phytoplankton size structure and total chlorophyll-a (Chl-a) concentration. The presence of the predators contributed to a decline in the total zooplankton abundances and biomass which dampened the grazing impact of the zooplankton on the total Chl-a, consistent with the expectations of a trophic cascade. There were no significant differences in the size structure of the phytoplankton community, total Chl-a concentration and the total zooplankton abundances and biomass between the different predator treatments, suggesting that the increase in predator diversity did not contribute to increased prey risk. These findings highlight both the direct and indirect ecological impacts of predators on plankton dynamics. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Graphical abstract

25 pages, 7225 KB  
Article
Integrating Remote Sensing and Ecological Modeling to Assess Marine Habitat Suitability for Endangered Chinese Sturgeon
by Shuhui Cao, Yingchao Dang, Xuan Ban, Qi Feng, Yadong Zhou, Jiahuan Luo, Jiazhi Zhu and Fei Xiao
Remote Sens. 2025, 17(16), 2901; https://doi.org/10.3390/rs17162901 - 20 Aug 2025
Viewed by 166
Abstract
The Chinese sturgeon (Acipenser sinensis), a critically endangered anadromous fish species, spends over 90% of its life cycle in marine habitats, yet research on its marine ecology and habitat requirements is limited due to sparse data. To address this, we integrated [...] Read more.
The Chinese sturgeon (Acipenser sinensis), a critically endangered anadromous fish species, spends over 90% of its life cycle in marine habitats, yet research on its marine ecology and habitat requirements is limited due to sparse data. To address this, we integrated satellite remote sensing with ecological modeling to assess spatiotemporal dynamics in marine habitat suitability across China’s continental shelf (2003–2020). Nine key habitat factors were derived from multi-source remote sensing data and inverted transparency algorithms. Species occurrence data were coupled with the Maximum Entropy (MaxEnt) model to evaluate habitat preferences and seasonal shifts. Results revealed distinct environmental preferences: shallow depths (≤20 m), sea surface and bottom temperature (10–30 °C and 10–25 °C), salinity (10–35‰), transparency (0.40–3.00 m), eastward and northward seawater velocity (−0.20–0.15 m/s and −0.20–0.20 m/s), moderate productivity (1000–3000 mg/m2), and zooplankton carbon (0.20–6.00 g/m2). Habitat factor importance varied seasonally—salinity, depth, and net primary productivity dominated in spring; bottom temperature and productivity in summer/autumn; salinity and transparency in winter. Spatially, high-suitability areas peaked in autumn (70% total suitable habitat), concentrating near the Yangtze Estuary, northern Jiangsu coast, and Zhoushan Archipelago. This study emphasizes the need to prioritize these areas for protection and inform proliferation and release schemes for Chinese sturgeon. It also demonstrates the efficacy of remote sensing for mapping essential habitats of migratory megafauna in complex coastal ecosystems and provides actionable insights for targeted conservation strategies. Full article
Show Figures

Figure 1

25 pages, 1660 KB  
Review
Planktonic Trophic Transitions in the Black Sea: Functional Perspectives and Ecosystem Policy Relevance
by Elena Bisinicu and Luminita Lazar
Phycology 2025, 5(3), 39; https://doi.org/10.3390/phycology5030039 - 20 Aug 2025
Viewed by 266
Abstract
Phytoplankton–mesozooplankton interactions play a central role in shaping Black Sea food web dynamics, yet their trophic coupling has been insufficiently investigated in policy-relevant frameworks. This systematic review of 86 peer-reviewed studies (1987–2025) synthesizes research trends, limitations, and knowledge gaps in the field. The [...] Read more.
Phytoplankton–mesozooplankton interactions play a central role in shaping Black Sea food web dynamics, yet their trophic coupling has been insufficiently investigated in policy-relevant frameworks. This systematic review of 86 peer-reviewed studies (1987–2025) synthesizes research trends, limitations, and knowledge gaps in the field. The analysis reveals a clear dominance of work on plankton community structure (81%), whereas topics such as modeling and scenario analysis (7%), ecosystem assessment (7%), and bloom dynamics and seasonality (5%) remain comparatively underrepresented. Post-2020 publications indicate a promising shift toward scenario-based frameworks, gelatinous zooplankton impacts, and trait-based indicators, although functional integration remains fragmented. Keyword co-occurrence and network analyses revealed a concentration on nutrient–phytoplankton–zooplankton pathways, while other themes—such as bioluminescence and redoxcline dynamics—appeared only marginally represented in the literature we analyzed. To support ecosystem-based management under the Marine Strategy Framework Directive (MSFD), we highlight three priorities: improving NPZD-type models, using trophic efficiency metrics, and standardizing plankton indicators across the region. Strengthening the mechanistic understanding of planktonic trophic linkages is critical for improving food web assessments and adaptive marine governance in the Black Sea. Full article
Show Figures

