Next Article in Journal
Molecular Modeling Studies on 11H-Dibenz[b,e]azepine and Dibenz[b,f][1,4]oxazepine Derivatives as Potent Agonists of the Human TRPA1 Receptor
Previous Article in Journal
The Influence of Mixed Activators on Ethylene Polymerization and Ethylene/1-Hexene Copolymerization with Silica-Supported Ziegler-Natta Catalyst
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives

Laboratoire de Chimie Organique Fès, Faculté des Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdellah, Morocco
*
Author to whom correspondence should be addressed.
Molecules 2010, 15(12), 9354-9363; https://doi.org/10.3390/molecules15129354
Submission received: 26 October 2010 / Revised: 19 November 2010 / Accepted: 25 November 2010 / Published: 17 November 2010

Abstract

:
New racemic methyl or ethyl α-aminoglycinate derivatives were synthesized by N-alkylation of amines (aniline, 4-methylaniline, 2-methylaniline, 2,4-dimethoxyaniline, 2-nitroaniline, 4-chloro-2-fluoroaniline, 2-naphthylamine, benzylamine, N,N-dibenzylamine, and cyclohexylamine) with methyl or ethyl α-azidoglycinate.

1. Introduction

Amino acids are the fundamental building blocks of peptides and proteins and play essential roles in living organisms. Because of the physiological importance of α-amino acids, innumerable studies for their chemistry and synthesis have been published [1,2,3,4]. Along with the elucidation of their distributions, origins and physiological functions, the D-amino acids have been recognized as the candidates for novel physiologically active substances and/or marker molecules of diseases [5,6].
Since the end of last century, the studies of amino acids have changed to focusing on their biochemistry, physiology and medical activities such as apoptosis inducing, platelet aggregation-inhibiting/inducing, antimicrobial, anti-HIV.
The synthesis of amino acids was a very important development [7]. Their applications can be found currently in several domains: biochemistry, enzymology [8,9,10,11], medicine (antibiotics, antiepileptics, antivirals, antiprotozoals, cardiovascular, atherosclerosis, renal failure and diabetes, neuroexciters [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26]), agrochemical industry (herbicides, fungicides, regulation of plant growth), in addition to their important utility as chiral auxiliaries in asymmetric synthesis [27,28]. The development of simple, efficient and highly selective methods for widely used organic compounds from readily available reagents is one of the major challenges in organic synthesis. Among these, C-N bond formation is one of the most important transformations. The reactions of amines have been a topic of immense research interest due to their synthetic utility [29,30,31,32,33] and biological activity [34]. Amines are widely used as intermediates to prepare solvents, fine chemicals, agrochemicals, pharmaceuticals and as polymerization catalysts [35,36,37].
Diaminoacids are important non-protein amino acids, usually components of both natural and synthetic bioactive compounds [38]. In fact, they are currently well recognized as key structural moieties in a variety of biologically active molecules [39,40].
The literature [41,42,43,44,45,46,47,48,49] reports different methods of alkylation, among which phase transfer catalysis, the N-alkylation by microwaves, and the Mitsunobu reaction with organic azides have proved to be efficient key intermediates in organic synthesis for the construction of heterocyclic systems by cycloaddition reactions, while the substitution of the azide group has received much less attention. Continuing our investigations on the use of organic azides [50,51], we report in this paper another part of our investigations concerning the preparation of new α,α-diaminocarboxylic esters derivatives with the aim of providing access to new active biomolecules.

