Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay
Abstract
:Introduction
Classification and properties of phenolic compounds
Family and species name | Local name | Locality | Major phenolics contained | Analysis method | Therapeutic use | Ref |
---|---|---|---|---|---|---|
Herbs | ||||||
(Asteraceae) Achillea biebersteinii Afan. | Sarıçiçek | Kayseri Sivas | Quercetagitrin, Quercimeritrin | UV, MS, PMR, IR and hydrolytic methods | For abdominal pain, stomach ache | [13] |
(Asteraceae) Cichorium intybus L. | Yabani Hindiba (Common chicory) | Niğde | Dimalonyldelphin, Unknown Flavone Copigment | DPPH method (Radical scavenging activity), inhibition of hydrogen peroxide (H2O2), Fe2+chelating activity | To expel kidney stones; decoction, as tea | [14] |
(Asteraceae) Gundelia tournefortii L. var. tournefortii | Kenger (acanthus) | Kayseri | Gallic Acid, Quercetin | Folin-Ciocalteu method | For removing water in spleen and thirst | [15] |
(Brassicaceae) Nasturtium officinale R. Br. | Gerdemeotu (watercress) | Konya | Quercetin, Kaempferol | HPLC-MS | For abdominal pain; chewed | [16] |
(Hypericaceae) Hypericum perforatum L. | Kantoron (common St. John's wort) | Niğde | Hyperforin, Adhyperforin, Hypericin, Protohypericin, Phenolic Acids, Neochlorogenic Acid, Chlorogenic Acid, Rutin, Isoquercitrin, Quercetin 3-Glucuronate, Hyperoside-Acetyl, Kaempferol 3-Rutinoside, Quercetin, Kaempferol, Biapigenin | HPLC–MS–MS | For wound healing; stomach ache | [17] |
(Lamiaceae) Salvia officinalis L. | Adaçay (sage tea) | Kayseri | Gallic Acid, Caffeic Acid, Rosmarinic Acid, Hesperetin, Hispidulin, Carnosol, Carnosic Acid, Phenolic Acids, Flavonoids | HPLC-DAD | For common cold, abdominal pain; decoction, as tea | [18] |
(Lamiaceae) Satureai cuneifolia Ten. | Kekik (thyme) | Niğde | Caffeic Acid, Luteolin-7-O-Glucoside, Rosmarinic Acid, Apigenin | Folin-Ciocalteu method HPLC | For common cold, abdominal pain; infusion, as tea | [18] |
(Lamiaceae) Origonum onites L. | Mercanköşk (marjoram) | Muğla Manisa Mersin Adana | Caffeic Acid, Rosmarinic Acid, Apigenin, Hydroxybenzoic Acid Derivatives, Hydroxycinamic Acid Derivatives | 1,1-Diphenyl-2-picrylhydrazyl (DPPH)Radical Scavenging, Folin-Ciocalteu method | For stomach, bowels and gallbladder aches | [18,19] |
(Lamiaceae) Teucrium polium L. | Kokar Yavşan (polymountain) | Karaman | Flavonoids | Folin-Ciocalteu method HPLC | For common cold, antipyretic; decoction, as tea | [20] |
(Lamiaceae) Teucrium chamaedrys L. | Kısa mahmut (common germander) | Niğde | Gallic acid | Folin-Ciocalteu method, | For stomach aches; infusion, as tea | [21] |
(Linaceae) Linum usitatissimum L. | Zeyrek/keten tohumu (flax seed) | Niğde | Caffeic Acid, P-Coumaric Acid, Chlorogenic Acid, Ferulic Acid | HPLC | For abscesses; pounded seeds are mixed with yoghurt and applied on the abscess | [22] |
(Loranthaceae) Viscum album L. ssp. Album | Güvelek otu/ ökseotu (mistletoe) | Niğde | Flavanon | DPPH radical method | For diarrhoea and prostatitis; decoction, as tea | [23] |
(Loranthaceae) Malva neglecta Wallr. | Ebegümeci (mallow) | Kayseri | Propyl gallate | Folin-Ciocalteu method | For pain in mouth; fresh leaves are eaten | [24] |
(Urticaceae) Urtica dioicia L. | Isırganotu (nettle) | Kayseri Niğde Ankara | Quercetin, Kaempferol, Pyrocatechol | Folin-Ciocalteu method | As panacea; decoction is taken every morning before breakfast or eaten fresh | [24,25] |
Fruitsi | ||||||
(Anacardiaceae) Rhus coriaria L. | Sumak (sumac) | Kayseri Sivas | Tannins, Fustin, Fisetin, Sulfuretin, Butein, Quercitrin, Myricetin | Folin-Ciocalteu method | For diarrhoea; powdered fruits or ‘sumach’ are sprinkled on boiled egg and ingested | [26] |
(Caprifoliaceae) Viburnum opulus L. | Gilaburu (European cranberrybush) | Kayseri | Chlorogenic Acid, (+)-Catechin, Epicatechin, Cyanidin-3-Glucoside, Cyanidin-3-Rutinoside, Quercetin | Folin-Ciocalteu method HPLC | To expel kidney stones; juice obtained by squeezing is taken orally | [27] |
(Cucurbitaceae) Cucurbita pepo L. | Kestane Kabağı (squash summer) | Ankara | Flavonols, Gallic Acid | Folin–Ciocalteu method | For sore throat, bronchitis; grated and boiled in milk or water and while warm, applied externally on neck | [28] |
(Cucurbitaceae) Citrullus lanatusMatsum. and Nakai | Karpuz (watermelon) | Ankara | Flavonols | HPLC | For wounds, dried pericarp is burned and ash is spread on wounds | [28a] |
(Juglandaceae) Juglans regia L. | Ceviz (hickory) | Niğde | Ellagitannins | Folin-Ciocalteu method HPLC | For stomach ache; small fruits are swallowed as pills | [29] |
(Moraceae) Morus nigra L. | Karadut (black mulberry) | Ankara İstanbul | Quercetin, Rutin, Isoquercitrin, Chlorogenic Acid | HPLC, Capillary electrophoresis | For canker; fruit juice is used as gargle | [30] |
(Punicaceae) Punica granatum L. | Nar (pomegranate) | Niğde | Gallic Acid, Protocatechuic Acid, P-Hydroxybenzoic Acid, Vanillic Acid, Caffeic Acid, p-Coumaric Acid, Ferulic Acid | HPLC-MS TRAP method | For diarrhoea; dried rind of the fruit is ingested | [31] |
(Rosaceae) Armeniaca vulgaris Lam. | Zerdali / kayısı (apricot) | Ankara | Hydroxycinnamic Acid and Derivatives, Quercetin, Kaempferol, Apigenin, Catechin, Epicatechin | HPLC | For bruises; ointment prepared with ash of the seeds and butter is applied on affected parts | [32] |
(Rosaceae) Cydonia oblonga Miller | Ayva (quince) | Ankara | Hydroxycinnamic Acid and Derivatives, Catechin, Epicatechin | Folin-Ciocalteu method HPLC-MS | For cystitis; fruit is cooked in embers and applied externally on vagina | [33] |
(Rosaceae) Malus sylvestris Miller ssp. | Elma (apple) | Ankara | Anthocyanins, Catechin, Epicatechin, Flavonols | Folin-Ciocalteu method HPLC-MS | For bronchitis, cough and mumps | [28a,33,34] |
