Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Entropy, Volume 19, Issue 10 (October 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The Kepler Space Telescope monitored the light (photometry) coming from approximately 150,000 stars [...] Read more.
View options order results:
result details:
Displaying articles 1-63
Export citation of selected articles as:
Open AccessArticle Detection of Causal Relations in Time Series Affected by Noise in Tokamaks Using Geodesic Distance on Gaussian Manifolds
Entropy 2017, 19(10), 569; https://doi.org/10.3390/e19100569
Received: 20 July 2017 / Revised: 20 October 2017 / Accepted: 20 October 2017 / Published: 24 October 2017
PDF Full-text (2245 KB) | HTML Full-text | XML Full-text
Abstract
Abstract: Modern experiments in Magnetic Confinement Nuclear Fusion can produce Gigabytes of data, mainly in form of time series. The acquired signals, composing massive databases, are typically affected by significant levels of noise. The interpretation of the time series can therefore become
[...] Read more.
Abstract: Modern experiments in Magnetic Confinement Nuclear Fusion can produce Gigabytes of data, mainly in form of time series. The acquired signals, composing massive databases, are typically affected by significant levels of noise. The interpretation of the time series can therefore become quite involved, particularly when tenuous causal relations have to be investigated. In the last years, synchronization experiments, to control potentially dangerous instabilities, have become a subject of intensive research. Their interpretation requires quite delicate causality analysis. In this paper, the approach of Information Geometry is applied to the problem of assessing the effectiveness of synchronization experiments on JET (Joint European Torus). In particular, the use of the Geodesic Distance on Gaussian Manifolds is shown to improve the results of advanced techniques such as Recurrent Plots and Complex Networks, when the noise level is not negligible. In cases affected by particularly high levels of noise, compromising the traditional treatments, the use of the Geodesic Distance on Gaussian Manifolds allows deriving quite encouraging results. In addition to consolidating conclusions previously quite uncertain, it has been demonstrated that the proposed approach permit to successfully analyze signals of discharges which were otherwise unusable, therefore salvaging the interpretation of those experiments. Full article
(This article belongs to the Special Issue Information Geometry II)
Figures

Figure 1

Open AccessArticle Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking
Entropy 2017, 19(10), 568; https://doi.org/10.3390/e19100568
Received: 18 September 2017 / Revised: 11 October 2017 / Accepted: 21 October 2017 / Published: 24 October 2017
Cited by 4 | PDF Full-text (917 KB) | HTML Full-text | XML Full-text
Abstract
Entropy measures have been extensively used to assess heart rate variability (HRV), a noninvasive marker of cardiovascular autonomic regulation. It is yet to be elucidated whether those entropy measures can sensitively respond to changes of autonomic balance and whether the responses, if there
[...] Read more.
Entropy measures have been extensively used to assess heart rate variability (HRV), a noninvasive marker of cardiovascular autonomic regulation. It is yet to be elucidated whether those entropy measures can sensitively respond to changes of autonomic balance and whether the responses, if there are any, are consistent across different entropy measures. Sixteen healthy subjects were enrolled in this study. Each subject undertook two 5-min ECG measurements, one in a resting seated position and another while walking on a treadmill at a regular speed of 5 km/h. For each subject, the two measurements were conducted in a randomized order and a 30-min rest was required between them. HRV time series were derived and were analyzed by eight entropy measures, i.e., approximate entropy (ApEn), corrected ApEn (cApEn), sample entropy (SampEn), fuzzy entropy without removing local trend (FuzzyEn-g), fuzzy entropy with local trend removal (FuzzyEn-l), permutation entropy (PermEn), conditional entropy (CE), and distribution entropy (DistEn). Compared to resting seated position, regular walking led to significantly reduced CE and DistEn (both p ≤ 0.006; Cohen’s d = 0.9 for CE, d = 1.7 for DistEn), and increased PermEn (p < 0.0001; d = 1.9), while all these changes disappeared after performing a linear detrend or a wavelet detrend (<~0.03 Hz) on HRV. In addition, cApEn, SampEn, FuzzyEn-g, and FuzzyEn-l showed significant decreases during regular walking after linear detrending (all p < 0.006; 0.8 < d < 1), while a significantly increased ApEn (p < 0.0001; d = 1.9) and a significantly reduced cApEn (p = 0.0006; d = 0.8) were observed after wavelet detrending. To conclude, multiple entropy analyses should be performed to assess HRV in order for objective results and caution should be paid when drawing conclusions based on observations from a single measure. Besides, results from different studies will not be comparable unless it is clearly stated whether data have been detrended and the methods used for detrending have been specified. Full article
Figures