2. Results and Discussion

Our strategy is based on the N-alkylation of amines with methyl or ethyl α-azidoglycinate 1 (R = CH3) or 1’ (R = C2H5) (Scheme 1). Azide derivatives 1 and 1’ were prepared using Achamlale’s version of the Steglich reaction [52] and [53,54]. The title compounds are stable and can be stored for an unlimited amount of time without any signs of decomposition. Methyl or ethyl α-bromoglycinate also can be used and give satisfactory results; the azide 1 (R = CH3) or 1’ (R = C2H5) are used especially for their stability.
Scheme 1. N-alkylation of different amines, with methyl or ethyl α-azidoglycinate 1 (R = CH3) or 1’ (R = C2H5).
Scheme 1. N-alkylation of different amines, with methyl or ethyl α-azidoglycinate 1 (R = CH3) or 1’ (R = C2H5).
Molecules 15 09354 g001
As shown in Scheme 1, the N-alkylation reactions of various amine nucleophiles (aniline, 4-methylaniline, 2-methylaniline, 2,4-dimethoxyaniline, 2-nitroaniline, 4-chloro-2-fluoroaniline, 2-naphthylamine, benzylamine, N,N-dibenzylamine, and cyclohexylamine) with N-benzoylated methyl or ethyl α-azido-glycinates 1 (R = CH3) or 1’ (R = C2H5) were performed in dry acetone for 48 h at room temperature in the presence of diisopropylethylamine (DIPEA). The products 2-11 were obtained in good to high chemical yields (62-92%) and were characterized by MS, 1H-NMR and 13C-NMR spectroscopy. The results are summarized in Table 1.
Table 1. Synthesis of new methyl or ethyl α-aminoglycinates derivatives 2-11.
Table 1. Synthesis of new methyl or ethyl α-aminoglycinates derivatives 2-11.
EntryNu-HProductm.p. (°C)Reaction Time (h)Yield (%)δ (ppm)
1AnilineMethyl 2-benzamido-2-(phenylamino)acetate (2)124-12648806.22
24-methylaniline (R = Me)Methyl 2-benzamido-2-(p-tolylamino)acetate (3)140-14248906.14
34-methylaniline (R = Et)Ethyl 2-benzamido-2-(p-tolylamino)acetate (3’)164-16648806.11
42-methylanilineMethyl 2-benzamido-2-(o-tolylamino)acetate (4)128-13048906.22
52,4-dimethoxy-anilineMethyl 2-benzamido-2-(2,4-dimethoxyphenylamino)acetate (5)170-1724886.56.15
64-chloro-2-fluoro-anilineMethyl 2-benzamido-2-(4-chloro-2-fluorophenylamino)acetate (6)152-15448906.20
72-nitroanilineEthyl 2-benzamido-2-(2-nitrophenylamino)acetate (7)173-17448866.82
82-naphthylamineEthyl 2-benzamido-2-(2-naphthylamino)acetate (8)210-21248626.25
9BenzylamineMethyl 2-benzamido-2-(benzylamino)acetate (9)104-10648765.56
10N,N-dibenzyl-amineMethyl 2-benzamido-2-(N,N-dibenzylamino)acetate (10)130-13248845.58
112-amino-cyclohexaneMethyl 2-benzamido-2-(cyclohexylamino)acetate (11)182-18448925.72
Comparing these results with only the work done by our team [41,50,51], we see that we obtained almost identical results. The molecule 2 used for previous work as a reference model. In continuation of that work, we studied herein the influence of donors and withdrawing groups on the the aromatic ring of the aniline moiety on the NMR chemical shifts of these systems. In molecule 2 used as a reference, the proton on the carbon α to the carboxylate group appears as a doublet at 6.22 ppm. When the aromatic ring bears a donor group in positions 2 or 4 (entries 2, 3 and 4), the chemical shift of the α-proton does not undergo any major changes (δCH = 6.14-6.20 ppm).
It should be noted that in the 1H-NMR spectrum of pure product 6 the α-proton at 6.20 ppm appears as a multiplet. The chemical shift is practically the same as that of the α-proton in the reference molecule 2, and the splitting is probably due to the opposite effects (+ M) and (− I) of the two halogen atoms (fluorine in position 2 and chlorine in position 4) on the aromatic ring.
In molecule 7, the α-proton multiplet underwent a deshielding of 6.22 to 6.82 ppm due to the presence of an electron withdrawing group [with inductive and mesomeric effects (− I, − M)] at the ortho position of the aromatic aniline system. In the case of benzylamine, dibenzylamine and cyclohexylamine as N-alkylation reagents, the chemical shift of the α-hydrogen undergoes a shielding of about 0.60 ppm (6.22 to 5.62 ppm) compared to molecule 2 used as a reference model (products 9, 10 and 11). This can be justified by the electrondonor effect (+ I) of the benzyl and cyclohexyl groups.
In conclusion, this method provides a convenient method and easy procedure for the preparation of new methyl or ethyl α-aminoglycinate derivatives starting from the appropriate azide derivatives 1 (R = CH3) or 1’ (R = C2H5). The N-alkylation of various amines (aniline, 4-methylaniline, 2-methylaniline, 2,4-dimethoxyaniline, 2-nitroaniline, 4-chloro-2-fluoroaniline, 2-naphthylamine, benzylamine, N,N-dibenzylamine, and cyclohexylamine) with azide occurred under very mild conditions and led after a reaction time of about 48 h to the desired products in very satisfactory yields (Table 1).The nucleophilic nature of the reagents has an immediate influence on the α-hydrogen acidity and its possible effect the reactivity of the α,α-diamino acids.

3. Experimental

3.1. General

Melting points were determined with an Electrothermal melting point apparatus and are uncorrected. NMR spectra (1H, 13C) were recorded on a Bruker AM 300 (operating at 300.13 MHz for 1H, at 75.47 MHz for 13C) spectrometer (Centre Universitaire Régional d’Interface, Fès). NMR data are listed in ppm and are reported relative to tetramethylsilane (1H, 13C); residual solvent peaks being used as internal standard. All reactions were followed by TLC. TLC analyses were carried out on 0.25 mm thick precoated silica gel plates (Merck Fertigplatten Kieselgel 60F254) and spots were visualised under UV light or by exposure to vaporised iodine. Mass spectra were recorded by electrospray on a micromass ESl Platform II (Université Montpellier II, France) and on a PolarisQ Ion Trap GC/MSn Mass Spectrometer (Centre Universitaire Régional d’Interface, Fès). Methyl α-azidoglycinate 1 (R = CH3) or 1’ (R = C2H5) was prepared using Achamlale’s method [53,54].