(Rosaceae) Rosa canina L. | Kuşburnu (rosehip) | Kayseri Ankara | Proanthocyanidin, Flavonoids, Gallic Acid | Folin-Ciocalteu method HPLC | For internal diseases and haemorrhoids; decoction, as tea | [35] |
(Rutaceae) Citrus limon L. | Limon (lemon) | Kayseri | Flavanones, Flavones, Flavonols | Liquid Chromatography HPLC | To expel kidney stones | [28a,36] |
(Solanaceae) Capsicum annum L. | Acı biber (hot pepper) | Niğde | Flavonoids | HPLC | For stomach ache; powdered hot red pepper fruits are cooked in milk and ingested | [37] |
(Solanaceae) Lycopersicum esculentum L. | Domates (tomatoe) | Ankara | Quercetin, Kaempferol, Myricetin | HPLC GC-MS | For burns; juice is applied on the affected area | [28a,38] |
(Vitaceae) Vitis vinifera L. | Üzüm (grape) | Niğde | Anthocyanins, Flavonols, Flavones | 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method | For bruises; pounded dry raisins are applied to bruises to relieve pain | [28a,39] |
Vegetables | ||||||
(Brassicaceae) Brassica oleracea L. Var. Capitata DC. | Kelem / lahana (cabbage) | Ankara | Quercetin, Myricetin, Kaempferol, Luteolin, Apigenin | HPLC | For ulcer, fresh leaves are ingested | [28a,40c] |
(Liliaceae) Allium cepa L. | Soğan (onion) | Niğde Ankara | Kaempferol, Luteolin, Quercetin | Davis method Folin-Ciocalteu method HPLC HPLC/MS/NMR | For abscesses; bulb is embedded in embers and applied to abscess to promote suppuration | [28a,40] |
(Liliaceae) Allium sativum L. | Sarımsak (garlic) | Niğde Ankara | Apigenin, Myricetin, Quercetin | Davis method Folin-Ciocalteu method HPLC | For food intoxication pounded with yoghurt and applied on the affected part | [40b] |
(Poaceae) Zea mays L. | Mısır (corn) | Ankara | Flavonols | DPPH radical scavenging method | For haemorrhoids; boiled stylus is taken orally | [28a,41] |
(Solanaceae) Solanum melongena L. | Patlıcan (eggplant) | Ankara | Hydroxycinnamic Acid and Derivatives | HPLC-MS NMR | As abortifacient ; stalk of a fruit is washed and inserted in vagina | [42] |
(Solanaceae) Solanum tuberosum L | Patates (potatoes) | Kayseri Ankara | Flavans, Flavonols | Swain and Hillis methods, Brand- Williams et al. Methods | For headache; sliced tubers are applied to burns | [43] |
Leguminous vegetables | ||||||
(Fabaceae) Lens culinaris Medik. | Mercimek (lentils) | Ankara | Flavans, Flavonols, Hydroxybenzoic Acids, Hydroxycinnamic Acids, Catechins, Flavones, Procyanidins, Resveratrol | 2,2-diphenyl-1-picrylhydrazyl (DPPH) method | For burns; roasted seeds are milled and applied on affected area | [28a,44] |
(Fabaceae) Phaseolus vulgaris L. | Fasulye (beans, green) | Ankara | Isoflavonoid, Flavonols | Folin-Ciocalteu method | For wounds; ashes of the seeds are applied on wounds | [28a,45] |
(Poaceae) Hordeum vulgare L. | Arpa (barley) | Niğde Ankara | Flavans , Flavones | Folin-Ciocalteu method | For abscesses; common cold and cough in pneumonia | [28a] |
Antioxidant/prooxidant properties, mechanisms, and structure-activity relationships
Total antioxidant capacity (TAC) assays applied to phenolics
λmax=765 nm
λmax=595 nm
λmax=700 nm
λmax=734 nm
Critical evaluation and comparison of total antioxidant capacity (TAC) assays
Antioxidant capacities of regularly consumed fruits, vegetables, and beverages due to phenolics
Fruit | Major phenolic components [108] | Total phenols [108,110] (mg GAE/ 100 g Fw) | TEAC [108,109,116] (µmol TE/ 100 g Fw) | ORAC [108,112] (µmol TE/ 100 g Fw) | FRAP [108,109] (µmol Fe2+/ 100 g Fw) | DPPH [111] (µmol TE/ 100 g Fw) |
---|---|---|---|---|---|---|
Strawberry | Pelargonidin-3-glucoside Cinnamoyl glucose | 330±4 78.3±12 | 2591±68 1134 | 2437±95 3577 | 3352±38 2800 | 3100 |
Raspberry | Cyanidin-3-sophoroside Cyanidin-3-glucoside | 228±6 | 1846±10 1679 | 1849±232 4925 | 2325±53 4303 | 5100 |
Red plum | Cyanidin-3-glucoside 3´-Caffeoylquinic acid | 320±12 133±12 | 1825±28 511 | 2564±185 6239 | 2057±25 1279 | 2200 |
Orange | Hesperidin Narirutin Neohesperidin | 126±6 23.8±13 | 849±25 874 | 1904±259 1814 | 1181±6 2050 | 600 |
Banana | Quercetin-3-glucoside /conjugates | 38±4 191±36 | 181±39 64 | 331±59 879 | 164±32 228 | 1100 |
Apple | 5´-Caffeoylquinic acid Rutin Quercetin-3-glucoside/conjugates | 48±1 109±15 | 343±13 159 640±270 | 560±18 2936 | 394±8 384 | 1400 |
Spinach | Flavonol conjugates Hydroxycinnamate conjugates | 72±1 | 757±54 849 | 1655±115 2640 | 1009±35 2694 | 500 |
Broccoli | Hydroxycinnamate conjugates Flavonol conjugates | 128±4 | 648±25 304 | 1335±62 1590 | 833±16 1167 | 600 |
Onion | Quercetin conjugates | 88±1 | 532±29 182 580±320 | 988±30 1029 | 369±13 528 | 200 |
Tomato | Chalconaringenin 5´-Caffeoylquinic acid | 30±1 | 255±14 165 160±60 | 420±39 460 | 344±7 512 | 200 |
Lettuce | Quercetin conjugates 5´-Caffeoylquinic acid | 14±1 | 171±12 133 | 319±37 1550 | 124±7 494 | 150 |
Results and Discussion
Reaction, spectra, and conditions of the CUPRAC assay
Trolox® equivalent antioxidant capacites (TEAC coefficients) of antioxidants
Structure-acitivity relationships in CUPRAC
Antioxidant Name | TEACCUPRAC | TEACABTS | TEACFolin | |||
---|---|---|---|---|---|---|
TEACN | TEACI | TEACH | TEACH&I | TEAC6min | ||
Flavonoids | ||||||
Epicatechin gallate (ECG) | 5.32 | 5.65 | 3.51 | 4.35 | ||
Epigallocatechingallate (EGCG) | 4.89 | 5.49 | 3.15 | 2.78 | ||
Quercetin (QR) | 4.38 | 2.77 | 5.17 | |||
Fisetin (FS) | 3.90 | 4.18 | 2.62 | 3.90 | ||
Epigallocatechin (EGC) | 3.35 | 3.60 | ||||
Catechin (CT) | 3.09 | 3.56 | 3.08 | 3.49 | 3.14 | 4.09 |
Epicatechin (EC) | 2.77 | 2.89 | 2.69 | 3.22 | ||
Rutin (RT) | 2.56 | 3.80 | 1.15 | 6.75 | ||