Figure 1

Open AccessArticle Radially Excited AdS5 Black Holes in Einstein–Maxwell–Chern–Simons Theory
Entropy 2017, 19(10), 567; https://doi.org/10.3390/e19100567
Received: 12 September 2017 / Revised: 9 October 2017 / Accepted: 23 October 2017 / Published: 24 October 2017
PDF Full-text (492 KB) | HTML Full-text | XML Full-text
Abstract
In the large coupling regime of the 5-dimensional Einstein–Maxwell–Chern–Simons theory, charged and rotating cohomogeneity-1 black holes form sequences of extremal and non-extremal radially excited configurations. These asymptotically global Anti-de Sitter (AdS5) black holes form a discrete set of solutions, characterised by
[...] Read more.
In the large coupling regime of the 5-dimensional Einstein–Maxwell–Chern–Simons theory, charged and rotating cohomogeneity-1 black holes form sequences of extremal and non-extremal radially excited configurations. These asymptotically global Anti-de Sitter (AdS 5 ) black holes form a discrete set of solutions, characterised by the vanishing of the total angular momenta, or the horizon angular velocity. However, the solutions are not static. In this paper, we study the branch structure that contains these excited states, and its relation with the static Reissner–Nordström-AdS black hole. Thermodynamic properties of these solutions are considered, revealing that the branches with lower excitation number can become thermodynamically unstable beyond certain critical solutions that depend on the free parameters of the configuration. Full article
(This article belongs to the Special Issue Geometry in Thermodynamics II)
Figures

Figure 1

Open AccessArticle Biological Aging and Life Span Based on Entropy Stress via Organ and Mitochondrial Metabolic Loading
Entropy 2017, 19(10), 566; https://doi.org/10.3390/e19100566
Received: 7 July 2017 / Revised: 21 September 2017 / Accepted: 7 October 2017 / Published: 23 October 2017
Cited by 1 | PDF Full-text (5405 KB) | HTML Full-text | XML Full-text
Abstract
The energy for sustaining life is released through the oxidation of glucose, fats, and proteins. A part of the energy released within each cell is stored as chemical energy of Adenosine Tri-Phosphate molecules, which is essential for performing life-sustaining functions, while the remainder
[...] Read more.
The energy for sustaining life is released through the oxidation of glucose, fats, and proteins. A part of the energy released within each cell is stored as chemical energy of Adenosine Tri-Phosphate molecules, which is essential for performing life-sustaining functions, while the remainder is released as heat in order to maintain isothermal state of the body. Earlier literature introduced the availability concepts from thermodynamics, related the specific irreversibility and entropy generation rates to metabolic efficiency and energy release rate of organ k, computed whole body specific entropy generation rate of whole body at any given age as a sum of entropy generation within four vital organs Brain, Heart, Kidney, Liver (BHKL) with 5th organ being the rest of organs (R5) and estimated the life span using an upper limit on lifetime entropy generated per unit mass of body, σM,life. The organ entropy stress expressed in terms of lifetime specific entropy generated per unit mass of body organs (kJ/(K kg of organ k)) was used to rank organs and heart ranked highest while liver ranked lowest. The present work includes the effects of (1) two additional organs: adipose tissue (AT) and skeletal muscles (SM) which are of importance to athletes; (2) proportions of nutrients oxidized which affects blood temperature and metabolic efficiencies; (3) conversion of the entropy stress from organ/cellular level to mitochondrial level; and (4) use these parameters as metabolism-based biomarkers for quantifying the biological aging process in reaching the limit of σM,life. Based on the 7-organ model and Elia constants for organ metabolic rates for a male of 84 kg steady mass and using basic and derived allometric constants of organs, the lifetime energy expenditure is estimated to be 2725 MJ/kg body mass while lifetime entropy generated is 6050 kJ/(K kg body mass) with contributions of 190; 1835.0; 610; 290; 700; 1470 and 95 kJ/K contributed by AT-BHKL-SM-R7 to 1 kg body mass over life time. The corresponding life time entropy stresses of organs are: 1.2; 60.5; 110.5; 110.5; 50.5; 3.5; 3.0 MJ/K per kg organ mass. Thus, among vital organs highest stress is for heart and kidney and lowest stress is for liver. The 5-organ model (BHKL and R5) also shows similar ranking. Based on mitochondrial volume and 5-organ model, the entropy stresses of organs expressed in kJ/K per cm3 of Mito volume are: 12,670; 5465; 2855; 4730 kJ/cm3 of Mito for BHKL indicating brain to be highly stressed and liver to be least stressed. Thus, the organ entropy stress ranking based on unit volume of mitochondria within an organ (kJ/(K cm3 of Mito of organ k)) differs from entropy stress based on unit mass of organ. Based on metabolic loading, the brains of athletes already under extreme mitochondrial stress and facing reduced metabolic efficiency under concussion are subjected to more increased stress. In the absence of non-intrusive measurements for estimating organ-based metabolic rates which can serve as metabolism-based biomarkers for biological aging (BA) of whole body, alternate methods are suggested for estimating the biological aging rate. Full article
(This article belongs to the Section Thermodynamics)
Figures

