Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes
Abstract
:1. Introduction
2. Results and Discussion
T/K | No. | m/mg | Q/J | ∆rHmθ/kJ·mol−1 | ln k | |
---|---|---|---|---|---|---|
298.15 | Nano | 1 | 1.504 | 2.778 | −264.707 | −5.544 |
2 | 1.494 | 2.746 | −263.031 | −5.565 | ||
3 | 1.494 | 2.708 | −259.343 | −5.550 | ||
Bulk | 1.496 | 2.322 | −223.503 | −6.153 | ||
303.15 | Nano | 1 | 1.503 | 2.511 | −240.575 | −5.494 |
2 | 1.501 | 2.501 | −239.914 | −5.519 | ||
3 | 1.496 | 2.485 | −239.198 | −5.511 | ||
Bulk | 1.500 | 2.289 | −213.421 | −5.779 | ||
318.15 | Nano | 1 | 1.507 | 2.078 | −198.516 | −5.200 |
2 | 1.503 | 2.066 | −197.949 | −5.530 | ||
3 | 1.499 | 2.069 | −198.719 | −5.418 | ||
Bulk | 1.503 | 1.808 | −173.178 | −5.685 |
Reaction System | T (K) | lnk | ΔG≠θ (kJ·mol−1) | Ea (kJ·mol−1) | ΔH≠θ (kJ·mol−1) | ΔS≠θ (J·K−1·mol−1) |
---|---|---|---|---|---|---|
Cu2O Nanocubes | 298.15 | −5.553 | 86.785 | 6.698 | 4.134 | 277.214 |
303.15 | −5.508 | 88.169 | ||||
318.15 | −5.383 | 92.323 |
T/K | 298.15 | 303.15 | 318.15 |
---|---|---|---|
HS (J·m−2) | 24.874 | 16.611 | 15.998 |
GS (J·m−2) | 0.943 | 0.433 | 0.507 |
SS (J·m−2·K−1) | 0.080 | 0.053 | 0.049 |
3. Experimental Section
4. Methodology
4.1. Establishment of Chemical Reaction Kinetic Models for Nanocubes
4.2. Acquisition of Dynamic Parameters of Cu2O Nanocubes Reacting with HNO3
4.3. Theoretical Derivation of Specific Surface Energies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhou, Z.Y.; Tian, N.; Li, J.T.; Broadwell, I.; Sun, S.G. Nanomaterials of High Surface Energy with Exceptional Properties in Catalysis and Energy Storage. Chem. Soc. Rev. 2011, 40, 4167–4185. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Q.; Wang, X.; Jiang, Z.; Xie, Z.; Zheng, L. High-Energy-Surface Engineered Metal Oxide Micro and Nanocrystallites and Their Applications. Account. Chem. Res. 2013, 47, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.Q.; Gao, B.J.; Gao, J.F. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems. J. Colloid Interface Sci. 1997, 191, 81–85. [Google Scholar]
- Du, J.; Zhao, R.; Xue, Y.Q. Effects of Sizes of Nano-copper Oxide on the Equilibrium Constant and Thermodynamic Properties for the Reaction in Nanosystem. J. Chem. Thermodyn. 2012, 45, 48–52. [Google Scholar] [CrossRef]
- Du, J.P.; Wang, H.Y.; Zhao, R.H. Size-dependent Thermodynamic Properties and Equilibrium Constant of Chemical Reaction in Nanosystem: An Experimental Study (II). J. Chem. Thermodyn. 2013, 65, 29–33. [Google Scholar] [CrossRef]
- Mazeina, L.; Deore, S.; Navrotsky, A. Energetics of Bulk and Nano-akaganeite, β-FeOOH: Enthalpy of Formation, Surface Enthalpy, and Enthalpy of Water Adsorption. Chem. Mater. 2006, 18, 1830–1838. [Google Scholar] [CrossRef]
- Mazeina, L.; Deore, S.; Navrotsky, A. Enthalpy of Water Adsorption and Surface Enthalpy of Goethite (α-FeOOH) and Hematite (α-Fe2O3). Chem. Mater. 2007, 19, 825–833. [Google Scholar] [CrossRef]
- Li, X.X.; Huang, Z.Y.; Zhong, L.Y.; Wang, T.H.; Tan, X.C. Size Effect on Reaction Kinetics and Surface Thermodynamic Properties of Nano-octahedral Cadmium Molybdate. Chin. Sci. Bull. 2014, 59, 2490–2498. [Google Scholar] [CrossRef]
- Li, X.X.; Fan, G.C.; Huang, Z.Y. Synthesis and Surface Thermodynamic Functions of CaMoO4 Nanocakes. Entropy 2015, 17, 2741–2748. [Google Scholar] [CrossRef]
- Fernández-Cañoto, D.; Larese, J.Z. Thermodynamic and Modeling st3udy of Thin n-Heptane Films Adsorbed on Magnesium Oxide (100) Surfaces. J. Phys. Chem. C 2014, 118, 3451–3458. [Google Scholar] [CrossRef]