3.2. Typical Procedure for N-Alkylation

To a stirred solution of amine (2.86 mmol) and diisopropylethylamine (3.12 mmol) in dry acetone (10 mL), α-azidoglycinate (2.6 mmol) was added. The mixture was stirred at room temperature and the reaction was followed by TLC (Kiesegel Merck 60F524). The solvent was evaporated under reduced pressure. The residue was quenched with saturated aqueous solution of ammonium chloride (20 mL) and extracted with dichloromethane(20 mL × 3). The organic phase was dried in sodium sulfate (Na2SO4) and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel using ether/hexane as eluant to afford pure N-alkylated product.
Methyl 2-benzamido-2-(phenylamino)acetate (2): Yield 80%; Solid, m.p. 124-126 °C (ether/hexane); Rf = 0.75 (ether); 1H-NMR (CDCl3, ppm): δ = 7.80 (m, 2H, Harom), 7.56-7.49 (m, 4H, Harom), 7.15-7.09 (m, 2H, NHamid + Harom), 6.79-6.68 (m, 3H, Harom), 6.22 (d, 1H, Hα, 8 Hz), 4.91 (br s, 1H, NH), 3.87 (s, 3H, OCH3); 13C-NMR (CDCl3, ppm): δ = 170.0, 166.7 (CO), 146.2, 133.7, 132.2 (2C), 129.4, 128.8 (2C), 127.9 (2C), 118.0, 113.5 (2C) (C6H5 aromatic carbons), 60.9(-CH-), 53.0 (CH3O); MS (electrospray) m/z: 285.2 (M + 1, 9%), 164 (100%), 104 (21%); (Formula: C16H16N2O3).
Methyl 2-benzamido-2-(p-tolylamino)acetate (3): Yield 90%; Solid, m.p. 140-142 °C (ether/hexane); Rf = 0.67 (ether); 1H-NMR (CDCl3, ppm): δ = 7.76 (m, 2H, Harom), 7.52-7.40 (m, 3H, Harom), 7.02 (m, 2H, NHamid + Harom), 6.77-6.67 (m, 3H, Harom), 6.14 (d, 1H, Hα, 7.8 Hz), 4.90 (br s, 1H, NH), 3.86 (s, 3H, OCH3), 2.24 (s, 3H, CH3); 13C-NMR (CDCl3, ppm): δ = 170.5, 167.2 (CO), 141.6, 133.2, 132.1, 130.0 (2C), 129.0, 128.7 (2C), 127.2 (2C), 114.2 (2C) (C6H5 aromatic carbons), 61.1 (-CH-), 53.4 (OCH3), 20.5 (CH3); EIMS m/z: 298 (M+., 12%), 239 (88%), 122 (38%), 105 (100%), 77 (59%); (Formula: C17H18N2O3).
Ethyl 2-benzamido-2-(p-tolylamino)acetate (3’): Yield 80%; Solid, m.p. 164-166 °C (ether/hexane);Rf = 0.72 (ether); 1H-NMR (CDCl3, ppm): δ = 7.75 (m, 2H, NHamid + Harom), 7.52-7.40 (m, 3H, Harom), 7.02 (m, 2H, NHamid + Harom), 6.82-6.69 (m, 3H, Harom), 6.11 (d, 1H, Hα, 7.9Hz), 4.90 (br s, 1H, NH), 4.32 (q, 2H, OCH2, 7.05Hz), 2.25 (s, 3H, CH3), 1.33 (t, 3H, CH3, 7.05Hz); 13C-NMR (CDCl3, ppm):δ = 170.0, 167.3 (CO), 141.7, 133.4, 132.0, 130.0 (2C), 128.9, 128.6 (2C), 127.1 (2C), 114.3 (2C) (C6H5 aromatic carbons), 62.6 (-CH-), 61.3 (CH3CH2O), 20.5 (CH3), 14.9 (CH3CH2O); MS (electrospray) m/z: 313.2 (M + 1, 11.81 %); 239.1 (88.58%), 192.1 (11.82%), 136.1(37.80%), 118.0 (59.06%), 105.0 (100%); (Formula: C18H20N2O3).
Methyl 2-benzamido-2-(o-tolylamino)acetate (4): Yield 90%; Solid, m.p. 128-130 °C (ether/hexane); Rf = 0.62 (ether);1H-NMR (CDCl3, ppm): δ = 7.85 (m, 2H, Harom), 7.56-7.41 (m, 3H, Harom), 7.15-7.09 (m, 2H, NHamid + Harom), 6.79-6.68 (m, 3H, Harom), 6.22 (d, 1H, Hα, 8 Hz), 5.05 (br s, 1H, NH), 3.88 (s, 3H, OCH3), 2.24 (s, 3H, CH3); 13C-NMR (CDCl3, ppm): δ = 170.6, 167.2 (CO), 142.2, 133.2, 132.2, 130.6, 128.7 (2C), 127.4, 127.2 (2C), 123.1, 119.2, 111.3 (C6H5 aromatic carbons), 60.7 (-CH-), 53.4 (OCH3), 17.5 (CH3); EIMS m/z: 298 (M+.,14%), 239 (87%), 122 (64%), 105 (100%), 77 (69%); (Formula: C17H18N2O3).
Methyl 2-benzamido-2-(2,4-dimethoxyphenylamino)acetate (5): Yield 86.5%; Solid, m.p. 170-172 °C (ether/hexane); Rf = 0.69 (ether);1H-NMR (CDCl3, ppm): δ = 7.78 (m, 2H, Harom), 7.55-7.30 (m, 3H, Harom), 6.90-6.38 (m, 4H, NHamid + Harom), 6.15 (d, 1H, Hα, 7.8Hz), 5.10 (br s,1H, NH), 3.85 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 3.74 (s, 3H, OCH3); 13C-NMR (CDCl3, ppm): δ = 170.5, 167.2 (CO), 153.7, 148.7, 133.4, 132.0, 128.6 (2C), 127.8, 127.4 (2C), 112.9, 103.9, 99.3 (C6H5 aromatic carbons), 61.3 (-CH-), 55.6, 55.5, 53.2 (OCH3); MS (electrospray) m/z: 345.2 (M + 1, 17.45%), 224.2 (79.19%), 192.2 (3.36%), 164.3 (11.41%); (Formula: C18H20N2O5).