Figure 1

Open AccessArticle Fluctuation of Information Entropy Measures in Cell Image
Entropy 2017, 19(10), 565; https://doi.org/10.3390/e19100565
Received: 31 July 2017 / Revised: 10 September 2017 / Accepted: 18 October 2017 / Published: 23 October 2017
PDF Full-text (2548 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A simple, label-free cytometry technique is introduced. It is based on the analysis of the fluctuation of image Gray Level Information Entropy (GLIE) which is shown to reflect intracellular biophysical properties like generalized entropy. In this study, the analytical relations between cellular thermodynamic
[...] Read more.
A simple, label-free cytometry technique is introduced. It is based on the analysis of the fluctuation of image Gray Level Information Entropy (GLIE) which is shown to reflect intracellular biophysical properties like generalized entropy. In this study, the analytical relations between cellular thermodynamic generalized entropy and diffusivity and GLIE fluctuation measures are explored for the first time. The standard deviation (SD) of GLIE is shown by experiments, simulation and theoretical analysis to be indifferent to microscope system “noise”. Then, the ability of GLIE fluctuation measures to reflect basic cellular entropy conditions of early death and malignancy is demonstrated in a cell model of human, healthy-donor lymphocytes, malignant Jurkat cells, as well as dead lymphocytes and Jurkat cells. Utilization of GLIE-based fluctuation measures seems to have the advantage of displaying biophysical characterization of the tested cells, like diffusivity and entropy, in a novel, unique, simple and illustrative way. Full article
Figures

Figure 1

Open AccessArticle Prior Elicitation, Assessment and Inference with a Dirichlet Prior
Entropy 2017, 19(10), 564; https://doi.org/10.3390/e19100564
Received: 29 July 2017 / Revised: 12 October 2017 / Accepted: 20 October 2017 / Published: 22 October 2017
Cited by 1 | PDF Full-text (297 KB) | HTML Full-text | XML Full-text
Abstract
Methods are developed for eliciting a Dirichlet prior based upon stating bounds on the individual probabilities that hold with high prior probability. This approach to selecting a prior is applied to a contingency table problem where it is demonstrated how to assess the
[...] Read more.
Methods are developed for eliciting a Dirichlet prior based upon stating bounds on the individual probabilities that hold with high prior probability. This approach to selecting a prior is applied to a contingency table problem where it is demonstrated how to assess the prior with respect to the bias it induces as well as how to check for prior-data conflict. It is shown that the assessment of a hypothesis via relative belief can easily take into account what it means for the falsity of the hypothesis to correspond to a difference of practical importance and provide evidence in favor of a hypothesis. Full article
Figures