- Hu, L.H.; Peng, Q.; Li, Y. Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. J. Am. Chem. Soc. 2008, 130, 16136–16137. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.Z.; Xue, Y.Q.; Cui, Z.X.; Wang, Y. Thermodynamics of Nanoadsorption FROM Solution: Theoretical and Experimental Research. J. Chem. Thermodyn. 2015, 80, 112–118. [Google Scholar] [CrossRef]
- Cui, Z.X.; Zhao, M.Z.; Lai, W.P.; Xue, Y.Q. Thermodynamics of Size Effect on Phase Transition Temperatures of Dispersed Phases. J. Phys. Chem. C 2011, 115, 22796–22803. [Google Scholar] [CrossRef]
- Yang, Y.F.; Xue, Y.Q.; Cui, Z.X.; Zhao, M.Z. Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment. Electrochimica Acta 2014, 136, 565–571. [Google Scholar]
- Lipsett, S.G.; Johnson, F.M.; Maas, O. The Surface Energy and the Heat of Solution of Solid Sodium Chloride. J. Am. Chem. Soc. 1927, 49, 925–943. [Google Scholar] [CrossRef]
- Vargha-Butler, E.I.; Zubovits, T.K.; Hamza, H.A.; Neumann, A.W. Surface Tension Effects in the Sedimentation of Polymer Particles in Various Liquid Mixtures. J. Dispers. Sci. Technol. 1985, 6, 357–379. [Google Scholar] [CrossRef]
- Barnes, R.S.; Redding, G.B. The Behavior of Helium Atoms Injected into Beryllium. J. Nucl. Energy 1959, 10, 32–35. [Google Scholar]
- Maiya, P.S.; Blakely, J.M. Surface Self-Diffusion and Surface Energy of Nickel. J. Appl. Phys. 1967, 38, 698–704. [Google Scholar] [CrossRef]
- Kendall, K.; Alford, N.M.N.; Birchal, J.D. A New Method for Measuring the Surface Energy of Solids. Nature 1987, 325, 794–796. [Google Scholar] [CrossRef]
- Chaudhury, M.K.; Whitesides, G.M. Correlation between Surface Free Energy and Surface Constitution. Science 1992, 255, 1230–1232. Available online: http://www.lehigh.edu/mkc4/public/www-data/our%20papers/Chaudhury_surface%20energy_science.pdf (accessed on 28 July 2015). [Google Scholar] [CrossRef] [PubMed]
- Vermaak, J.S.; Mays, C.W.; Kuhlmann-Wilsdorf, D. On Surface Stress and Surface Tension. I. Theoretical Considerations. Surf. Sci. 1968, 12, 128–133. [Google Scholar] [CrossRef]
- Rice, C.M.; Eppelsheimer, D.S.; McNeil, M.B. Surface Tension of Solid Tin. J. Appl. Phys. 1966, 37, 4766–4768. [Google Scholar] [CrossRef]
- Kumikov, V.; Khokonov, K.B. On the Measurement of Surface Free Energy and Surface Tension of Solid Metals. J. Appl. Phys. 1983, 54, 1346–1350. [Google Scholar] [CrossRef]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and Energetics of Stoichiometric TiO2 Anatase Surfaces. Phys. Rev. B 2001, 63, 155409. [Google Scholar] [CrossRef]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Erratum: Structure and Energetics of Stoichiometric TiO2 Anatase Surfaces. Phys. Rev. B 2002, 65, 119901. [Google Scholar] [CrossRef]
- McHale, J.M.; Auroux, A.; Perrotta, A.J.; Navrotsky, A. Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Alumina. Science 1997, 277, 788–791. [Google Scholar] [CrossRef]
- Slater, B.; Catlow, C.R.A.; Gay, D.H.; Williams, D.E.; Dusastre, V. Study of Surface Segregation of Antimony on SnO2 Surfaces by Computer Simulation Techniques. J. Phys. Chem. B 1999, 103, 10644–10650. [Google Scholar] [CrossRef]
- Groß, A. The Virtual Chemistry Lab for Reactions at Surfaces: Is it Possible? Will it be Useful? Surf. Sci. 2002, 500, 347–367. [Google Scholar] [CrossRef]
- Jardine, A.P.; Dworski, S.; Fouquet, P.; Alexandrowicz, G.; Riley, D.J.; Lee, G.Y.; Allison, W. Ultrahigh-Resolution Spin-echo Measurement of Surface Potential Energy Landscapes. Science 2004, 304, 1790–1793. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Gao, F.; Lu, Q. Morphology Effect on Antibacterial Activity of Cuprous Oxide. Chem. Commun. 2009, 9, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties. Adv. Funct. Mater. 2007, 17, 2766–2771. [Google Scholar] [CrossRef]