Methyl 2-benzamido-2-(4-chloro-2-fluorophenylamino)acetate (6): Yield 90%; Solid, m.p. 152-154 °C (ether/hexane); Rf = 0.87 (ether);1H-NMR (CDCl3, ppm): δ = 7.78 (m, 2H, Harom), 7.62-7.41 (m, 3H, Harom), 7.05-6.85 (m, 4H, NHamid + Harom), 6.20 (m, 1H, Hα), 5.15 (br s, 1H, NH), 3.85 (s, 3H, OCH3); 13C-NMR (CDCl3, ppm): δ = 169.8, 167.3 (CO), 152.6, 132.9, 132.3, 131.5, 128.8 (2C), 127.3 (2C), 124.9, 123.7, 115.7, 114.6 (C6H5 aromatic carbons), 60.0 (-CH-), 53.5 (OCH3); MS (electrospray) m/z: 361.1 (6.41%), 359.1 (16.99%), 337.1 (M + 1, 7.05%), 218.2 (32.05%), 216.2 (100%), 122.3 (58.33%); (Formula: C16H14ClFN2O3).
Ethyl 2-benzamido-2-(2-nitrophenylamino)acetate (7): Yield 86%; Solid, m.p. 173-174 °C (ether/hexane); Rf = 0.83 (ether);1H-NMR (CDCl3, ppm): δ = 8.85 (br s, 1H, NHamid), 8.25-6.92 (5m, 9H, Harom), 6.82 (m, 1H, Hα), 6.45 (br s, 1H, NH), 4.35 (q, 2H, OCH2, 7.1Hz), 1.35 (t, 3H, CH3, 7.1Hz); 13C-NMR (CDCl3, ppm): δ = 168.5, 167.1 (CO), 142.0, 136.6, 133.6, 132.9, 132.4, 128.8 (2C), 127.2 (2C), 126.8, 117.8, 115.1 (C6H5 aromatic carbons), 63.1 (-CH-); 59.3 (CH3CH2O); 14.0 (CH3CH2O); MS (electrospray) m/z: 366.2 (26.75%), 344.1 (M + 1, 17.52%), 223.2 (47.77%), 206.2 (57.96%), 105.3 (100%); (Formula: C17H17N3O5).
Ethyl 2-benzamido-2-(naphthalen-2-ylamino)acetate (8): Yield 62%; Solid, m.p. 210-212 °C (ether/hexane); Rf = 0.67 (ether);1H-NMR (CDCl3, ppm): δ = 7.85 (m, 2H, Harom), 7.71-7.64 (m, 3H, Harom), 7.51-7.25 (m, 6H, Harom), 7.07 (m, 2H, NHamid + Harom), 6.87 (d, 1H, NH, 8.0Hz), 6.25 (d, 1H, Hα, 8.0Hz), 4.35 (q, 2H, OCH2, 7.1Hz), 1.34 (t, 3H, CH3, 7.1Hz); MS (electrospray) m/z: 697.3 (2M+1, 4.17%), 349.2 (M + 1, 8.01%), 154.3 (3.21%), 228.1 (100%); (Formula: C21H20N2O3).
Methyl 2-benzamido-2-(benzylamino)acetate (9): Yield 76%; Solid, m.p. 104-106 °C (ether/hexane); 6.97 (m, 1H, NH), 5.56 (d, 1H, Hα, 7.5Hz), 3.87 (d, 2H, CH2, 9.8 Hz), 3.79 (s, 3H, OCH3); 13C-NMR (CDCl3, ppm): δ = 170.8, 167.4 (CO), 139.2, 133.4, 132.1, 128.7 (2C), 128.5 (2C), 128.3 (2C), 127.3, 127.1 (2C) (C6H5 aromatic carbons), 65.0 (-CH-), 53.0 (OCH3), 49.2 (CH2); EIMS m/z: 298.8 (M+., 100%), 239 (25%), 178 (67%), 105 (31%), 91 (24%), 77 (10%); (Formula: C17H18N2O3).
Methyl 2-benzamido-2-(N,N-dibenzylamino)acetate (10): Yield 84%; Solid, m.p. 130-132 °C (ether/ hexane); Rf = 0.82 (ether); 1H-NMR (CDCl3, ppm): δ = 7.87 (d, 1H, NHamid, 7.3 Hz), 7.50 (m, 15H, Harom), 5.58 (d, 1H, Hα, 7.3 Hz), 3.95 (br s, 4H, NCH2), 3.85 (s, 3H, OCH3); 13C-NMR (CDCl3, ppm): δ = 170.4, 167.9 (CO), 139.6 (2C), 133.2, 132.2, 129.0 (4C), 128.8 (4C), 128.6 (2C), 128.3 (2C), 127.0 (2C) (C6H5 aromatic carbons), 66.5 (-CH-); 54.1 (2C) (CH2), 52.7 (OCH3); EIMS m/z: 389.9 (M + 1, 25.20%), 388.9 (M+., 100%), 329.3 (68.50%), 268.3 (93.70%), 196.2 (41.73%), 105.2 (22.05%), 77.3 (55.91%); (Formula: C24H24N2O3).
Methyl 2-benzamido-2-(cyclohexylamino)acetate (11): Yield 92%; Solid, m.p. 182-184 °C (ether/ hexane); Rf = 0.6 (ether); 1H-NMR (CDCl3, ppm): δ = 8.02-7.99 (m, 2H, NHamid + Harom), 7.56-7.46 (m, 4H, Harom), 5.72 (d, 1H, Hα, 6.18Hz), 3.87 (s, 3H, OCH3), 2.83-0.87 (m, 12H, Hcyc + NH); 13C-NMR (CDCl3, ppm): δ = 170.9, 167.4 (CO), 133.4, 132.0, 128.7 (2C), 127.4 (2C) (C6H5 aromatic carbons), 63.0 (-CH-), 56.0 (OCH3), 52.7 (-CHCH2-), 32.5 (2C), 26.3 (2C), 25.2 (CH2); EIMS m/z: 289.1 (M+., 14.29%), 231.2 (100%), 170.2 (47.62%), 105.4 (88.10%), 77.4 (28.17%); (Formula: C16H22N2O3).