Figure 1

Open AccessArticle Construction of New Fractional Repetition Codes from Relative Difference Sets with λ=1
Entropy 2017, 19(10), 563; https://doi.org/10.3390/e19100563
Received: 12 August 2017 / Revised: 19 October 2017 / Accepted: 19 October 2017 / Published: 22 October 2017
PDF Full-text (736 KB) | HTML Full-text | XML Full-text
Abstract
Fractional repetition (FR) codes are a class of distributed storage codes that replicate and distribute information data over several nodes for easy repair, as well as efficient reconstruction. In this paper, we propose three new constructions of FR codes based on relative difference
[...] Read more.
Fractional repetition (FR) codes are a class of distributed storage codes that replicate and distribute information data over several nodes for easy repair, as well as efficient reconstruction. In this paper, we propose three new constructions of FR codes based on relative difference sets (RDSs) with λ = 1 . Specifically, we propose new ( q 2 - 1 , q , q ) FR codes using cyclic RDS with parameters ( q + 1 , q - 1 , q , 1 ) constructed from q-ary m-sequences of period q 2 - 1 for a prime power q, ( p 2 , p , p ) FR codes using non-cyclic RDS with parameters ( p , p , p , 1 ) for an odd prime p or p = 4 and ( 4 l , 2 l , 2 l ) FR codes using non-cyclic RDS with parameters ( 2 l , 2 l , 2 l , 1 ) constructed from the Galois ring for a positive integer l. They are differentiated from the existing FR codes with respect to the constructable code parameters. It turns out that the proposed FR codes are (near) optimal for some parameters in terms of the FR capacity bound. Especially, ( 8 , 3 , 3 ) and ( 9 , 3 , 3 ) FR codes are optimal, that is, they meet the FR capacity bound for all k. To support various code parameters, we modify the proposed ( q 2 - 1 , q , q ) FR codes using decimation by a factor of the code length q 2 - 1 , which also gives us new good FR codes. Full article
(This article belongs to the Section Information Theory)
Figures

Figure 1

Open AccessFeature PaperArticle Symmetries and Geometrical Properties of Dynamical Fluctuations in Molecular Dynamics
Entropy 2017, 19(10), 562; https://doi.org/10.3390/e19100562
Received: 9 September 2017 / Revised: 18 October 2017 / Accepted: 19 October 2017 / Published: 22 October 2017
Cited by 2 | PDF Full-text (506 KB) | HTML Full-text | XML Full-text
Abstract
We describe some general results that constrain the dynamical fluctuations that can occur in non-equilibrium steady states, with a focus on molecular dynamics. That is, we consider Hamiltonian systems, coupled to external heat baths, and driven out of equilibrium by non-conservative forces. We
[...] Read more.
We describe some general results that constrain the dynamical fluctuations that can occur in non-equilibrium steady states, with a focus on molecular dynamics. That is, we consider Hamiltonian systems, coupled to external heat baths, and driven out of equilibrium by non-conservative forces. We focus on the probabilities of rare events (large deviations). First, we discuss a PT (parity-time) symmetry that appears in ensembles of trajectories where a current is constrained to have a large (non-typical) value. We analyse the heat flow in such ensembles, and compare it with non-equilibrium steady states. Second, we consider pathwise large deviations that are defined by considering many copies of a system. We show how the probability currents in such systems can be decomposed into orthogonal contributions that are related to convergence to equilibrium and to dissipation. We discuss the implications of these results for modelling non-equilibrium steady states. Full article
(This article belongs to the Special Issue Understanding Molecular Dynamics via Stochastic Processes)
Figures

