Symmetries and Geometrical Properties of Dynamical Fluctuations in Molecular Dynamics
Abstract
:1. Introduction
1.1. Motivation
1.2. Outline
2. Definitions and Preliminaries
2.1. Model: Conservative Forces
2.2. Energy Flow into the Heat Bath
2.3. Model: Non-Conservative Forces
2.4. Path Measures
2.5. Time-Reversal Symmetry and Relation to Heat Flow
3. Absence of Dissipation in Conditioned Ensembles of Trajectories
3.1. Parity Symmetry
3.2. Examples
3.3. Currents and Fluxes
3.4. Ensembles and PT-Symmetry
3.5. Observable Consequences
3.6. Large Deviation Principle and Auxiliary Process
3.7. Example System: Comparisons between the Auxiliary Process and Other Physical Ensembles
3.8. Formulae for Heat Flow in Terms of Path Probabilities
3.9. Outlook
4. Orthogonality of Forces and Currents in non-Equilibrium Systems
4.1. Overdamped Diffusions
4.1.1. Model
4.1.2. Time Reversal and Heat Transfer
4.1.3. Splitting of the Force According to Time-Reversal
4.1.4. Large Deviation Principle for Many Copies of the System
4.1.5. Physical Significance and Relation to Molecular Dynamics
4.2. Extension to Systems with Finite Damping: (pre)-GENERIC Splitting
4.2.1. Adjoint Process
4.2.2. Large Deviation Principle
4.3. Splitting the Currents and Forces into Equilibrium and non-Equilibrium Components
4.3.1. Dual Process
4.3.2. Formulae for Heat Currents Based on Sample Paths
4.3.3. Large Deviation Principles
4.4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Constructions of Adjoint Processes
Appendix A.1. Overdamped Case
Appendix A.2. GENERIC Splitting
Appendix A.3. Dual Process
Appendix A.3.1. Construction of the Dual Process
Appendix A.3.2. Orthogonality of Currents and Forces
References
- Touchette, H. The large deviation approach to statistical mechanics. Phys. Rep. 2009, 478, 1–69. [Google Scholar] [CrossRef]
- Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Allen, M.P.; Tildelsey, D.J. Computer Simulation of Liquids; OUP: Oxford, UK, 1987. [Google Scholar]
- Hagan, M.F.; Baskaran, A. Emergent self-organization in active materials. Curr. Opin. Cell Biol. 2016, 38, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Nikola, N.; Solon, A.P.; Kafri, Y.; Kardar, M.; Tailleur, J.; Voituriez, R. Active Particles with Soft and Curved Walls: Equation of State, Ratchets, and Instabilities. Phys. Rev. Lett. 2016, 117, 098001. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ferrero, E.E.; Puosi, F.; Barrat, J.L.; Martens, K. Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition. Phys. Rev. Lett. 2016, 116, 065501. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, M.; Colombo, J.; Barbosa, L.V.; Del Gado, E. Elastically driven intermittent microscopic dynamics in soft solids. Nat. Commun. 2017, 8, 15846. [Google Scholar] [CrossRef] [PubMed]
- Chodera, J.D.; Singhal, N.; Pande, V.S.; Dill, K.A.; Swope, W.C. Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J. Chem. Phys. 2007, 126, 155101. [Google Scholar] [CrossRef] [PubMed]
- Chodera, J.D.; Noé, F. Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 2014, 25, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.L.; Evans, R.M.L. Absence of dissipation in trajectory ensembles biased by currents. J. Stat. Mech. 2016, 2016, 093305. [Google Scholar] [CrossRef]
- Pressé, S.; Ghosh, K.; Lee, J.; Dill, K.A. Principles of maximum entropy and maximum caliber in statistical physics. Rev. Mod. Phys. 2013, 85, 1115–1141. [Google Scholar] [CrossRef]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Lecomte, V.; Cugliandolo, L.F. Rules of calculus in the path integral representation of white noise Langevin equations: The Onsager-Machlup approach. arXiv, 2017; arXiv:1704.03501. [Google Scholar]
- Evans, R.M.L. Rules for transition rates in nonequilibrium steady states. Phys. Rev. Lett. 2004, 92, 150601. [Google Scholar] [CrossRef] [PubMed]
- Chetrite, R.; Touchette, H. Nonequilibrium Markov Processes Conditioned on Large Deviations. Ann. Henri Poincare 2015, 16, 2005–2057. [Google Scholar] [CrossRef] [Green Version]
- Maes, C.; Netocny, K. Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states. EPL 2008, 82, 30003. [Google Scholar] [CrossRef]
- Jack, R.L.; Sollich, P. Large Deviations and Ensembles of Trajectories in Stochastic Models. Prog. Theor. Phys. Suppl. 2010, 184, 304–317. [Google Scholar] [CrossRef]
- Popkov, V.; Schütz, G.; Simon, D. ASEP on a ring conditioned on enhanced flux. J. Stat. Mech. 2010, 2010, P10007. [Google Scholar] [CrossRef]
- Nemoto, T.; Sasa, S.I. Thermodynamic formula for the cumulant generating function of time-averaged current. Phys. Rev. E 2011, 84, 061113. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.L.; Sollich, P. Effective interactions and large deviations in stochastic processes. Eur. Phys. J. Spec. Top. 2015, 224, 2351. [Google Scholar] [CrossRef]
- Chetrite, R.; Touchette, H. Variational and optimal control representations of conditioned and driven processes. J. Stat. Mech. 2015, 2015, P12001. [Google Scholar] [CrossRef]