Acknowledgements

We thank the CNR for financial support of this work (PROTARS D13/03, Morocco).

References and Notes

  1. Duthaler, R.O. Recent developments in the stereoselective synthesis of alpha-amino acids. Tetrahedron 1994, 50, 1539–1650. [Google Scholar] [CrossRef]
  2. Beller, M.; Eckert, M. Amidocarbonylation-an efficient route to amino acid derivatives. Angew. Chem. 2000, 39, 1011–1027. [Google Scholar]
  3. Palacios, F.; Alonso, C.; de los Santos, J.M. Synthesis of β-aminophosphonates and phosphinates. Chem. Rev. 2005, 105, 899–932. [Google Scholar] [CrossRef]
  4. Jin, L.; Song, B.; Zhang, G.; Xu, R.; Zhang, S.; Gao, X.; Hu, D.; Yang, S. Synthesis, X-ray crystallographic analysis, and antitumor activity of N-(benzothiazole-2-yl)-1-(fluorophenyl)-O,O-dialkyl-α-aminophosphonates. Bioorg. Med. Chem. Lett. 2006, 16, 1537–1543. [Google Scholar] [CrossRef]
  5. Pollegioni, L.; Piubelli, L.; Sacchi, S.; Pilone, M.S.; Molla, G. Physiological functions of D-amino acid oxidases: from yeast to humans. Cell. Mol. Life Sci. 2007, 64, 1373–1394. [Google Scholar] [CrossRef]
  6. Sacchi, S.; Bernasconi, M.; Martineau, M.; Mothet, J.P.; Ruzzene, M.; Pilone, M.S.; Pollegioni, L.; Molla, G. pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J. Biol. Chem. 2008, 283, 22244–22256. [Google Scholar]
  7. Haemers, A.; Mishra, L.; Van Assche, I.; Bolleart, W. Asymmetric synthesis of amino acids by enantio- and diastereodifferentiating reactions. Die Pharmazie 1989, 44, 97–109. [Google Scholar]
  8. Mikolajczyk, M. Acyclic and cyclic aminophosphonic acids: asymmetric syntheses mediated by chiral sulfinyl auxiliary. J. Organomet. Chem. 2005, 690, 2488–2496. [Google Scholar] [CrossRef]
  9. Meyer, F.; Laaziri, A.; Papini, A.M.; Uziel, J.; Juge, S. A novel phosphorus-carbon bond formation by ring opening with diethyl phosphite of oxazolines derived from serine. Tetrahedron 2004, 60, 3593–3597. [Google Scholar] [CrossRef]
  10. Rodrigues, R.S.; da Silva, J.F.; Boldrini-FranÇa, J.; Fonseca, F.P.P.; Otaviano, A.R.; Henrique-Silva, F.; Magro, A.J.; Braz, A.S.K.; dos Santos, J.I.; Homsi-Brandeburgo, M.I.; Fontes, M.R.M.; Fuly, A.L.; Soares, A.M.; Rodrigues, V.M. Structural and functional properties of Bp-LAAO, a new L-amino acid oxidase isolated from Bothrops pauloensis snake venom. Biochimie 2009, 91, 490–501. [Google Scholar] [CrossRef]
  11. Samel, M.; Tõnismägi, K.; Rönnholm, G.; Vija, H.; Siigur, J.; Kalkkinen, N.; Siigur, E. L-Amino acid oxidase from Naja naja oxiana venom. Comp. Biochem. Physiol. 2008, B 149, 572–580. [Google Scholar]
  12. Leite, A.L.; Lima, R.S.; Moreira, D.R.M.; Cardoso, M.V.; Brito, A.C.G.; Santos, L.M.F.; Hernandes, M.Z.; Kiperstok, A.C.; Lima, R.S.; Soares, M.B.P. Synthesis, docking, and in vitro activity of thiosemicarbazones, aminoacyl-thiosemicarbazides and acyl-thiazolidones against Trypanosoma cruzi. Bioorg. Med. Chem. 2006, 14, 3749–3757. [Google Scholar] [CrossRef]
  13. Moreira, D.R.; Leite, A.C.L.; Ferreira, P.M.; da Costa, P.M.; Costa Lotufo, L.V.; de Moraes, M.O.; Brondani, D.J.; Pessoa, Cdo.O. Synthesis and antitumour evaluation of peptidyl-like derivatives containing the 1,3-benzodioxole system. Eur. J. Med. Chem. 2007, 42, 351–357. [Google Scholar] [CrossRef]
  14. Ciscotto, P.; Machado de Avila, R.A.; Coelho, E.A.F.; Oliveira, J.; Diniz, C.G.; Farǐas, L.M.; de Carvalho, M.A.R.; Maria, W.S.; Sanchez, E.F.; Borges, A.; Chavez-Olőrtegui, C. Antigenic, microbicidal and antiparasitic properties of an L-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon 2009, 53, 330–341. [Google Scholar] [CrossRef]