Figure 1

Open AccessFeature PaperArticle Comparing Markov Chain Samplers for Molecular Simulation
Entropy 2017, 19(10), 561; https://doi.org/10.3390/e19100561
Received: 6 September 2017 / Revised: 17 October 2017 / Accepted: 19 October 2017 / Published: 21 October 2017
Cited by 1 | PDF Full-text (414 KB) | HTML Full-text | XML Full-text
Abstract
Markov chain Monte Carlo sampling propagators, including numerical integrators for stochastic dynamics, are central to the calculation of thermodynamic quantities and determination of structure for molecular systems. Efficiency is paramount, and to a great extent, this is determined by the integrated autocorrelation time
[...] Read more.
Markov chain Monte Carlo sampling propagators, including numerical integrators for stochastic dynamics, are central to the calculation of thermodynamic quantities and determination of structure for molecular systems. Efficiency is paramount, and to a great extent, this is determined by the integrated autocorrelation time (IAcT). This quantity varies depending on the observable that is being estimated. It is suggested that it is the maximum of the IAcT over all observables that is the relevant metric. Reviewed here is a method for estimating this quantity. For reversible propagators (which are those that satisfy detailed balance), the maximum IAcT is determined by the spectral gap in the forward transfer operator, but for irreversible propagators, the maximum IAcT can be far less than or greater than what might be inferred from the spectral gap. This is consistent with recent theoretical results (not to mention past practical experience) suggesting that irreversible propagators generally perform better if not much better than reversible ones. Typical irreversible propagators have a parameter controlling the mix of ballistic and diffusive movement. To gain insight into the effect of the damping parameter for Langevin dynamics, its optimal value is obtained here for a multidimensional quadratic potential energy function. Full article
(This article belongs to the Special Issue Understanding Molecular Dynamics via Stochastic Processes)
Figures

Figure 1

Open AccessArticle EXONEST: The Bayesian Exoplanetary Explorer
Entropy 2017, 19(10), 559; https://doi.org/10.3390/e19100559
Received: 4 August 2017 / Revised: 28 September 2017 / Accepted: 11 October 2017 / Published: 20 October 2017
Cited by 2 | PDF Full-text (2438 KB) | HTML Full-text | XML Full-text
Abstract
The fields of astronomy and astrophysics are currently engaged in an unprecedented era of discovery as recent missions have revealed thousands of exoplanets orbiting other stars. While the Kepler Space Telescope mission has enabled most of these exoplanets to be detected by identifying
[...] Read more.
The fields of astronomy and astrophysics are currently engaged in an unprecedented era of discovery as recent missions have revealed thousands of exoplanets orbiting other stars. While the Kepler Space Telescope mission has enabled most of these exoplanets to be detected by identifying transiting events, exoplanets often exhibit additional photometric effects that can be used to improve the characterization of exoplanets. The EXONEST Exoplanetary Explorer is a Bayesian exoplanet inference engine based on nested sampling and originally designed to analyze archived Kepler Space Telescope and CoRoT (Convection Rotation et Transits planétaires) exoplanet mission data. We discuss the EXONEST software package and describe how it accommodates plug-and-play models of exoplanet-associated photometric effects for the purpose of exoplanet detection, characterization and scientific hypothesis testing. The current suite of models allows for both circular and eccentric orbits in conjunction with photometric effects, such as the primary transit and secondary eclipse, reflected light, thermal emissions, ellipsoidal variations, Doppler beaming and superrotation. We discuss our new efforts to expand the capabilities of the software to include more subtle photometric effects involving reflected and refracted light. We discuss the EXONEST inference engine design and introduce our plans to port the current MATLAB-based EXONEST software package over to the next generation Exoplanetary Explorer, which will be a Python-based open source project with the capability to employ third-party plug-and-play models of exoplanet-related photometric effects. Full article
Figures