Morin (MR) | 1.88 | 3.32 | 1.79 | 3.37 | ||
Kaempherol | 1.58 | 1.87 | 0.90 | 2.01 | ||
Hesperetin (HT) | 0.99 | 1.05 | 0.85 | 0.98 | 1.11 | 4.50 |
Hesperidin (HD) | 0.97 | 1.11 | 0.79 | 0.95 | 1.40 | 3.29 |
Naringenin (NG) | 0.05 | 2.28 | 3.03 | 0.64 | 5.52 | |
Naringin (N) | 0.02 | 0.13 | 0.62 | 1.12 | ||
Hydroxycinnamic Acids | ||||||
Caffeic acid (CFA) | 2.89 | 2.96 | 2.87 | 3.22 | 1.39 | 3.27 |
Chlorogenic acid (CGA) | 2.47 | 2.72 | 1.20 | 1.42 | 1.21 | 2.84 |
Ferulic acid (FRA) | 1.20 | 1.23 | 1.18 | 1.34 | 2.16 | 3.49 |
p-Coumaric acid (CMA) | 0.55 | 1.00 | 0.53 | 1.15 | 1.63 | 2.54 |
Vitamins | ||||||
α-Tocopherol (TP) | 1.10 | 1.02 | 0.99 | 0.87 | 1.02 | |
Ascorbic acid (AA) | 0.96 | 1.03 | ||||
Benzoic Acids | ||||||
Gallic acid(GA) | 2.62 | 3.48 | 1.23 | |||
Sinapic acid (SNA) | 1.24 | 2.17 | 1.11 | 3.39 | ||
Vanillic acid (VA) | 1.24 | 1.52 | 1.32 | 1.57 | 1.25 | 3.05 |
Syringic Acid (SA) | 1.12 | 1.64 | 1.13 | 1.67 | 1.50 | 2.49 |
Antioxidant Name | TEACFRAP | TEACFerricyanide | TEACFe(III)-Phen | TEACCe(IV) | ||
TEACOrig | TEACI | |||||
Flavonoids | ||||||
Epicatechin gallate (ECG) | 3.52 | |||||
Epigallocatechingallate (EGCG) | 4.02 | |||||
Quercetin (QR) | 2.92 | 4.32 | 3.27 | 4.16 | 7.90 | |
Fisetin (FS) | ||||||
Epigallocatechin (EGC) | 2.00 | |||||
Catechin (CT) | 1.24 | 3.44 | ||||
Epicatechin (EC) | 1.45 | |||||
Rutin (RT) | 1.12 | 2.20 | 2.07 | 2.35 | 7.50 | |
Morin (MR) | ||||||
Kaempherol | 0.98 | |||||
Hesperetin (HT) | ||||||
Hesperidin (HD) | ||||||
Naringenin (NG) | 0.22 | 6.56 | ||||
Naringin (N) | 5.32 | |||||
Hydroxycinnamic Acids | ||||||
Caffeic acid (CFA) | 1.13 | 1.84 | 2.48 | 1.94 | 1.94 | |
Chlorogenic acid (CGA) | 1.61 | 2.38 | ||||
Ferulic acid (FRA) | 0.87 | 1.12 | 0.70 | 1.18 | 2.70 | |
p-Coumaric acid (CMA) | 2.22 | |||||
Vitamins | ||||||
α-Tocopherol (TP) | ||||||
Ascorbic acid (AA) | 1.01 | 1.14 | 0.99 | 1.01 | 1.08 | |
Benzoic Acids | ||||||
Gallic acid(GA) | 1.85 | 3.03 | 2.78 | 3.86 | 4.20 | |
Sinapic acid (SNA) | ||||||
Vanillic acid (VA) | ||||||
Syringic Acid (SA) |
Simultaneous CUPRAC assay of lipophilic and hydrophilic antioxidants
CUPRAC assay of synthetic and real mixtures
Sensitivity enhancement with preconcentration in CUPRAC
The findings of other CUPRAC users in plant, food, and biological materials
Advantages of the CUPRAC method over other ET–based antioxidant capacity assays
Conclusions
Experimental
General
Standards, samples and reagents
Preparation of solutions
Normal sample measurement
Incubated sample measurement
Hydrolyzed sample measurement
Hydrolyzed and incubated sample measurement
Measurement of ternary synthetic solutions
Application of the method to real mixtures (e.g. plant extracts and beverages)
Calculation of total antioxidant capacity and polyphenolic content
Acknowledgments
Abbreviations
AAPH | 2,2’-Azobis(2-amidinopropane) hydrochloride |
ABAP | 2,2’-Azobis(2-aminopropane) |
ABTS | 2,2’-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) |
AO | Antioxidant |
AOC | Antioxidant capacity |
AUC | Area under curve |
BHA | Butylated hydroxyanisole |
BHT | Butylated hydroxytoluene |
BUC | Bucillamine |
CD | Cyclodextrin |
CV | Coefficient of variation |
CUPRAC | Cupric reducing antioxidant capacity |
DCM | Dichloromethane |
DPPH | 2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl |
ET | Electron transfer |
EtOH | Ethanol |
FCR | Folin-Ciocalteu reagent |
FRAP | Ferric reducing antioxidant power |
GSH | Glutathione |
HAT | Hydrogen atom transfer |
LDL | Low-density lipoprotein |
LG | Lauryl gallate |
M-β-CD | Methyl-β-cyclodextrin |
MDA | Malondialdehyde |
MeOH | Methanol |
NAC | N-acetyl cysteine |
NBT | Nitro blue tetrazolium |
ORAC | Oxygen radical absorbance capacity |
PG | Propyl gallate |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
TAC | Total antioxidant capacity |
TBA | Thiobarbituric acid |
TBARS | Thiobarbituric acid–reactive substances |
TBHQ | Tert-butyl hydroquinone |
TEAC | Trolox® equivalent antioxidant capacity |
TPTZ | Tripyridyltriazine |
TRAP | Total peroxyl radical-trapping antioxidant parameter |
References and Notes
- Bennick, A. Interaction of Plant Polyphenols with Salivary Proteins. Crit. Rev. Oral Biol. Med. 2002, 13, 184–196. [Google Scholar] [CrossRef]
- Robards, K.; Antolovich, M. Analytical Chemistry of Fruit Bioflavonoids. A Review. Analyst 1997, 122, 11–34. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial By-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Harborne, J.B.; Simmonds, N.W. The natural distribution of the phenolic aglycones. In Biochemistry of phenolic compounds; Academic Press: New York, 1964; pp. 77–127. [Google Scholar]
- Mehansho, H.; Butler, L.G.; Carlson, D.M. Dietary Tannins and Salivary Proline-Rich Proteins: Interactions, Induction and Defense Mechanisms. Ann. Rev. Nutr. 1987, 7, 423–440. [Google Scholar] [CrossRef]
- Khanbabaee, K.; Van Ree, T. Tannins: Classification and Definition. Nat. Prod. Rep. 2001, 18, 641–649. [Google Scholar]
- Porter, L.J. Tannins. In Methods in Plant Biochemistry; Vol. I, Plant Phenolics; Dey, P.M., Harborne, J.B., Eds.; Academic Press: San Diego, CA, 1989; pp. 389–419. [Google Scholar]
- Middleton, E., Jr.; Kandaswami, C. The Impact of Plant Flavonoids on Mammalian Biology: Implications for Immunity, Inflammation and Cancer. In The Flavonoids. Advances since 1986; Harborne, J.B., Ed.; London: Chapman and Hall, 1994; pp. 619–645. [Google Scholar]
- Bombardelli, E.; Morazzoni, P. The Flavonoids: New Perspectives in Biological Activities and Therapeutics. Chimicaoggi 1993, 25–28. [Google Scholar]