- Tsobgni Nyawo, P.; Touchette, H. Large deviations of the current for driven periodic diffusions. Phys. Rev. E 2016, 94, 032101. [Google Scholar] [CrossRef] [PubMed]
- Speck, T.; Seifert, U. Extended fluctuation-dissipation theorem for soft matter in stationary flow. Phys. Rev. E 2009, 79, 040102. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.L.; Sollich, P. Large deviations of the dynamical activity in the East model: Analysing structure in biased trajectories. J. Phys. A 2014, 47, 015003. [Google Scholar] [CrossRef]
- Jack, R.L.; Thompson, I.R.; Sollich, P. Hyperuniformity and Phase Separation in Biased Ensembles of Trajectories for Diffusive Systems. Phys. Rev. Lett. 2015, 114, 060601. [Google Scholar] [CrossRef] [PubMed]
- Bertini, L.; De Sole, A.; Gabrielli, D.; Jona-Lasinio, G.; Landim, C. Macroscopic fluctuation theory. Rev. Mod. Phys. 2015, 87, 593–636. [Google Scholar] [CrossRef]
- Rey-Bellet, L.; Spiliopoulos, K. Improving the Convergence of Reversible Samplers. J. Stat. Phys. 2016, 164, 472–494. [Google Scholar] [CrossRef]
- Adams, S.; Dirr, N.; Peletier, M.; Zimmer, J. Large deviations and gradient flows. Philos. Trans. R. Soc. A 2013, 371, 20120341. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.L.; Zimmer, J. Geometrical interpretation of fluctuating hydrodynamics in diffusive systems. J. Phys. A 2014, 47, 485001. [Google Scholar] [CrossRef]
- Kaiser, M.; Jack, R.L.; Zimmer, J. Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance. J. Stat. Phys. 2017, 168, 259–287. [Google Scholar] [CrossRef]
- Kaiser, M.; Jack, R.L.; Zimmer, J. Canonical structure and orthogonality of forces and currents in irreversible Markov chains. arXiv, 2017; arXiv:1708.01453. [Google Scholar]
- De Carlo, L.; Gabrielli, D. Gibbsian Stationary Non-equilibrium States. J. Stat. Phys. 2017, 168, 1191–1222. [Google Scholar] [CrossRef]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620–6632. [Google Scholar] [CrossRef]
- Öttinger, H.C.; Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 1997, 56, 6633–6655. [Google Scholar] [CrossRef]
- Duong, M.H.; Peletier, M.A.; Zimmer, J. GENERIC formalism of a Vlasov–Fokker–Planck equation and connection to large-deviation principles. Nonlinearity 2013, 26, 2951. [Google Scholar] [CrossRef]
- Kraaij, R.; Lazarescu, A.; Peletier, M.A.; Maes, C. Deriving GENERIC from a generalized fluctuation symmetry. arXiv, 2017; arXiv:1706.10115. [Google Scholar]
- Leimkuhler, B.; Matthews, C. Molecular Dynamics: With Deterministic and Stochastic Numerical Methods; Springer: Berlin, Germany, 2015. [Google Scholar]
- Mielke, A.; Peletier, M.A.; Renger, D.R.M. On the Relation between Gradient Flows and the Large-Deviation Principle, with Applications to Markov Chains and Diffusion. Potential Anal. 2014, 41, 1293–1327. [Google Scholar] [CrossRef]
- Bertini, L.; Faggionato, A.; Gabrielli, D. From level 2.5 to level 2 large deviations for continuous time Markov chains. Markov Process Relat. Fields 2014, 20, 545–562. [Google Scholar]
- Bertini, L.; Faggionato, A.; Gabrielli, D. Large deviations of the empirical flow for continuous time Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 2015, 51, 867–900. [Google Scholar] [CrossRef]
- Gingrich, T.R.; Horowitz, J.M.; Perunov, N.; England, J.L. Dissipation Bounds All Steady-State Current Fluctuations. Phys. Rev. Lett. 2016, 116, 120601. [Google Scholar] [CrossRef] [PubMed]
- Pietzonka, P.; Barato, A.C.; Seifert, U. Universal bounds on current fluctuations. Phys. Rev. E 2016, 93, 052145. [Google Scholar] [CrossRef] [PubMed]
- Fathi, M.; Simon, M. The Gradient Flow Approach to Hydrodynamic Limits for the Simple Exclusion Process. In From Particle Systems to Partial Differential Equations III: Particle Systems and PDEs III, Braga, Portugal, December 2014; Gonçalves, P., Soares, A.J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 167–184. [Google Scholar]
- Maes, C.; Netocny, K.; Wynants, B. On and beyond Entropy Production: The Case of Markov Jump Processes. Markov Process Relat. Fields 2008, 14, 445. [Google Scholar]
- Maes, C. The Fluctuation Theorem as a Gibbs Property. J. Stat. Phys. 1999, 95, 367–392. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jack, R.L.; Kaiser, M.; Zimmer, J. Symmetries and Geometrical Properties of Dynamical Fluctuations in Molecular Dynamics. Entropy 2017, 19, 562. https://doi.org/10.3390/e19100562
Jack RL, Kaiser M, Zimmer J. Symmetries and Geometrical Properties of Dynamical Fluctuations in Molecular Dynamics. Entropy. 2017; 19(10):562. https://doi.org/10.3390/e19100562
Chicago/Turabian StyleJack, Robert L., Marcus Kaiser, and Johannes Zimmer. 2017. "Symmetries and Geometrical Properties of Dynamical Fluctuations in Molecular Dynamics" Entropy 19, no. 10: 562. https://doi.org/10.3390/e19100562
APA StyleJack, R. L., Kaiser, M., & Zimmer, J. (2017). Symmetries and Geometrical Properties of Dynamical Fluctuations in Molecular Dynamics. Entropy, 19(10), 562. https://doi.org/10.3390/e19100562