Figure 1

25 pages, 609 KB  
Review
Aquatic Microcosms in Ecotoxicology: The Community-Level Ecological Risk Assessment of Pollutants
by Dongning Yang, Yin Hou, Chao Wei, Jianan Ling and Xin Zheng
Toxics 2025, 13(8), 694; https://doi.org/10.3390/toxics13080694 - 20 Aug 2025
Viewed by 366
Abstract
Microcosm technology serves as a sophisticated tool for simulating natural ecosystems, facilitating the examination of pollutants’ ecological impacts across population, community, and ecosystem scales. Currently, this technology finds extensive application in ecological toxicology and ecological risk assessment research. This concise review highlights the [...] Read more.
Microcosm technology serves as a sophisticated tool for simulating natural ecosystems, facilitating the examination of pollutants’ ecological impacts across population, community, and ecosystem scales. Currently, this technology finds extensive application in ecological toxicology and ecological risk assessment research. This concise review highlights the utility of microcosm technology in ecotoxicology, detailing the establishment of aquatic microcosms and analyzing key research trends to assess the ecological impacts of pollutants. It emphasizes the evaluation of pesticides, industrial chemicals, and heavy metals, providing a comparative analysis of safety thresholds derived from microcosm studies versus other methods. Finally, the review underscores the four urgent directions for future exploration: (a) track pollutant metabolites in microcosms; (b) develop microcosms with diverse species for natural ecosystem mimicry; (c) use DNA macrobarcoding to assess zooplankton and link it to species abundance; (d) study reasons behind no observed effect concentration (NOEC) vs. the 95% harmless concentration (HC5) values in microcosm studies. The determination of these directions helps to fill the gaps in understanding the fate and effects of pollutants within controlled ecosystem simulations. Full article
(This article belongs to the Special Issue Environmental Toxicology and Risk Assessment of Priority Substances)
Show Figures