- Niki, E.; Noguchi, N. Evaluation of Antioxidant Capacity. What Capacity is Being Measured by Which Method? IUBMB Life 2000, 50, 323–329. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C. Free Radicals and Aging. Rev. Clin. Gerontol. 1994, 4, 279–288. [Google Scholar] [CrossRef]
- Madhavi, D. L.; Deshpande, S. S.; Salunkhe, D. K. Introduction. Food Antioxidants: Technological, Toxicological, and Health Perspectives; Madhavi, D. L., Deshpande, S. S., Salunkhe, D.K., Eds.; Marcel Dekker, Inc.: New York, NY., 1996; pp. 1–4. [Google Scholar]
- Sokmen, A.; Sokmen, M.; Daferera, D.; Polissiou, M.; Candan, F.; Unlu, M.; Akpulat, H.A. The in Vitro Antioxidant and Antimicrobial Activities of The Essential Oil and Methanol Extracts of Achillea biebersteini Afan. (Asteraceae). Phytother Res. 2004, 18, 451–456. [Google Scholar] Oskay, E.; Yeşilada, A. Four Flavonoids and Three Other Constituents from Achillea Biebersteinii. J. Nat. Prod. 1984, 47, 742. [Google Scholar]
- Harborne, J.B.; Williams, C.A. Advances in Flavonoid Research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] El, S.N.; Karakaya, S. Radical Scavenging and Iron-chelating Activities of Some Greens Used as Traditional Dishes in Mediterranean Diet. Int. J. Food Sci. Nutr. 2004, 55, 67–74. [Google Scholar]
- Coruh, N.; Sağdıçoğlu Celep, A.G.; Özgökçe, F.; İşcan, M. Antioxidant Capacities of Gundelia tournefortii L. Extracts and Inhibition on Glutathione-S-Transferase Activity. Food Chem. 2007, 100, 1249–1253. [Google Scholar] [CrossRef]
- Justesen, U.; Knuthsen, P. Composition of Flavonoids in Fresh Herbs and Calculation of Flavonoid Intake by Use of Herbs in Traditional Danish Dishes. Food Chem. 2001, 73, 245–250. [Google Scholar] [CrossRef]
- Silva, B.A.; Ferreres, F.; Malva, J.O.; Dias, A.C.P. Phytochemical and Antioxidant Characterization of Hypericum Perforatum Alcoholic Extracts. Food Chem. 250, 90, 157–167. [Google Scholar] Cakir, A.; Mavi, A.; Yıldırım, A.; Duru, M.E.; Harmandar, M.; Kazaz, C. Isolation and Characterization of Antioxidant Phenolic Compounds from the Aerial Parts of Hypericum hyssopifolium L. by Activity-Guided Fractionation. J. Ethnopharm. 2003, 87, 73–83. [Google Scholar]
- Dorman, H.J.; Bachmayer, O.; Kosar, M.; Hiltunen, R. Antioxidant Properties of Aqueous Extracts from Selected Lamiaceae Species Grown in Turkey. J. Agric. Food Chem. 2004, 52, 762–770. [Google Scholar] [CrossRef]
- Günzler, H.; Bahadir, A.M.; Vorsdorf, R.; Danzer, K.; Fresenius, W.; Galensa, R.; Huber, W.; Linscheid, M.; Lüderwald, I.; Schwedt, G.; Tölg, G.; Wisser, H. Analytiker Taschenbuch; Springer: Berlin, Heidelberg, New York, 1997; Volume 15, pp. 147–178. [Google Scholar] Akgül, A.; Ayar, A. Yerli Baharatların Antioksidan Etkileri. J. Agric. For. 1993, 17, 1061–1069. [Google Scholar] (c)Tuzlacı, E. Datça Yarımadası (Muğla) Florası ve Bu Yörede Halkın Yararlandığı Bitkiler. 14. Bitkisel İlaç Hammaddeleri Toplantısı, Bildiriler. 2002. [Google Scholar] Everest, A.; Ozturk, E. Focusing on the Ethnobotanical Uses of Plants in Mersin and Adana Provinces (Turkey). J. Ethnobiol. Ethnomed. 2005, 1, 1–6. [Google Scholar]
- Stocker, P.; Yousfi, M.; Djerridane, O.; Perrier, J.; Amziani, R.; El Boustani, S.; Moulin, A. Effect of Flavonoids from Various Mediterranean Plants on Enzymatic Activity of Intestinal Carboxylesterase. Biochimie 2004, 86, 919–925. [Google Scholar] [CrossRef]
- zgen, U.; Mavi, A.; Terzi, Z.; Yildirim, A.; Coşkun, M.; Houghton, P.J. Antioxidant Properties of Some Medicinal Lamiaceae (Labiatae) Species. Pharm. Bio. 2006, 44, 107–112. [Google Scholar] [CrossRef]
- Lorenc-Kukula, K.; Amarowicz, R.; Oszmianski, J.; Doermann, P.; Starzycki, M.; Skala, J.; Zuk, M.; Kumla, A.; Szopa, J. Pleiotropic Effect of Phenolic Compounds Content Increases in Transgenic Flax Plant. J. Agric. Food Chem. 2005, 53, 3685–3692. [Google Scholar] [CrossRef]
- Deliorman, D.; Çalış, I.; Ergun, F.; Uydeş; Doğan, B.S.; Buharalıoğlu, C.K.; Kanzık, I. Studies on the Vascular Effects of the Fractions and Phenolic Compounds Isolated from Viscum album ssp. Album. J. Ethnopharm. 2000, 72, 323–329. [Google Scholar] [CrossRef]
- Mavi, A.; Terzi, Z.; Ozgen, U.; Yildirim, A.; Coskun, M. Antioxidant Properties of Some Medicinal Plants: Prangos ferulacea (Apiaceae), Sedum sempervivoides (Crassulaceae), Malva neglecta (Malvaceae). Cruciata taurica (Rubiaceae), Rosa pimpinellifolia (Rosaceae), Galium verum subsp. verum (Rubiaceae), Urtica dioica (Urticaceae). Biol. Pharm. Bull. 2004, 27, 702–705. [Google Scholar] [CrossRef]
- Gülcin, I.; Küfrevioğlu, O. I.; Oktay, M.; Büyükokuroğlu, M.E. Antioxidant, Antimicrobial, Antiulcer and Analgesic Activities of Nettle (Urtica dioica L.). J. Ethnopharm. 2004, 90, 205–215. [Google Scholar]
- Candan, F.; Somken, A. Effects of Rhus coriaria L. (Anacardiaceae) on Lipid Peroxidation and Free Radical Scavenging Activity. Phytother. Res. 2004, 18, 84–86. [Google Scholar] Candan, F. Effect of Rhus coriaria L. (Anacardiaceae) on Superoxide Radical Scavenging and Xanthine Oxidase Activity. J. Enz. Inhib. Med. Chem. 2003, 18, 59–62. [Google Scholar] Bozkurt, H. Investigation of the Effect of Sumac Extract and BHT Addition on the Quality of Sucuk (Turkish dry-fermented sausage). J. Sci. Food Agric. 2006, 86, 849–856. [Google Scholar]
- Velioglu, Y.S.; Ekici, L.; Poyrazoglu, E.S. Phenolic Composition of European Cranberrybush (Viburnum opulus L.) Berries and Astringency Removal of Its Commercial Juice. Int. J. Food Sci. Techol. 2006, 41, 1011–1015. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J. Taxonomic Classification Helps Identify Flavonoid Containing Foods on Semiquantitative Food Frequency Questionnaire. J. Am. Diet. Assoc. 1998, 98, 677–685. [Google Scholar] Mongkolsilp, S.; Pongbupakit, I.; Sae-Lee, N.; Sitthithaworn, W. Radical Scavenging Activity and Total Phenolic Content of Medicinal Plants Used in Primary Health Care. SWU J. Pharm. Sci. 2004, 9, 32–35. [Google Scholar]