  15. Becker, S.S.; Russell, P.T.; Duncavage, J.A.; Creech, C.B. Current issues in the management of sinonasal methicillin-resistant Staphylococcus aureus. Curr. Opin. Otolaryngol. Head Neck Surg. 2009, 17, 2–5. [Google Scholar] [CrossRef]
  16. Li, R.; Zhu, S.W.; Wu, J.B.; Wang, W.Y.; Lu, Q.M.; Clemetson, K.J. L-Amino acid oxidase from Naja atra venom activates and binds to human platelets. Acta Biochim. Biophys. Sin. (Shanghai) 2008, 40, 19–26. [Google Scholar] [CrossRef]
  17. Alves, R.M.; Antonucci, G.A.; Paiva, H.H.; Cintra, A.C.O.; Franco, J.J.; Mendonça-Franqueiro, E.P.; Dorta, D.J.; Giglio, J.R.; Rosa, J.C.; Fuly, A.L.; Dias-Baruffi, M.; Soares, A.M.; Sampaio, S.V. Evidence of aspase mediated apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. Comp. Biochem. Physiol. 2008, A 151, 542–550. [Google Scholar]
  18. Trouet, A.; Passioukov, A.; Van Derpoorten, K.; Fernandez, AM.; Baurain, R.; Abarca-Quinones, J.; Lobl, TJ.; Oliyai, C.; Shochat, D.; Dubois, V. Extracellularly tumor-activated prodrugs for the selective chemotherapy of cancer: application to doxorubicin and preliminary in vitro and in vivo studies. Cancer Res. 2001, 61, 2843–2846. [Google Scholar]
  19. Wei, X.L.; Wei, J.F.; Li, T.; Qiao, L.Y.; Liu, Y.L.; Huang, T.; He, S.H. Purification, characterization and potent lung lesion activity of an L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom. Toxicon 2007, 50, 1126–1139. [Google Scholar] [CrossRef]
  20. Sant’Ana, C.D.; Menaldo, D.L.; Costa, T.R.; Godoy, H.; Muller, V.D.; Aquino, V.H.; Albuquerque, S.; Sampaio, S.V.; Monteiro, M.C.; Stábeli, R.G.; Soares, A.M. Antiviral and antiparasite properties of an L-amino acid oxidase from the snake Bothrops jararaca: cloning and identification of a complete cDNA sequence. Biochem. Pharmacol. 2008, 76, 279–288. [Google Scholar]
  21. Moore, J.D.; Sprott, K.T.; Hanson, P.R. Conformationally constrained α-Boc-aminophosphonates via transition Metal-Catalyzed/Curtius rearrangement strategies. J. Org. Chem. 2002, 67, 8123–8129. [Google Scholar] [CrossRef]
  22. Stábeli, R.G.; Sant’Ana, C.D.; Ribeiro, P.H.; Costa, T.R.; Ticli, F.K.; Pires, M.G.; Nomizob, A.; Albuquerque, S.; Malta-Neto, N.R.; Marins, M.; Sampaio, S.V.; Soares, A.M. Cytotoxic L-amino acid oxidase from Bothrops moojeni: biochemical and functional characterization. Int. J. Biol. Macromol. 2007, 41, 132–140. [Google Scholar] [CrossRef]
  23. Leite, A.C.L.; Silva, K.P.; Souza, I.A.; Janete, M.A.; Dalci, J. Synthesis, antitumour and antimicrobial activities of new peptidyl derivativescontaining the 1,3-benzodioxole system. Eur. J. Med. Chem. 2004, 39, 1059–1065. [Google Scholar] [CrossRef]
  24. Samel, M.; Vija, H.; Rönnholm, G.; Siigur, J.; Kalkkinen, N.; Siigur, E. Isolation and characterization of an apoptotic and platelet aggregation inhibiting L-amino acid oxidase from Vipera berus berus (common viper) venom. Biochim. Biophys. Acta 2006, 1764, 707–714. [Google Scholar] [CrossRef]
  25. Tőnismägi, K.; Samel, M.; Trummal, K.; Rőnnholm, G.; Siigur, J.; Kalkkinen, N.; Siigur, E. L-Amino acid oxidase from Vipera lebetina venom: isolation, characterization, effects on platelets and bacteria. Toxicon 2006, 48, 227–237. [Google Scholar] [CrossRef]
  26. Ande, S.R.; Fussi, H.; Knauer, H.; Murkovic, M.; Ghisla, S.; Fröhlich, K.U.; Macheroux, P. Induction of apoptosis in yeast by L-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Yeast 2008, 25, 349–357. [Google Scholar] [CrossRef]