Graphical abstract

1 pages, 122 KB  
Correction
Correction: Mihuc et al. Lake Champlain Zooplankton Community Dynamics Following an Extreme Flood Event. Diversity 2024, 16, 451
by Timothy Mihuc, Erin Hayes-Pontius, Marshall Arnwine, Zachary Cutter and Luke Myers
Diversity 2025, 17(8), 579; https://doi.org/10.3390/d17080579 - 18 Aug 2025
Viewed by 117
Abstract
The authors would like to make the following corrections to [...] Full article
16 pages, 2020 KB  
Article
Environmental Drivers of Aquatic Community Structures in a Shallow Eutrophic Lake of the Taihu Lake Basin
by Zishu Ye, Qinghuan Zhang, Chunhua Li, Chun Ye and Yang Wang
Water 2025, 17(16), 2372; https://doi.org/10.3390/w17162372 - 10 Aug 2025
Viewed by 376
Abstract
Gehu Lake in the lower reaches of the Taihu Lake Basin has experienced water quality degradation due to increasing human activities, pollutant discharge, and non-point source pollution, which requires ecosystem restoration. Currently, the community structure of aquatic organisms and their influencing environmental factors [...] Read more.
Gehu Lake in the lower reaches of the Taihu Lake Basin has experienced water quality degradation due to increasing human activities, pollutant discharge, and non-point source pollution, which requires ecosystem restoration. Currently, the community structure of aquatic organisms and their influencing environmental factors remain poorly understood. Thus, in this study, we conducted comprehensive fieldwork in June 2024 and analyzed the community structures of plankton (i.e., phytoplankton and zooplankton) and macroinvertebrates, and their influencing environmental factors in Gehu Lake and the inflowing river. The trophic level index (TLI) and biodiversity indices (Shannon–Wiener, Pielou, and Margalef) were utilized to assess water quality status. Pearson correlation analysis and redundancy analysis (RDA) were applied to identify key factors influencing plankton and macroinvertebrate community structures. The dominant phytoplankton species included Merismopedia tranquilla, Microcystis aeruginosa, Aphanizomenon flos-aquae, Aphanocapsa elachista, and Aulacoseira granulata. The dominant zooplankton species were mainly Brachionus diversicornis, Brachionus calyciflorus, and Asplanchna priodonta. The dominant macroinvertebrate species were Microchironomus tabarui and Chironomus flaviplumus. The findings suggest that Gehu Lake exhibited moderate pollution levels, while the diversity indices were significantly correlated with environmental factors. The Shannon–Wiener index of zooplankton displayed a markedly negative correlation with Chl-a (p < 0.05). The results from redundancy analysis showed that TP, TN, SD, CODMn, and Chl-a were key environmental factors shaping the aquatic community structure in the lake. Full article
Show Figures

Figure 1

12 pages, 1451 KB  
Article
Effects of Freshwater Restoration on Phytoplankton and Zooplankton Communities in the Yellow River Delta
by Jia Jia, Meng Xia, Yang Zhang, Shimin Tian, Yawei Hu, Zhanshuo Zhang, Xuejie Zhai, Bo Qu and Lingang Hao
Water 2025, 17(15), 2348; https://doi.org/10.3390/w17152348 - 7 Aug 2025
Viewed by 333
Abstract
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted [...] Read more.
Managed freshwater replenishment is a significant restoration method in the Yellow River Delta. However, their impacts on plankton communities, which are key bioindicators of aquatic ecosystem health and sensitive to the changes in the environment, remain poorly quantified. In this study, we conducted plankton surveys across wetlands subjected to freshwater restoration durations ranging from 5 to 22 years. We assessed shifts in phytoplankton and zooplankton community structure, biomass, diversity, and their relationships with environmental drivers. Results revealed distinct temporal dynamics: phytoplankton biomass and diversity followed a “U-shaped” trajectory (initial decline followed by recovery), while zooplankton biomass decreased but diversity increased with restoration duration. Canonical Correspondence Analysis (CCA) and Partial Least Squares Path Modeling (PLS-PM) identified salinity (Cl, SO42−) and dissolved nitrate (NO3) as primary environmental controls for both groups. Cyanobacteria dominated phytoplankton biomass initially but declined with restoration age, while rotifers replaced copepods as the dominant zooplankton taxon over time. These findings demonstrate that freshwater restoration restructures plankton communities through salinity-mediated physiological constraints and altered nutrient availability, with implications for ecosystem function and adaptive management in anthropogenically influenced deltas. Full article
Show Figures