- Li, L.; Tsao, R.; Yang, R.; Liu, C.; Zhu, H.; Young, J.C. Polyphenolic Profiles And Antioxidant Activities Of Heartnut (Juglans ailanthifolia Var. Cordiformis) And Persian Walnut (Juglans regia L.). J. Agric. Food Chem. 2006, 54, 8033–8040. [Google Scholar] [CrossRef]
- Kristó, Sz.T.; Ganzler, K.; Apáti, P.; Szoke, É.; Kéry, Á. Analysis of Antioxidant Flavonoids from Asteraceae and Moraceae Plants by Capillary Electrophoresis. Chromatographia 2002, 56, 121–126. [Google Scholar] [CrossRef]
- Ricci, D.; Giamperi, L.; Bucchini, A.; Fraternale, D. Antioxidant Activity of Punica Granatum Fruits. Fitoterapia 2006, 77, 310–312. [Google Scholar] Ghisoelli, A.; Serafini, M.; Maiani, G.; Azzini, E.; Ferro-Luzzi, A. A Fluorescence-Based Method for Measuring Total Plasma Antioxidant Capability. Free Radic. Biol. Med. 1995, 18, 29–36. [Google Scholar]
- Ayranci, E.; Tunc, S. The Effect of Edible Coatings on Water and Vitamin C Loss of Apricots (Armeniaca Vulgaris Lam.) and Green Peppers (Capsicum Annuum L.). Food Chem. 2004, 87, 339–342. [Google Scholar] Häkkinen, S. Flavonols and Phenolic Acids in Berries and Berry Products. Doctoral Dissertation, Kuopio University Publications D. Medical Sciences 221, 2000. [Google Scholar] De Simón, F.B.; Pérez-Ilzarbe, J.; Hernández, T.; Gómez-Cordovés, C.; Estrella, I. Importance of Phenolic Compounds for the Characterization of Fruit Juices. J. Agric. Food Chem. 1992, 40, 1531–1535. [Google Scholar] Tomás-Lorente, F.; Garcia-Viguera, C.; Ferreres, F.; Tomás-Barberán, F.A. Phenolic Compounds Analysis in the Determination of Fruit Jam Genuineness. J. Agric. Food Chem. 1992, 40, 1800–1804. [Google Scholar]
- Hamauzu, Y.; Yasui, H.; Inno, T.; Kume, C.; Omanyuda, M. Phenolic Profile, Antioxidant Property, and Anti-Influenza Viral Activity of Chinese Quince (Pseudocydonia sinensis Schneid.), Quince (Cydonia oblonga Mill.), and Apple (Malus domestica Mill.) Fruits. J. Agric. Food Chem. 2005, 53, 928–934. [Google Scholar]
- Schieber, A.; Keller, P.; Carle, R. Determination of Phenolic Acids and Flavonoids of Apple and Pear by High-Performance Liquid Chromatography. J. Chrom. A. 2001, 910, 265–273. [Google Scholar] [CrossRef]
- Daels-Rakotoarison, D.A.; Gressier, B.; Trotin, F.; Brunet, C.; Luyckx, M.; Dine, T.; Bailleul, F.; Cazin, M.; Cazin, J.C. Effects of Rosa canina Fruit Extract on Neutrophil Respiratory Burst. Phytother Res. 2002, 16, 157–161. [Google Scholar] Gao, X.; Bjork, L.; Trajkovski, V.; Uggla, M. Evaluation of Antioxidant Activities of Rosehip Ethanol Extracts in Different Test Systems. J. Sci. Food Agric. 2000, 80, 2021–2027. [Google Scholar]
- Del Río, J.A.; Fuster, M.D.; Gómez, P.; Porras, I.; García -Lidón, A.; Ortuño, A. Citrus Limon: A Source of Flavonoids of Pharmaceutical Interest. Food Chem. 2004, 84, 457–461. [Google Scholar] [CrossRef]
- Perucka, I.; Materska, M. Phenylalanine Ammonia-Lyase and Antioxidant Activities of Lipophilic Fraction of Fresh Pepper Fruits Capsicum Annum L. Innov. Food Sci. Emerg. Techn. 2001, 2, 189–192. [Google Scholar] [CrossRef]
- Bilgiçli, N.; Elgün, A.; Türker, S. Effects of Various Phytase Sources on Phytic Acid Content, Mineral Extractability ond Protein Digestibility of Tarhana. Food Chem. 2006, 98, 329–337. [Google Scholar] Tokuşoğlu, Ö.; Ünal, M.K.; Yildirim, Z. HPLC-UV and GC-MS Characterization of the Flavonol Aglycons Quercetin, Kaempferol, and Myricetin in Tomato Pastes and Other Tomato-Based Products. Acta Chromatogr. 2003, 13, 196–207. [Google Scholar]
- Fauconneau, B.; Waffo-Teguo, P.; Huguet, F.; Barrier, L.; Decendit, A.; Merillon, J.M. Comparative Study of Radical Scavenger and Antioxidant Properties of Phenolic Compounds from Vitis vinifera Cell Cultures Using in vitro Tests. Life Sci. 1997, 61, 2103–2110. [Google Scholar]
- Shon, M.Y.; Choi, S.D.; Kahng, G.G.; Nam, S.H.; Sung, N.J. Antimutagenic, Antioxidant and Free Radical Scavenging Activity of Ethyl Acetate Extracts From White, Yellow and Red Onions. Food Chem. Tox. 2004, 42, 659–666. [Google Scholar] Lanzotti, V. The Analysis of Onion and Garlic. J. Chrom. A. 2006, 1112, 3–22. [Google Scholar] Franke, A.A.; Custer, L.J.; Arakaki, C.; Murphy, S.P. Vitamin C and Flavonoid Levels of Fruits and Vegetables Consumed in Hawaii. J. Food Compos. Analy. 2004, 17, 1–35. [Google Scholar]
- Pedreschi, R.; Cisneros-Zevallos, L. Antimutagenic and Antioxidant Properties of Phenolic Fractions from Andean Purple Corn (Zea mays L.). J. Agric. Food Chem. 2006, 54, 4557–4567. [Google Scholar] [CrossRef]
- Whitaker, B.D.; Stommel, J.R. Distribution of Hydroxycinamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongena L.) Cultivars. J. Agric. Food Chem. 2003, 51, 3448–3454. [Google Scholar] [CrossRef]
- Reyes, L.F.; Cisneros-Zevallos, L. Wounding Stress Increases the Phenolic Content and Antioxidant Capacity of Purple-Flesh Potatoes (Solanum tuberosum L.). J. Agric. Food Chem. 2003, 51, 5296–5300. [Google Scholar] Swain, T.; Hillis, W.E. The Phenolic Constituents of Prunus domestica. I. -The Quantitative Analysis of Phenolic Constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. Technol. 1995, 28, 25–30. [Google Scholar]
- Dueñas, M.; Hernández, T.; Estrella, I. Assessment of in Vitro Antioxidant Capacity of the Seed Coat and the Cotyledon of Legumes in Relation to Their Phenolic Contents. Food Chem. 2006, 98, 95–103. [Google Scholar] [CrossRef]