Figure 1

Open AccessArticle Comparative Statistical Mechanics of Muscle and Non-Muscle Contractile Systems: Stationary States of Near-Equilibrium Systems in A Linear Regime
Entropy 2017, 19(10), 558; https://doi.org/10.3390/e19100558
Received: 1 August 2017 / Revised: 30 September 2017 / Accepted: 16 October 2017 / Published: 20 October 2017
PDF Full-text (3998 KB) | HTML Full-text | XML Full-text
Abstract
A. Huxley’s equations were used to determine the mechanical properties of muscle myosin II (MII) at the molecular level, as well as the probability of the occurrence of the different stages in the actin–myosin cycle. It was then possible to use the formalism
[...] Read more.
A. Huxley’s equations were used to determine the mechanical properties of muscle myosin II (MII) at the molecular level, as well as the probability of the occurrence of the different stages in the actin–myosin cycle. It was then possible to use the formalism of statistical mechanics with the grand canonical ensemble to calculate numerous thermodynamic parameters such as entropy, internal energy, affinity, thermodynamic flow, thermodynamic force, and entropy production rate. This allows us to compare the thermodynamic parameters of a non-muscle contractile system, such as the normal human placenta, with those of different striated skeletal muscles (soleus and extensor digitalis longus) as well as the heart muscle and smooth muscles (trachea and uterus) in the rat. In the human placental tissues, it was observed that the kinetics of the actin–myosin crossbridges were considerably slow compared with those of smooth and striated muscular systems. The entropy production rate was also particularly low in the human placental tissues, as compared with that observed in smooth and striated muscular systems. This is partly due to the low thermodynamic flow found in the human placental tissues. However, the unitary force of non-muscle myosin (NMII) generated by each crossbridge cycle in the myofibroblasts of the human placental tissues was similar in magnitude to that of MII in the myocytes of both smooth and striated muscle cells. Statistical mechanics represents a powerful tool for studying the thermodynamics of all contractile muscle and non-muscle systems. Full article
(This article belongs to the Special Issue Statistical Mechanics of Complex and Disordered Systems)
Figures

Figure 1

Open AccessArticle Performance Improvement of Plug-and-Play Dual-Phase-Modulated Quantum Key Distribution by Using a Noiseless Amplifier
Entropy 2017, 19(10), 546; https://doi.org/10.3390/e19100546
Received: 9 August 2017 / Revised: 13 October 2017 / Accepted: 13 October 2017 / Published: 20 October 2017
Cited by 3 | PDF Full-text (1854 KB) | HTML Full-text | XML Full-text
Abstract
We show that the successful use of a noiseless linear amplifier (NLA) can help increase the maximum transmission distance and tolerate more excess noise of the plug-and-play dual-phase-modulated continuous-variable quantum key distribution. In particular, an equivalent entanglement-based scheme model is proposed to analyze
[...] Read more.
We show that the successful use of a noiseless linear amplifier (NLA) can help increase the maximum transmission distance and tolerate more excess noise of the plug-and-play dual-phase-modulated continuous-variable quantum key distribution. In particular, an equivalent entanglement-based scheme model is proposed to analyze the security, and the secure bound is derived with the presence of a Gaussian noisy and lossy channel. The analysis shows that the performance of the NLA-based protocol can be further improved by adjusting the effective parameters. Full article
(This article belongs to the Special Issue Entropy and Information in the Foundation of Quantum Physics)
Figures