Figure 1

16 pages, 3138 KB  
Article
Seasonal and Interannual Variations (2019–2023) in the Zooplankton Community and Its Size Composition in Funka Bay, Southwestern Hokkaido
by Haochen Zhang, Atsushi Ooki, Tetsuya Takatsu and Atsushi Yamaguchi
Oceans 2025, 6(3), 49; https://doi.org/10.3390/oceans6030049 - 4 Aug 2025
Viewed by 350
Abstract
Funka Bay, located in southwest Hokkaido, is a vital fishing area with a shallow depth of less than 100 m. Seasonal flows of the Oyashio and Tsugaru Warm Current affect the marine environment, leading to significant changes in zooplankton communities, yet limited information [...] Read more.
Funka Bay, located in southwest Hokkaido, is a vital fishing area with a shallow depth of less than 100 m. Seasonal flows of the Oyashio and Tsugaru Warm Current affect the marine environment, leading to significant changes in zooplankton communities, yet limited information is available on these variations. This study used ZooScan imaging to analyze seasonal and interannual changes in zooplankton abundance, biovolume, community structure, and size composition from 2019 to 2023. Water temperature was low in March–April and high in September–November, with chlorophyll a peaks occurring from February to April. Notable taxa such as Thaliacea, Noctiluca, and cladocerans were more common in the latter half of the year. Interannual variations included a decline in large cold-water copepods, Eucalanus bungii and Neocalanus spp., which were abundant in 2019 but decreased by 2023. Zooplankton abundance and biovolume showed synchronized seasonal changes, correlating with shifts in the Normalized Biovolume Size Spectra (NBSS) index, which measures size composition. Cluster analysis identified eight zooplankton communities, with Community A dominant from July to December across all years, while Community D was prevalent in early 2019 but was replaced in subsequent years. Community E emerged from March to April in 2021–2023. In 2019, large cold-water copepods were dominant, but from 2020 to 2023, appendicularians became the dominant group during the March–April period. The decline in large copepods is likely linked to marine heat waves, influencing yearly zooplankton community changes. Full article
Show Figures

Figure 1

19 pages, 6150 KB  
Article
Evaluation of Eutrophication in Small Reservoirs in Northern Agricultural Areas of China
by Qianyu Jing, Yang Shao, Xiyuan Bian, Minfang Sun, Zengfei Chen, Jiamin Han, Song Zhang, Shusheng Han and Haiming Qin
Diversity 2025, 17(8), 520; https://doi.org/10.3390/d17080520 - 26 Jul 2025
Viewed by 259
Abstract
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton [...] Read more.
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton were quantitatively collected from four small reservoirs in the Jiuxianshan agricultural area of Qufu, Shandong Province, in March and October 2023, respectively. The physical and chemical parameters in sampling points were determined simultaneously. Meanwhile, water samples were collected for nutrient salt analysis, and the eutrophication of water bodies in four reservoirs was evaluated using the comprehensive nutrient status index method. The research found that the species richness of zooplankton after farming (100 species) was significantly higher than that before farming (81 species) (p < 0.05). On the contrary, the dominant species of zooplankton after farming (7 species) were significantly fewer than those before farming (11 species). The estimation results of the standing stock of zooplankton indicated that the abundance and biomass of zooplankton after farming (92.72 ind./L, 0.13 mg/L) were significantly higher than those before farming (32.51 ind./L, 0.40 mg/L) (p < 0.05). Community similarity analysis based on zooplankton abundance (ANOSIM) indicated that there were significant differences in zooplankton communities before and after farming (R = 0.329, p = 0.001). The results of multi-dimensional non-metric sorting (NMDS) showed that the communities of zooplankton could be clearly divided into two: pre-farming communities and after farming communities. The Monte Carlo test results are as follows (p < 0.05). Transparency (Trans), pH, permanganate index (CODMn), electrical conductivity (Cond) and chlorophyll a (Chl-a) had significant effects on the community structure of zooplankton before farming. Total nitrogen (TN), total phosphorus (TP) and electrical conductivity (Cond) had significant effects on the community structure of zooplankton after farming. The co-linearity network analysis based on zooplankton abundance showed that the zooplankton community before farming was more stable than that after farming. The water evaluation results based on the comprehensive nutritional status index method indicated that the water conditions of the reservoirs before farming were mostly in a mild eutrophic state, while the water conditions of the reservoirs after farming were all in a moderate eutrophic state. The results show that the nutritional status of small reservoirs in agricultural areas is significantly affected by agricultural activities. The zooplankton communities in small reservoirs underwent significant changes driven by alterations in the reservoir water environment and nutritional status. Based on the main results of this study, we suggested that the use of fertilizers and pesticides should be appropriately reduced in future agricultural activities. In order to better protect the water quality and aquatic ecology of the water reservoirs in the agricultural area. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