- Jiratanan, T.; Liu, R.H. Antioxidant Activity of Processed Table Beets (Beta vulgaris var, conditiva) and Green Beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2004, 52, 2659–2670. [Google Scholar] [CrossRef]
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants, Antioxidants, and the Degenerative Diseases of Aging. Proc. Natl. Acad. Sci., USA. 1993, 90, 7915–7922. [Google Scholar]
- Niki, E. Antioxidant Activity: Are We Measuring It Correctly? Nutrition 2002, 18, 524–525. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry Behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and Prooxidant Behavior of Flavonoids: Structure-Activity Relationships. Free Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Zheng, L.-F.; Wei, Q.-Y.; Cai, Y.-J.; Fang, J.G.; Zhou, B.; Yang, L.; Liu, Z.-L. DNA Damage Induced by Resveratrol and Its Synthetic Analogues in the Presence of Cu(II) Ions: Mechanism and Structure-Activity Relationship. Free. Radic. Biol. Med. 2006, 41, 1807–1816. [Google Scholar] [CrossRef]
- Bors, W.; Hellers, W.; Michel, C.; Saran, M. Radical Chemistry of Flavonoid Antioxidants. In Antioxidants in Therapy and Preventive Medicine; Emerit, I., Ed.; Plenum Pub Corp; 1999a; Volume 1, pp. 165–170. [Google Scholar] Bors, W.; Hellers, W.; Michel, C.; Saran, M. Flavonoids as Antioxidants: Determination of Radical-Scavenging Efficiencies. Meth. Enzymol. 1990b, 186, 343–355. [Google Scholar]
- Van Acker, S.A.B.E.; van den Berg, D.-J.; Tromp, M.N.J.L.; Griffioen, D.H.; van Bennekom, W.P.; van der Vijgh, W.J.F.; Bast, A. Structural Aspects of Antioxidant Activity of Flavonoids. Free Radic. Biol. Med. 1996, 20, 331–342. [Google Scholar] [CrossRef]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Firuzi, O.; Lacanna, A.; Petrucci, R.; Marrosu, G.; Saso, L. Evaluation of The Antioxidant Activity of Flavonoids by "Ferric Reducing Antioxidant Power" Assay and Cyclic Voltammetry. Biochim. Biophys. Acta 2005, 1721, 174–184. [Google Scholar] [CrossRef]
- Seeram, N.P.; Nair, M.G. Inhibition of Lipid Peroxidation and Structure-Activity-Related Studies of the Dietary Constituents Anthocyanins, Anthocyanidins, and Catechins. J. Agric. Food Chem. 2002, 50, 5308–5312. [Google Scholar] [CrossRef]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus Flavonoids: Molecular Structure, Biological Activity and Nutritional Properties: A Review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant Properties of Phenolic Compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Cai, Y.-Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure-Radical Scavenging Activity Relationships of Phenolic Compounds from Traditional Chinese Medicinal Plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Halliwell, B.; Aruoma, O.I. DNA Damage by Oxygen-Derived Species. Its Mechanism and Measurement in Mammalian Systems. FEBS Lett. 1991, 281, 9–19. [Google Scholar] [CrossRef]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total Antioxidant Capacity as a Tool to Assess Redox Status: Critical View and Experimental Data. Free Radic. Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols as Determined by A Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Cao, G.; Verdon, C.P.; Wu, A.H.B.; Wang, H.; Prior, R.L. Automated Assay of Oxygen Radical Absorbance Capacity with The COBAS FARA II. Clin. Chem. 1995, 41, 1738–1744. [Google Scholar]
- Glazer, A.N. Phycoerythrin Fluorescence-Based Assay for Reactive Oxygen Species. Methods Enzymol. 1990, 186, 161–168. [Google Scholar] [CrossRef]
- Cao, G.; Alessio, H.M.; Cutler, R.G.; Alessio, H.M. Oxygen-Radical Absorbance Capacity Assay for Antioxidants. Free Radic. Biol.Med. 1993, 14, 303–311. [Google Scholar] [CrossRef]
- Ghiselli, A.; Serafini, M.; Maiani, G.; Azzini, E.; Ferro-Luzzi, A. A Fluorescence-Based Method for Measuring Total Plasma Antioxidant Capability. Free Radic. Biol.Med. 1995, 18, 29–36. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of An Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as The Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Wayner, D.D.M.; Burton, G.W.; Ingold, K.U.; Locke, S. Quantitative Measurement of The Total, Peroxyl Radical-Trapping Antioxidant Capability of Human Blood Plasma by Controlled Peroxidation. The Important Contribution Made By Plasma Proteins. FEBS Lett. 1985, 187, 33–37. [Google Scholar] [CrossRef]
- Bors, W.; Michel, C.; Saran, M. Inhibition of The Bleaching of The Carotenoid Crocin. A Rapid Test for Quantifying Antioxidant Activity. Biochim. Biophys. Acta - Lipids Lipid Metab. 1984, 796, 312–319. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and Antiradical Activities of Flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A.; Davies, M.J.; Gopinathan, V.; Milner, A. A Novel Method for Measuring Antioxidant Capacity and Its Application to Monitoring the Antioxidant Status in Premature Neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar]
- Re, R,; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M. Antioxidant Activity Applying An Improved ABTS Radical Cation Decolorization Assay. Free Radical Biol Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and Mechanisms of Antioxidant Activity Using The DPPH• Free Radical Method. Food Sci. Technol. 1997, 30, 609–615. [Google Scholar]
- Sanchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F.A. A Procedure to Measure the Antiradical Efficiency of Polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Folin, O.; Ciocalteu, V. On Tyrosine and Tryptophane Determinations in Proteins. J. Biol. Chem. 1927, 73, 627–650. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of 'Antioxidant Power': The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Szeto, Y.T. Total Antioxidant Capacity of Teas by The Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. A Novel Total Antioxidant Capacity Index for Dietary Polyphenols, Vitamins C and E, Using Their Cupric Ion Reducing Capability in the Presence of Neocuproine: CUPRAC Method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Ozyurek, M.; Karademir, S.E.; Altun, M. Total Antioxidant Capacity Assay of Human Serum Using Copper(II)-Neocuproine as Chromogenic Oxidant: The CUPRAC Method. Free Radic. Res. 2005, 39, 949–961. [Google Scholar]
