An Amperometric Immunosensor Based on a Polyelectrolyte/ Gold Magnetic Nanoparticle Supramolecular Assembly—Modified Electrode for the Determination of HIV p24 in Serum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the HIV immunosensor
2.2. Performance of the immunosensor
2.2.1. Cyclic voltammetric behaviors of the immunosensor
2.2.2. Electrochemical behaviors of the immunosensor and determination of p24
2.3. The optimum conditions of the immunoassay
2.4. Interference experiments, regeneration of the electrode surface and durability
2.5. Determination of p24 in real serum samples
Sample | HIV p24 (content)The concentration of HIV p24 (ng/mL) | ||||
---|---|---|---|---|---|
Our method | ELISA method | RSD % | Added | Recovery % | |
1 | 2.3 | 2.5 | 2.7 | 2.0 | 102.2 |
2 | 5.4 | 5.2 | 2.5 | 5.0 | 92.6 |
3 | 2.2 | 2.3 | 2.6 | 2.0 | 94.3 |
3. Experimental
3.1. Reagents
3.2. Apparatus
3.3. Preparation of GMPs-anti-p24
3.4. Fabrication of the immunosensor of Au|MSA/{pLys/GMPs-anti-p24}n
3.5. Experimental measurements
4. Conclusions
Acknowledgements
- Sample Availability: Samples of the compounds are available from the authors.
References and Notes
- Zhang, K.; Ma, S.H. Epidemiology of HIV in China. Brit. Med. J. 2002, 324, 332–337. [Google Scholar]
- Albert, J.; Fenyo, E.M. Simple, sensitive, and specific detection of human immunodeficiency virus type 1 in clinical specimens by polymerase chain reaction with nested primers. J. Clin. Microbiol. 1990, 28, 1560–1564. [Google Scholar]
- Gurtler, L.; Muhlbacher, A.; Michl, U.; Hofmann, H.; Paggi, G.; Bossi, V.; Thorstensson, R.; Villaescusa, R.G.; Eiras, A.; Hernandez, J.; Melchior, W.; Donie, F.; Weber, B. Reduction of the diagnostic window with a new combined p24 antigen and human immunodeficiency virus antibody screening assay. J. Virol. Meth. 1998, 75, 27–38. [Google Scholar] [CrossRef]
- Sickinger, E.; Stieler, M.; Kaufman, B.; Kapprell, H.; West, D.; Sandridge, A.; Devare, S.; Schochetman, G.; Hunt, J.C.; Daghfal, D. Multicenter evaluation of a new, automated enzyme-linked immunoassay for detection of human immunodeficiency virus-specific antibodies and antigen. J. Clin. Microbiol. 2004, 42, 21–29. [Google Scholar] [CrossRef]
- Sutthent, R.; Gaudart, N.; Chokpaibulkit, K.; Tanliang, N.; Kanoksinsombath, C.; Chaisilwatana, P. p24 antigen detection assay modified with a booster step for diagnosis and monitoring of human immunodeficiency virus type 1 infection. J. Clin. Microbiol. 2003, 41, 1016–1022. [Google Scholar] [CrossRef]
- Weber, B.; Gurtler, L.; Thostensson, R.; Michl, U.; Mulbacher, A.; Burgisser, P.; Vilaesscusa, R.; Eiras, A.; Gabriel, C.; Stekel, H.; Tanprasert, S.; Oota, S.; Silvestre, M.; Marques, C.; Ladeira, M.; Rabenau, H.; Berger, A.; Schmitt, U.; Melchior, W. Multicenter evaluation of a new automated fourth-generation human immunodeficiency virus screening assay with a sensitive antigen detection module and high specificity. J. Clin. Microbiol. 2002, 40, 1938–1946. [Google Scholar]
- Wu, J.; Tang, J.H.; Dai, Z.; Yan, F.; Ju, H.X.; Murr, N.E. A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens Bioelectron. 2006, 22, 102–108. [Google Scholar]
- He, X.L.; Yuan, R.; Chai, Y.Q.; Shi, Y.T. A sensitive amperometricimmunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix. J. Biochem. Biophys. Methods 2008, 70, 823–829. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.J.; Ju, H.X. Amperometric glucose sensor based on catalytic reduction of dissolved oxygen at soluble carbon nanofiber. Biosen. Bioelectron. 2007, 23, 479–484. [Google Scholar] [CrossRef]
- Wang, J. Nanomaterial-based electrochemical biosensors. Analyst 2005, 130, 421–426. [Google Scholar] [CrossRef]