  27. Reider, P.J.; Eichen Conn, R.S.; Davis, P.; Grenda, V.J.; Zambito, A.J.; Grabowski, E.J.J. Synthesis of (R)-serine-2-d and its conversion to the broad sprectrum antibiotic fludalanine. J. Org. Chem. 1987, 52, 3326–3334. [Google Scholar] [CrossRef]
  28. Saravanan, P.; Corey, E.J. A short, stereocontrolled, and practical synthesis of alpha-methylomuralide, a potent inhibitor of proteasome function. J. Org. Chem. 2003, 68, 2760–2764. [Google Scholar] [CrossRef]
  29. Wang, M.; Gould, S.J. Biosynthesis of capreomycin. 2. Incorporation of L-serine, L-alanine, and L-2,3-diaminopropionic acid. J. Org. Chem. 1993, 58, 5176–5180. [Google Scholar] [CrossRef]
  30. Shen, H.; Xie, Z. Titanacarborane mediated C-N bond forming/breaking reactions. J. Organomet. Chem. 2009, 694, 1652–1657. [Google Scholar] [CrossRef]
  31. Mohammad, N.S.R.; Ali, K.N.; Somayeh, B.; Mohammad, A.F.; Abdolkarim, Z.; Abolfath, P. One-pot synthesis of N-alkyl purine and pyrimidine derivatives from alcohols using TsIm: a rapid entry into carboacyclic nucleoside synthesis. Tetrahedron 2008, 64, 1778e–1785e. [Google Scholar] [CrossRef]
  32. Manoj, N.; Vijay, V.B. Selective N-alkylation of aniline with methanol over a heteropolyacid on montmorillonite K10. Appl. Clay Sci. 2009, 44, 255–258. [Google Scholar] [CrossRef]
  33. Martínez-Asencio, A.; Ramon, D.J.; Miguel, Y. N-Alkylation of poor nucleophilic amine and sulfonamide derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper (II) acetate. Tetrahedron Lett. 2010, 51, 325–327. [Google Scholar] [CrossRef]
  34. Shmidt, M.S.; Reverdito, A.M.; Kremenchuzky, L.; Perillo, I.A.; Blanco, M.M. Simple and efficient microwave assisted N-alkylation of Isatin. Molecules 2008, 13, 831–840. [Google Scholar] [CrossRef]
  35. Kiuchi, F.; Nishizawa, S.; Kawanishi, H.; Kinoshita, S.; Ohsima, H.; Uchitani, A.; Sekino, N.; Ishida, Kondo, M.K.; Tsuda, Y. Studies on crude drugs effective on visceral larva migrans. XVI. Nematocidal activity of long alkyl chain amides, amines, and their derivatives on dog roundworm larvae. Chem. Pharma. Bull. Jpn. 1992, 40, 3234–3244. [Google Scholar] [CrossRef]
  36. Seayad, A.M.A.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Internal olefins to linear amines. Science 2002, 297, 1676–1678. [Google Scholar] [CrossRef]
  37. Kim, J.W.; Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide. J. Catal. 2009, 263, 205–208. [Google Scholar] [CrossRef]
  38. Reddy, C.R.; Jithender, E. Acid-catalyzed N-alkylation of tosylhydrazones using benzylic alcohols. Tetrahedron Lett. 2009, 50, 5633–5635. [Google Scholar] [CrossRef]
  39. Ojima, I.; Delaloge, F. Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method. Chem. Soc. Rev. 1997, 26, 377–386. [Google Scholar] [CrossRef]
  40. Rane, D.F.; Girijavallabhan, V.M.; Ganguly, A.K.; Pike, R.E.; Saksena, A.K.; McPhail, A.T. Total synthesis and absolute stereochemistry of the antifungal dipeptide Sch 37137 and its 2S,3S-isomer. Tetrahedron Lett. 1993, 34, 3201–3204. [Google Scholar]
  41. Bentama, A.; El Hadrami, E.M.; El Hallaoui, A.; Elachqar, A.; et al. Synthesis of new α-heterocyclic α-aminoesters. Amino Acids 2003, 24, 423–426. [Google Scholar] [CrossRef]
  42. Maheswaran, H.; Gopi, K.G.; Leon, P.K.; Srinivas, V.; Chaitanya, G.K.; Bhanuprakash, K. Bis(μ-iodo)bis((−)-sparteine)dicopper(I): versatile catalyst for direct N-arylation of diverse nitrogen heterocycles with haloarenes. Tetrahedron 2008, 64, 2471–2479. [Google Scholar] [CrossRef]