17 pages, 3842 KB  
Article
The Influence of Summer Cyclonic Circulation in the Southern Gulf of California on Planktonic Copepod Communities
by Franco Antonio Rocha-Díaz, María Adela Monreal-Gómez, Erik Coria-Monter, David Alberto Salas-de-León, Elizabeth Durán-Campos and Sergio Cházaro-Olvera
J. Mar. Sci. Eng. 2025, 13(8), 1394; https://doi.org/10.3390/jmse13081394 - 23 Jul 2025
Viewed by 263
Abstract
This study evaluated how the summer circulation pattern in the Southern Gulf of California influences copepod communities. The evaluation was based on hydrographic data and zooplankton samples collected during a multidisciplinary research cruise conducted in June and July of 2019. The results revealed [...] Read more.
This study evaluated how the summer circulation pattern in the Southern Gulf of California influences copepod communities. The evaluation was based on hydrographic data and zooplankton samples collected during a multidisciplinary research cruise conducted in June and July of 2019. The results revealed the presence of a cyclonic circulation with a diameter of approximately 100 km, located near the entrance of the Gulf, affecting the upper 200 m layer. A total of 30 copepod species were identified, including 20 from the order Calanoida and 10 from Cyclopoida. The most abundant Calanoida species were Canthocalanus pauper, Clausocalanus furcatus, and Subeucalanus subcrassus, with respective densities of 2316.80, 1593.60, and 1584.64 ind m−3. The most abundant Cyclopoida species were Oithona setigera, Dioithona rigida, and Oncaea venusta, which had densities of 963.44, 290.56, and 235.52 ind m−3, respectively. The horizontal distribution of these species showed variations influenced by the cyclonic circulation. Specifically, low abundance values were observed at the center of cyclonic circulation, while higher values were found at its periphery. This pattern was consistent among the dominant species, indicating that they do not benefit from the cold subsurface waters induced by circulation. In fact, the distribution of some species was higher in a band of warm water located in the eastern portion of the study area. Overall, our findings shed light on how the summer cyclonic circulation in the Southern Gulf of California affects the copepod community, an aspect that has not been previously explored. This research enhances our understanding of the processes influencing this group of organisms in a highly dynamic environment. Full article
(This article belongs to the Special Issue Mesozooplankton Ecology in Marine Environments)
Show Figures

Figure 1

15 pages, 11182 KB  
Article
A New Holoplanktonic Nudibranch (Nudibranchia: Phylliroidae) from the Central Mexican Pacific
by Jeimy D. Santiago-Valentín, Eric Bautista-Guerrero, Eva R. Kozak, Gloria Pelayo-Martínez and Carmen Franco-Gordo
Diversity 2025, 17(7), 479; https://doi.org/10.3390/d17070479 - 11 Jul 2025
Viewed by 1511
Abstract
Pelagic nudibranchs exemplify evolutionary convergences towards streamlined, transparent body forms adapted for life in the planktonic environment. Here, we describe a new genera and species, designated as Pleuropyge melaquensis gen. et sp. nov. This species belongs to the family Phylliroidae and is distinguished [...] Read more.
Pelagic nudibranchs exemplify evolutionary convergences towards streamlined, transparent body forms adapted for life in the planktonic environment. Here, we describe a new genera and species, designated as Pleuropyge melaquensis gen. et sp. nov. This species belongs to the family Phylliroidae and is distinguished by key diagnostic characters, including a laterally positioned anus approximately one-third of the body length from the head, the absence of a cephalic disc, and an anterior hepatic caecum that is longer than the intestine. The description of P. melaquensis contributes to the classification of a third genus and a fourth species within the Phylliroidae family. This study offers novel insights into the functional and structural traits that have enabled nudibranchs to transition from benthic to pelagic environments. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