- Baron, R.; Willner, B.; Willner, I. Biomolecule-nanoparticle hybrids as functional units for nanobiotechnology. Chem. Commun. 2007, 323–332. [Google Scholar]
- Wang, J. Nanoparticle-based electrochemical bioassays of proteins. Electroanalysis 2007, 19, 769–776. [Google Scholar] [CrossRef]
- Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 598, 181–192. [Google Scholar] [CrossRef]
- Kim, J.H.; Hwang, J.H.; Lim, T.Y. A layer-by-layer self-assembly method for organic-inorganic hybrid multilayer thin films. J. Ceram. Process. Res. 2009, 10, 770–773. [Google Scholar]
- Ban, Z.; Barnaov, Y.A.; Li, F.; Golup, V.O.; O’Conner, C.J. The synthesis of core shell iron and gold nanoparticles and their characterization. J. Mater. Chem. 2005, 15, 4660–4662. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Constantine, C.A.; Mello, S.V.; Dupont, A.; Cao, X.H.; Santos, D.J.; Oliveira, O.N.J.; Strixino, F.T.; Pereira, E.C.; Cheng, T.C.; Defrank, J.J.; Leblance, R.M. Layer-by-layer self-assembled chitosan/ poly (thiophene-3-acetic acid) and organophosphorus hydrolase multilayers. J. Am. Chem. Soc. 2003, 125, 1805–1809. [Google Scholar]
- Mariana, C.; Vladimir, G.M.; Manzanares, J.A.; Carlos, P.; Rubin, G.; Fernando, S. Electrochemical Characterization of Polyelectrolyte/Gold NanoparticleMultilayers Self-Assembled on Gold Electrodes. J. Phys. Chem. B. 2005, 109, 21808–21817. [Google Scholar]
- Li, X.L.; Yuan, R.; Chai, Y.Q.; Zhang, L.Y.; Zhuo, Y.; Zhang, Y. Amperometric immunosensor based on toluidine blue/nano-Au through electrostatic interaction for determination of carcinoembryonic antigen. J. Biotechnol. 2006, 123, 356–366. [Google Scholar]
- Wu, Y.; Zheng, J.W.; Li, Z.; Zhao, Y.R.; Zhang, Y. A novel reagentless amperometric immunosensor based on gold nanoparticles/TMB/Nafion-modified electrode. Biosens. Bioelectron. 2009, 24, 1389–1393. [Google Scholar] [CrossRef]
- Wang, S.F.; Tan, Y.M.; Zhao, D.M.; Liu, G.D. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens. Bioelectron. 2008, 23, 1781–1787. [Google Scholar] [CrossRef]
- Chai, R.; Yuan, R.; Chai, Y.Q.; Ou, C.F.; Cao, S.R.; Li, X.L. Amperometric immunosensors based on layer-by-layer assembly of gold nanoparticles and methylene blue on thiourea modified glassy carbon electrode for determination of human chorionic gonadotrophin. Talanta 2008, 74, 1330–1336. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gan, N.; Hou, J.; Hu, F.; Zheng, L.; Ni, M.; Cao, Y. An Amperometric Immunosensor Based on a Polyelectrolyte/ Gold Magnetic Nanoparticle Supramolecular Assembly—Modified Electrode for the Determination of HIV p24 in Serum. Molecules 2010, 15, 5053-5065. https://doi.org/10.3390/molecules15075053
Gan N, Hou J, Hu F, Zheng L, Ni M, Cao Y. An Amperometric Immunosensor Based on a Polyelectrolyte/ Gold Magnetic Nanoparticle Supramolecular Assembly—Modified Electrode for the Determination of HIV p24 in Serum. Molecules. 2010; 15(7):5053-5065. https://doi.org/10.3390/molecules15075053
Chicago/Turabian StyleGan, Ning, Jianguo Hou, Futao Hu, Lei Zheng, Minjun Ni, and Yuting Cao. 2010. "An Amperometric Immunosensor Based on a Polyelectrolyte/ Gold Magnetic Nanoparticle Supramolecular Assembly—Modified Electrode for the Determination of HIV p24 in Serum" Molecules 15, no. 7: 5053-5065. https://doi.org/10.3390/molecules15075053
APA StyleGan, N., Hou, J., Hu, F., Zheng, L., Ni, M., & Cao, Y. (2010). An Amperometric Immunosensor Based on a Polyelectrolyte/ Gold Magnetic Nanoparticle Supramolecular Assembly—Modified Electrode for the Determination of HIV p24 in Serum. Molecules, 15(7), 5053-5065. https://doi.org/10.3390/molecules15075053