  43. Spreitzer, H.; Puschmann, C. Regioselective Alkylation of an oxonaphthalene-annelated pyrrol system. Molbank 2009, 3, M619. [Google Scholar] [CrossRef]
  44. Won, K.J.; Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide. J. Catal. 2009, 263, 205–208. [Google Scholar] [CrossRef]
  45. Raji, R.C.; Jithender, E. Acid-catalyzed N-alkylation of tosylhydrazones using benzylic alcohols. Tetrahedron Lett. 2009, 50, 5633–5635. [Google Scholar] [CrossRef]
  46. Fletcher, S. Regioselective alkylation of the exocyclic nitrogen of adenine and adenosine by the Mitsunobu reaction. Tetrahedron Lett. 2010, 51, 2948–2950. [Google Scholar] [CrossRef]
  47. Martínez-Asensio, A.; Ramón, D. J.; Yus, M. N-Alkylation of poor nucleophilic amine and sulfonamide derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate. Tetrahedron Lett. 2010, 51, 325–327. [Google Scholar] [CrossRef]
  48. Zarubaev, V.V.; Golod, E.L.; Anfimov, P.M.; Shtro, A.A.; Saraev, V.V.; Gavrilov, A.S.; Logvinov, A.V.; Kiselev, O.I. Synthesis and anti-viral activity of azolo-adamantanes against influenza A virus. Bioorg. Med. Chem. 2010, 18, 839–848. [Google Scholar]
  49. Shibinskaya, M.O.; Lyakhov, S.A.; Mazepa, A.V.; Andronati, S.A.; Turov, A.V.; Zholobak, N.M.; Spivak, N.Y. Synthesis, cytotoxicity, antiviral activity and interferon inducing ability of 6-(2-aminoethyl)-6H-indolo[2,3-b]quinoxalines. Eur. J. Med. Chem. 2010, 45, 1237–1243. [Google Scholar] [CrossRef]
  50. Boukallaba, K.; Elachqar, A.; El Hallaoui, A.; Alami, A.; El Hajji, S.; Labriti, B.; Martinez, J.; Rolland, V. Synthesis of new α-heterocyclic α-aminophosphonates. Phosphor. Sulfur Silicon 2006, 181, 819–823. [Google Scholar] [CrossRef]
  51. Boukallaba, K.; Elachqar, A.; El Hallaoui, A.; Alami, A.; El Hajji, S.; Labriti, B.; Lachkar, M.; Bali, B.; Bolte, M.; Martinez, J.; Rolland, V. Synthesis of α-heterocyclic α-Aminophosphonates, Part II: morpholine, piperidine, pyrrolidine, tetrahydrofurylmethylamine, N-benzyl-N-methylamine, and aniline derivatives. Phosphor. Sulfur Silicon 2007, 182, 1045–1052. [Google Scholar] [CrossRef]
  52. Steglich, W.; Kober, R. Untersuchungen zur Reaktion von Acylaminobrommalonestern und Acylaminobromessigestern mit Trialkylphosphiten-eine einfache Synthese von 2-Amino-2-(diethoxyphosphoryl)Essigsäure Ethylester. Liebigs Ann Chem. 1983, 4, 599–609. [Google Scholar]
  53. Achamlale, S.; Elachqar, A.; El Hallaoui, A.; El Hajji, S.; Roumestant, M.L.; Viallefont, P.H. Synthesis of α-triazolyl α-aminoacid derivatives. Amino Acids 1997, 12, 257–263. [Google Scholar] [CrossRef]
  54. Achamlale, S.; Elachqar, A.; El Hallaoui, A.; El Hajji, S.; Alami, A.; Roumestant, M.L.; Viallefont, P.H. Synthesis of biheterocyclic α-aminoacid. Amino Acids 1999, 17, 149–163. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Houssine, M.E.; Abdelrhani, E.; Anouar, A.; Abdelilah, E.H. Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives. Molecules 2010, 15, 9354-9363. https://doi.org/10.3390/molecules15129354

AMA Style

Houssine ME, Abdelrhani E, Anouar A, Abdelilah EH. Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives. Molecules. 2010; 15(12):9354-9363. https://doi.org/10.3390/molecules15129354

Chicago/Turabian Style

Houssine, Mabrouk El, Elachqar Abdelrhani, Alami Anouar, and El Hallaoui Abdelilah. 2010. "Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives" Molecules 15, no. 12: 9354-9363. https://doi.org/10.3390/molecules15129354

Article Metrics

Back to TopTop