Next-Generation Sequencing and Proteomics Research for Retinal Diseases

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Molecular and Translational Medicine".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 1354

Special Issue Editor


E-Mail Website
Guest Editor
Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MA, USA
Interests: age-related macular degeneration; inherited retinal diseases; gene regulation; quantitative trait loci; multi-omics

Special Issue Information

Dear Colleagues,

The retina is considered our window to the outside world. It captures, integrates, and processes visual information. The dysfunction or death of retinal photoreceptors is the major cause of vision loss, leading to several retinal diseases including age-related macular degeneration (AMD), glaucoma, and retinitis pigmentosa (RP). In recent years, Next-Generation Sequencing (NGS) and proteomics technologies have enabled various diseases to be characterized at the molecular level to identify new targets and biomarkers to monitor disease progression and treatment efficacy. The analysis of several retinal diseases using NGS and proteomics methods represents a unique opportunity to understand the pathophysiological mechanisms of such diseases and to develop new therapeutic approaches. This Biomedicines Special Issue invites contributions dealing with the identification and characterization of new genes and proteins, and recent advances in the discovery and development of methods in NGS, proteomics, and translation, and their clinical application to retinal diseases. This Special Issue also welcomes articles on transcriptomics research on retinal disease. 

Dr. Jayshree Advani
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genomics
  • proteomics
  • biomarker
  • variant interpretation
  • single-molecule sequencing
  • epigenome
  • retinal degeneration
  • genetics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2660 KiB  
Article
Optimised, Broad NGS Panel for Inherited Eye Diseases to Diagnose 1000 Patients in Poland
by Ewa Matczyńska, Marta Beć-Gajowniczek, Larysa Sivitskaya, Elżbieta Gregorczyk, Przemysław Łyszkiewicz, Robert Szymańczak, Maria Jędrzejowska, Edward Wylęgała, Maciej R. Krawczyński, Sławomir Teper and Anna Boguszewska-Chachulska
Biomedicines 2024, 12(6), 1355; https://doi.org/10.3390/biomedicines12061355 - 18 Jun 2024
Cited by 1 | Viewed by 941
Abstract
Advances in gene therapy and genome editing give hope that new treatments will soon be available for inherited eye diseases that together affect a significant proportion of the adult population. New solutions are needed to make genetic diagnosis fast and affordable. This is [...] Read more.
Advances in gene therapy and genome editing give hope that new treatments will soon be available for inherited eye diseases that together affect a significant proportion of the adult population. New solutions are needed to make genetic diagnosis fast and affordable. This is the first study of such a large group of patients with inherited retinal dystrophies (IRD) and inherited optic neuropathies (ION) in the Polish population. It is based on four years of diagnostic analysis using a broad, targeted NGS approach. The results include the most common pathogenic variants, as well as 91 novel causative variants, including frameshifts in the cumbersome RPGR ORF15 region. The high frequency of the ABCA4 complex haplotype p.(Leu541Pro;Ala1038Val) was confirmed. Additionally, a deletion of exons 22–24 in USH2A, probably specific to the Polish population, was uncovered as the most frequent copy number variation. The diagnostic yield of the broad NGS panel reached 64.3% and is comparable to the results reported for genetic studies of IRD and ION performed for other populations with more extensive WES or WGS methods. A combined approach to identify genetic causes of all known diseases manifesting in the posterior eye segment appears to be the optimal choice given the currently available treatment options and advanced clinical trials. Full article
Show Figures

Figure 1

Back to TopTop