16 pages, 2685 KB  
Article
Spatial–Seasonal Shifts in Phytoplankton and Zooplankton Community Structure Within a Subtropical Plateau Lake: Interplay with Environmental Drivers During Rainy and Dry Seasons
by Chengjie Yin, Li Gong, Jiaojiao Yang, Yalan Yang and Longgen Guo
Fishes 2025, 10(7), 343; https://doi.org/10.3390/fishes10070343 - 11 Jul 2025
Viewed by 337
Abstract
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the [...] Read more.
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the alterations in the phytoplankton and zooplankton community structure across different geographical regions (southern, central, and northern) and seasonal periods (rainy and dry) in Erhai lake, located in a subtropical plateau in China. The results indicated that the average values of total nitrogen (TN), total phosphorus (TP), chlorophyll-a (Chla), pH, and conductivity are significantly higher during the rainy season in comparison to the dry season. Furthermore, during the rainy season, there were significant differences in the concentrations of TN, TP, and Chla among the three designated water areas. Notable differences were also observed in the distribution of Microcystis, the density of Cladocera and copepods, and the biomass of copepods across the three regions during this season. Conversely, in the dry season, only the biomass of Cladocera exhibited significant variation among the three water areas. The redundancy analysis (RDA) and variance partitioning analysis demonstrated that the distribution of plankton groups (Cyanophyta, Cryptophyta, and Cladocera) is significantly associated with TN, Secchi depth (SD), and Chla during the rainy season, whereas it is significantly correlated with TP and SD during the dry season. These findings underscore the critical influence of environmental factors, shaped by rainfall patterns, in driving these ecological changes. In the context of the early stages of eutrophication in Lake Erhai, it is essential to ascertain the spatial distribution of water quality parameters, as well as phytoplankton and zooplankton density and biomass, during both the rainy and dry seasons. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

17 pages, 29099 KB  
Article
Impacts of Continuous Damming on Zooplankton Functional Diversity in Karst Rivers of Southwest China: Different Hydrological Periods and Implications for Karst Reservoir Management
by Xiaochuan Song, Qiuhua Li, Yue Long, Jingze Zhang, Heng Wang, Bo Yang and Jing Xiao
Diversity 2025, 17(7), 478; https://doi.org/10.3390/d17070478 - 10 Jul 2025
Viewed by 296
Abstract
Continuous damming in karst rivers fragmented the longitudinal structure of river systems, disrupting plankton habitats, limiting dispersal, and reducing biodiversity. This study examined variations in zooplankton functional diversity in a dammed river system during dry and wet seasons. Sampling across both seasons yielded [...] Read more.
Continuous damming in karst rivers fragmented the longitudinal structure of river systems, disrupting plankton habitats, limiting dispersal, and reducing biodiversity. This study examined variations in zooplankton functional diversity in a dammed river system during dry and wet seasons. Sampling across both seasons yielded 44 samples, with 64 zooplankton taxa categorized into seven functional groups based on their traits. Functional diversity indices were calculated. Results revealed significant differences in nutrient concentrations between upstream and downstream sections, particularly during the dry season (R2 = 0.11, p < 0.01). Zooplankton functional diversity decreased from upstream to downstream, with more pronounced differences in the dry season (R2 = 0.94, p < 0.05), driven by reduced dispersal stochasticity (βBC close to −1). Continuous damming primarily affected smaller zooplankton, such as rotifers, while dissolved oxygen, water temperature, and pH influenced distribution patterns related to habitat depth, breeding season, life span, and reproduction. These findings underscored the impact of damming on zooplankton functional diversity and informed dam management strategies for biodiversity conservation. Full article
Show Figures