- Ozyurt, D.; Demirata, B.; Apak, R. Determination of Total Antioxidant Capacity by a New Spectrophotometric Method Based on Ce(IV) Reducing Capacity Measurement. Talanta 2007, 71, 1155–1165. [Google Scholar] [CrossRef]
- Ewing, J.F.; Janero, D.R. Microplate Superoxide Dismutase Assay Employing a Nonenzymatic Superoxide Generator. Anal. Biochem. 1995, 232, 243–248. [Google Scholar] [CrossRef]
- De la Harpe, J.; Nathan, C.F. A Semi-Automated Micro-Assay for H2O2 Release by Human Blood Monocytes and Mouse Peritoneal Macrophages. J. Immunol. Methods 1985, 78, 323–336. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C. Thiobarbituric Acid-Reactivity Following Iron-Dependent Free-Radical Damage to Amino Acids and Carbohydrates. FEBS Lett. 1981, 128, 343–346. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Formation of Thiobarbituric-Acid-Reactive Substance from Deoxyribose in The Presence of Iron Salts: The Role of Superoxide and Hydroxyl Radicals. FEBS Lett. 1981, 128, 347–352. [Google Scholar] [CrossRef]
- Bektasoglu, B.; Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Novel Hydroxyl Radical Scavenging Antioxidant Activity Assay for Water-Soluble Antioxidants Using a Modified CUPRAC Method. Biochem. Biophys. Res. Commun. 2006, 345, 1194–1200. [Google Scholar] [CrossRef]
- Frankel, E.N.; Meyer, A.S. The Problems of Using One-Dimensional Methods to Evaluate Multifunctional Food and Biological Antioxidants. J. Sci. Food Agric. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- Arnao, M.B. Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: A Practical Case. Trends Food Sci. Tech. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Schleiser, K.; Harwat, M.; Böhm, V.; Bitsh, R. Assessment of Antioxidant Activity by Using Different in Vitro Methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar]
- Awika, J.M.; Rooney, L.W.; Wu, X.; Prior, R.L.; Cisneros-Zevallos, L. Screening Methods to Measure Antioxidant Activity of Sorghum (Sorghum bicolor) and Sorghum Products. J. Agric. Food Chem. 2003, 51, 6657–6662. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J. Total Antioxidant Status in Plasma and Body Fluids. Meth. Enzymol. 1994, 234, 279–293. [Google Scholar] [CrossRef]
- Cao, G.; Prior, R.L. Comparison of Different Analytical Methods for Assessing Total Antioxidant Capacity of Human Serum. Clin. Chem. 1998, 44, 1309–1315. [Google Scholar]
- Janaszewska, A.; Bartosz, G. Assay of Total Antioxidant Capacity: Comparison of Four Methods as Applied to Human Blood Plasma. Scand. J. Clin. Lab. Invest. 2002, 62, 231–236. [Google Scholar] [CrossRef]
- Robards, K.; Prenzler, P.D.; Tucker, G.; Swatsitang, P.; Glover, W. Phenolic Compounds and Their Role in Oxidative Processes in Fruits. Food Chem. 1999, 66, 401–436. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comperative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef]
- Park, Y.-S.; Jung, S.-T.; Kang, S.-G.; Delgado-Licon, E.; Katrich, E.; Tashma, Z.; Trakhtenberg, S.; Gorinstein, S. Effect of Ethylene Treatment on Kiwifruit Bioactivity. Plant Foods Hum. Nutr. 2006, 61, 151–156. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Besada, A. A Facile and Sensitive Spectrophotometric Determination of Ascorbic Acid. Talanta 1987, 34, 731–732. [Google Scholar] [CrossRef]
- Berker, K.I.; Güçlü, K.; Tor, I.; Apak, R. Comparative Evaluation of Fe(III) Reducing Power-Based Antioxidant Capacity Assays in the Presence of Phenanthroline, Batho-phenanthroline, Tripyridyltriazine (FRAP), and Ferricyanide Reagents. Talanta 2007, 72, 1157–1165. [Google Scholar] [CrossRef]
- Ozcelik, B.; Lee, J.H.; Min, D.B. Effects of Light, Oxygen, and pH on The Absorbance of 2,2-Diphenyl-1-Picrylhydrazyl. J. Food Sci. 2003, 68, 487–490. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagent. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Noruma, T.; Kikuchi, M.; Kawakami, Y. Proton-Donative Antioxidant Activity of Fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). Biochem. Mol. Biol. Int. 1997, 42, 361–370. [Google Scholar]
- Van den Berg, R.; Haenen, G.R.M.M.; Van den Berg, H.; Bast, A. Applicability of an Improved Trolox Equivalent Antioxidant Capacity (TEAC) Assay for Evaluation of Antioxidant Capacity Measurement of Mixtures. Food Chem. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; van Buren, L.; Wagner, E.; Wiseman, S.; van de Put, F.; Dacombe, C.; Rice-Evans, C.A. The Antioxidant Activity of Regularly Consumed Fruit and Vegetables Reflects Their Phenolic and Vitamin C Composition. Free Radic. Res. 2002, 36, 217–233. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar]
- Vinson, J.A.; Su, X.; Zubik, L.; Bose, P. Phenol Antioxidant Quantity and Quality in Foods: Fruits. J. Agric. Food Chem. 2001, 49, 5315–5321. [Google Scholar] [CrossRef]
- Miller, H.E.; Rigelhof, F.; Marquart, L.; Prakash, A.; Kanter, M. Antioxidant Content of Whole Grain Breakfast Cereals, Fruits and Vegetables. J. Am. Coll. Nutr. 2000, 19, 312–319. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and Hydrophilic Antioxidant Capacities of Common Foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Cao, G.; Sofic, E.; Prior, R.L. Antioxidant Capacity of Tea and Common Vegetables. J. Agric. Food Chem. 1996, 44, 3426–3431. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity (CUPRAC) and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 37, 292–304. [Google Scholar]