- Huang, W.C.; Lyu, L.M.; Yang, Y.C.; Huang, M.H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2011, 134, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Rej, S.; Hsu, S.C. Facet-Dependent Properties of Polyhedral Nanocrystals. Chem. Commun. 2014, 50, 1634–1644. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luan, D.; Li, C.M.; Su, F.; Madhavi, S.; Boey, F.Y.C.; Lou, X.W. Engineering Nonspherical Hollow Structures with Complex Interiors by Template-Engaged Redox Etching. J. Am. Chem. Soc. 2010, 132, 16271–16277. [Google Scholar] [CrossRef] [PubMed]
- Kondo, J. Cu2O as a Photocatalyst for Overall Water Splitting under Visible Light Irradiation. Chem. Commun. 1998, 3, 357–358. [Google Scholar]
- Paracchino, A.; Laporte, V.; Sivula, K.; Grätze, M.; Thimsen, E. Highly Active Oxide Photocathode for Photoelectrochemical Water Reduction. Nat. Mater. 2011, 10, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Leng, M.; Liu, M.; Zhang, Y.; Wang, Z.; Yu, C.; Yang, X.; Wang, C. Polyhedral 50-Facet Cu2O Microcrystals Partially Enclosed by {311} High-Index Planes: Synthesis and Enhanced Catalytic CO Oxidation Activity. J. Am. Chem. Soc. 2010, 132, 17084–17087. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, C.; Zheng, B.; Jiang, Y.; Zhang, L.; Xie, Z.; Zheng, L. Controlled Synthesis of Concave Cu2O Microcrystals Enclosed by {hhl} High-Index Facets and Enhanced Catalytic Activity. J. Mater. Chem. A 2013, 1, 282–287. [Google Scholar] [CrossRef]
- Sun, S.; Yang, Z. Cu2O-templated Strategy for Synthesis of Definable Hollow Architectures. Chem. Commun. 2014, 50, 7403–7415. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.C.; Chen, P.C.; Tsai, M.C.; Chen, T.T.; Yang, M.H.; Chiu, H.T.; Lee, C.Y. Large-Scale Synthesis of Uniform Cu2O Nanocubes with Tunable Sizes by In-situ Nucleation. CrystEngComm 2013, 15, 2363–2366. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Chanda, K.; Chu, Y.T.; Chiu, C.Y.; Huang, M.H. Direct Formation of Small Cu2O Nanocubes, Octahedra, and Octapods for Efficient Synthesis of Triazoles. Nanoscale 2014, 6, 8704–8709. [Google Scholar] [CrossRef] [PubMed]
- Rychlý, R.; Pekarek, V. The Use of Potassium Chloride and Tris (Hydroxymethyl) Aminomethane as Standard Substances for Solution Calorimetry. J. Chem. Thermodyn. 1977, 9, 391–396. [Google Scholar] [CrossRef]
- Xue, Y.Q. Effects of Particle Size on Phase Transitions and Reactions of Nanosystems. Ph. D Thesis, Taiyuan University of Technology, Taiyuan, Shanxi, China, 2005. [Google Scholar]
- Hu, R.Z.; Zhao, Q.F.; Gao, H.X. Fundamentals and Application of Calorimetry; Science Press: Beijing, China, 2011. [Google Scholar]
- Radha, A.V.; Bomati-Miguel, O.; Ushakov, S.V.; Navrotsky, A.; Tartaj, P. Surface Enthalpy, Enthalpy of Water Adsorption, and Phase Stability in Nanocrystalline Monoclinic Zirconia. J. Am. Ceram. Soc. 2009, 92, 133–140. [Google Scholar] [CrossRef]
- Fu, X.C.; Shen, W.X.; Yao, T.Y.; Hou, W.H. Physical Chemistry, 5th ed.; Higher Education Press: Beijing, China, 2006. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tang, H.; Lu, X.; Lin, S.; Shi, L.; Huang, Z. Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes. Entropy 2015, 17, 5437-5449. https://doi.org/10.3390/e17085437
Li X, Tang H, Lu X, Lin S, Shi L, Huang Z. Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes. Entropy. 2015; 17(8):5437-5449. https://doi.org/10.3390/e17085437
Chicago/Turabian StyleLi, Xingxing, Huanfeng Tang, Xianrui Lu, Shi Lin, Lili Shi, and Zaiyin Huang. 2015. "Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes" Entropy 17, no. 8: 5437-5449. https://doi.org/10.3390/e17085437
APA StyleLi, X., Tang, H., Lu, X., Lin, S., Shi, L., & Huang, Z. (2015). Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes. Entropy, 17(8), 5437-5449. https://doi.org/10.3390/e17085437