Figure 1

20 pages, 2942 KB  
Article
Zooplankton Community Responses to Eutrophication and TOC: Network Clustering in Regionally Similar Reservoirs
by Yerim Choi, Hye-Ji Oh, Geun-Hyeok Hong, Dae-Hee Lee, Jeong-Hui Kim, Sang-Hyeon Park, Jung-Ho Yun and Kwang-Hyeon Chang
Water 2025, 17(14), 2051; https://doi.org/10.3390/w17142051 - 9 Jul 2025
Viewed by 345
Abstract
This study analyzed the relationship between zooplankton communities and water quality characteristics, with a focus on total organic carbon (TOC), in 22 reservoirs within the Geum River basin that share similar climatic conditions but exhibit varying levels of pollution. Across all reservoirs, zooplankton [...] Read more.
This study analyzed the relationship between zooplankton communities and water quality characteristics, with a focus on total organic carbon (TOC), in 22 reservoirs within the Geum River basin that share similar climatic conditions but exhibit varying levels of pollution. Across all reservoirs, zooplankton community structures showed the highest correlations with TOC, suspended solids (SS), chlorophyll-a (Chl-a), and Secchi depth (SD), with stronger associations observed for rotifers and cladocerans compared to copepods. The classification of zooplankton community composition patterns, followed by an analysis of their associations with TOC concentrations, revealed relatively distinct differences between high-TOC and low-TOC reservoirs, indicating that TOC functions as a key determinant of community composition. Meanwhile, network analysis based on overall water quality characteristics indicated that patterns of water quality similarity among zooplankton-based communities differed somewhat from those based solely on TOC concentrations, suggesting that TOC may exert an independent influence on zooplankton community structure. In high-TOC reservoirs, typical eutrophic characteristics—such as elevated chlorophyll-a, total phosphorus, and suspended solids, along with reduced water transparency—were observed, accompanied by higher zooplankton abundance and a greater proportion of rotifers within the community. In contrast, low-TOC reservoirs, despite exhibiting no marked differences in other water quality variables, showed higher diversity of cladocerans alongside rotifers, further supporting the independent role of TOC in shaping zooplankton community structures. These findings highlight TOC not only as a general indicator of pollution but also as an ecologically significant factor influencing zooplankton community composition and carbon dynamics in reservoir ecosystems. They suggest that TOC should be considered a key variable in future assessments and management of lentic ecosystems. Full article
Show Figures

Figure 1

16 pages, 2299 KB  
Review
Intestinal Microeukaryotes in Fish: A Concise Review of an Underexplored Component of the Microbiota
by Jesús Salvador Olivier Guirado-Flores, Estefanía Garibay-Valdez, Diana Medina-Félix, Francisco Vargas-Albores, Luis Rafael Martínez-Córdova, Yuniel Mendez-Martínez and Marcel Martínez-Porchas
Microbiol. Res. 2025, 16(7), 158; https://doi.org/10.3390/microbiolres16070158 - 8 Jul 2025
Viewed by 528
Abstract
The intestinal microbiota of fish is predominantly composed of prokaryotic microorganisms, with research historically focused on bacteria. In contrast, the role of microeukaryotic organisms in the fish gut remains largely unexplored. This review synthesizes current knowledge on the diversity, ecology, and potential functions [...] Read more.
The intestinal microbiota of fish is predominantly composed of prokaryotic microorganisms, with research historically focused on bacteria. In contrast, the role of microeukaryotic organisms in the fish gut remains largely unexplored. This review synthesizes current knowledge on the diversity, ecology, and potential functions of intestinal microeukaryotes, particularly fungi and protozoans, in teleost fish. Fungi, especially Ascomycota and Basidiomycota phyla members, are consistently identified across species and may contribute to digestion, immune modulation, and microbial homeostasis. Protists, though often viewed as pathogens, also exhibit potential commensal or immunoregulatory roles, including the modulation of bacterial communities through grazing. Other eukaryotic taxa, including metazoan parasites, microalgae, and zooplankton, are commonly found as transient or diet-derived members of the gut ecosystem. While many of these organisms remain poorly characterized, emerging evidence suggests they may play essential roles in host physiology and microbial balance. The review highlights the need for improved detection methodologies, functional studies using gnotobiotic and in vitro models, and multi-kingdom approaches to uncover fish gut microeukaryotes’ ecological and biotechnological potential. Full article
Show Figures

Figure 1

Back to TopTop