Figure 1

Open AccessArticle Multivariate Multiscale Symbolic Entropy Analysis of Human Gait Signals
Entropy 2017, 19(10), 557; https://doi.org/10.3390/e19100557
Received: 25 September 2017 / Revised: 13 October 2017 / Accepted: 17 October 2017 / Published: 19 October 2017
Cited by 1 | PDF Full-text (2294 KB) | HTML Full-text | XML Full-text
Abstract
The complexity quantification of human gait time series has received considerable interest for wearable healthcare. Symbolic entropy is one of the most prevalent algorithms used to measure the complexity of a time series, but it fails to account for the multiple time scales
[...] Read more.
The complexity quantification of human gait time series has received considerable interest for wearable healthcare. Symbolic entropy is one of the most prevalent algorithms used to measure the complexity of a time series, but it fails to account for the multiple time scales and multi-channel statistical dependence inherent in such time series. To overcome this problem, multivariate multiscale symbolic entropy is proposed in this paper to distinguish the complexity of human gait signals in health and disease. The embedding dimension, time delay and quantization levels are appropriately designed to construct similarity of signals for calculating complexity of human gait. The proposed method can accurately detect healthy and pathologic group from realistic multivariate human gait time series on multiple scales. It strongly supports wearable healthcare with simplicity, robustness, and fast computation. Full article
(This article belongs to the Special Issue Symbolic Entropy Analysis and Its Applications)
Figures

Figure 1

Open AccessLetter A Combinatorial Grassmannian Representation of the Magic Three-Qubit Veldkamp Line
Entropy 2017, 19(10), 556; https://doi.org/10.3390/e19100556
Received: 17 September 2017 / Revised: 13 October 2017 / Accepted: 17 October 2017 / Published: 19 October 2017
PDF Full-text (235 KB) | HTML Full-text | XML Full-text
Abstract
It is demonstrated that the magic three-qubit Veldkamp line occurs naturally within the Veldkamp space of a combinatorial Grassmannian of type G2(7), V(G2(7)). The lines of the ambient symplectic polar
[...] Read more.
It is demonstrated that the magic three-qubit Veldkamp line occurs naturally within the Veldkamp space of a combinatorial Grassmannian of type G 2 ( 7 ) , V ( G 2 ( 7 ) ) . The lines of the ambient symplectic polar space are those lines of V ( G 2 ( 7 ) ) whose cores feature an odd number of points of G 2 ( 7 ) . After introducing the basic properties of three different types of points and seven distinct types of lines of V ( G 2 ( 7 ) ) , we explicitly show the combinatorial Grassmannian composition of the magic Veldkamp line; we first give representatives of points and lines of its core generalized quadrangle GQ ( 2 , 2 ) , and then additional points and lines of a specific elliptic quadric Q - (5, 2), a hyperbolic quadric Q + (5, 2), and a quadratic cone Q ^ (4, 2) that are centered on the GQ ( 2 , 2 ) . In particular, each point of Q + (5, 2) is represented by a Pasch configuration and its complementary line, the (Schläfli) double-six of points in Q - (5, 2) comprise six Cayley–Salmon configurations and six Desargues configurations with their complementary points, and the remaining Cayley–Salmon configuration stands for the vertex of Q ^ (4, 2). Full article
(This article belongs to the Special Issue Quantum Mechanics: From Foundations to Information Technologies)
Figures

Figure 1

Open AccessArticle The Prior Can Often Only Be Understood in the Context of the Likelihood
Entropy 2017, 19(10), 555; https://doi.org/10.3390/e19100555
Received: 26 August 2017 / Revised: 30 September 2017 / Accepted: 14 October 2017 / Published: 19 October 2017
Cited by 2 | PDF Full-text (256 KB) | HTML Full-text | XML Full-text
Abstract
A key sticking point of Bayesian analysis is the choice of prior distribution, and there is a vast literature on potential defaults including uniform priors, Jeffreys’ priors, reference priors, maximum entropy priors, and weakly informative priors. These methods, however, often manifest a key
[...] Read more.
A key sticking point of Bayesian analysis is the choice of prior distribution, and there is a vast literature on potential defaults including uniform priors, Jeffreys’ priors, reference priors, maximum entropy priors, and weakly informative priors. These methods, however, often manifest a key conceptual tension in prior modeling: a model encoding true prior information should be chosen without reference to the model of the measurement process, but almost all common prior modeling techniques are implicitly motivated by a reference likelihood. In this paper we resolve this apparent paradox by placing the choice of prior into the context of the entire Bayesian analysis, from inference to prediction to model evaluation. Full article
(This article belongs to the Special Issue Maximum Entropy and Bayesian Methods)
Back to Top