- Güçlü, K.; Altun, M.; Özyürek, M.; Karademir, S.E.; Apak, R. Antioxidant Capacity of Fresh, Sun- and Sulfited-Dried Malatya Apricot (Prunus Armeniaca) Assayed by CUPRAC, ABTS/TEAC and Folin Methods. Int. J. Food Sci. Tech. 2006, 41, 76–85. [Google Scholar] [CrossRef]
- Paganga, G.; Miller, N.; Rice-Evans, C.A. The Polyphenolic Content of Fruit and Vegetables and Their Antioxidant Activities. What does a Serving Constitute? Free Radic. Res. 1999, 30, 153–162. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Tütem, E.; Apak, R.; Baykut, F. Spectrophotometric Determination of Trace Amounts of Copper(I) and Reducing Agents with Neocuproine in the Presence of Copper(II). Analyst 1991, 116, 89–94. [Google Scholar] [CrossRef]
- Castelluccio, C.; Bolwell, G.P.; Gerrish, C.; Rice-Evans, C.A. Differential Distribution of Ferulic Acid to the Major Plasma Constituents in relation to Its Potential as An Antioxidant. Biochem. Journal. 1996, 316, 691–694. [Google Scholar]
- Kanski, J.; Aksenova, M.; Stoyanova, A.; Butterfield, D.A. Ferulic Acid Antioxidant Protection Against Hydroxyl and Peroxyl Radical Oxidation in Synaptosomal and Neuronal Cell Culture Systems In Vitro: Structure-Activity Studies. J. Nutr. Biochem. 2002, 13, 273–281. [Google Scholar] [CrossRef]
- Tepe, B.; Eminagaoglu, O.; Akpulat, H.A.; Aydın, E. Antioxidant Potentials of Rosmarinic Acid Levels of Methanolic Extracts of Salyvia verticillata (L.) subsp. verticillata and S. verticillata (L.) subsp. amasiaca (Freyn & Bornm.) Bornm. Food Chem. 2007, 100, 985–989. [Google Scholar] [CrossRef]
- Chen, J.H.; Ho, C.-T. Antioxidant Activities of Caffeic Acid and Its Related Hydroxycinnamic Acid Compounds. J. Agric. Food Chem. 1997, 45, 2374–2378. [Google Scholar] [CrossRef]
- Cervellati, R.; Renzulli, C.; Guerra, M.C.; Speroni, E. Evaluation of Antioxidant Activity of Some Natural Polyphenolic Compounds Using the Briggs-Rauscher Reaction Method. J. Agric. Food Chem. 2002, 50, 7504–7509. [Google Scholar] [CrossRef]
- Kim, D.-O.; Lee, C.Y. Comprehensive Study on Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Various Polyphenolics in Scavenging a Free Radical and its Structural Relationship. Critic. Rev. Food Sci. Nutr. 2004, 44, 253–273. [Google Scholar] [CrossRef]
- Miliauskas, G.; van Beek, T.A.; Venskutonis, P.R.; Linssen, J.P.H.; de Waard, P. Antioxidative Activity of Geranium Macrorrhizum. Eur. Food Res. Technol. 2004, 218, 253–261. [Google Scholar] [CrossRef]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. CUPRAC Total Antioxidant Capacity Assay of Lipophilic Antioxidants in Combination with Hydrophilic Antioxidants Using the Macrocyclic Oligosaccharide Methyl-β-Cyclodextrin as the Solubility Enhancer. React. Func. Polym. 2007, in press. [Google Scholar]
- Porter, W.L.; Black, E.; Drolet, A.M. Use of Polyamide Oxidative Fluorescence Test on Lipid Emulsions: Contrast in Relative Effectiveness of Antioxidants in Bulk Versus Dispersed Systems. J. Agric. Food Chem. 1989, 37, 615–624. [Google Scholar] [CrossRef]
- Frankel, E.N.; Huang, S-W.; Aeschbach, R.; Prior, E. Antioxidant Activity of a Rosemary Extract and its Constituents, Carnosic Acid, Carnosol and Rosmarinic Acid in Bulk Oil and Oil-in-Water Emulsion. J. Agric. Food Chem. 1996, 44, 131–135. [Google Scholar]
- Özyürek, M.; Çelik, S.E.; Berker, K.I.; Güçlü, K.; Tor, I.; Apak, R. Sensitivity Enhancement of CUPRAC and Iron(III)-Phenanthroline Antioxidant Assays by Preconcentration of Colored Reaction Products on a Weakly Acidic Cation Exchanger. React. Func. Polym. 2007, in press. [Google Scholar]
- Gorinstein, S.; Leontowicz, M.; Leontowicz, H.; Najman, K.; Namiesnik, J.; Park, Y.-S.; Jung, S.-T.; Kang, S.-G.; Trakhtenberg, S. Supplementation of Garlic Lowers Lipids and Increases Antioxidant Capacity in Plasma of Rats. Nutr. Res. 2006, 26, 362–368. [Google Scholar] [CrossRef]
- Fruhwirth, G.O.; Wagner, F.S.; Hermetter, A. The αPROX Assay: Fluorescence Screening of the Inhibitory Effects of Hydrophilic Antioxidants on Protein Oxidation. Anal. Bioanal. Chem. 2006, 384, 703–712. [Google Scholar] [CrossRef]
- Mazor, D.; Greenberg, L.; Shamir, D.; Meyerstein, D.; Meyerstein, N. Antioxidant Properties of Bucillamine: Possible Mode of Action. Biochem. Biophys. Res. Commun. 2006, 349, 1171–1175. [Google Scholar] [CrossRef]
- Ozturk, M.; Aydogmus-Ozturk, F.; Duru, M.E.; Topcu, G. Antioxidant Activity of Stem and Root Extracts of Rhubarb (Rheum ribes): An Edible Medicinal Plant. Food Chem. 2007, 103, 623–630. [Google Scholar] [CrossRef]
- Tütem, E.; Apak, R. Simultaneous Spectrophotometric Determination of Cystine and Cysteine in Amino Acid Mixtures Using Copper(II)-Neocuproine Reagent. Anal. Chim. Acta. 1991, 255, 121–125. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Oxygen Toxicity, Oxygen Radicals, Transition Metals and Disease. Biochem. J. 1984, 219, 1–14. [Google Scholar]
- Sample Availability: Samples of the compounds are available from authors.
© 2007 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496-1547. https://doi.org/10.3390/12071496
Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules. 2007; 12(7):1496-1547. https://doi.org/10.3390/12071496
Chicago/Turabian StyleApak, Reşat, Kubilay Güçlü, Birsen Demirata, Mustafa Özyürek, Saliha Esin Çelik, Burcu Bektaşoğlu, K. Işıl Berker, and Dilek Özyurt. 2007. "Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay" Molecules 12, no. 7: 1496-1547. https://doi.org/10.3390/12071496