Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Mullite Ceramics
Analyte | Mullite Blank | Ag-Mullite | Zinc-Mullite | Unit |
---|---|---|---|---|
SiO2 | 24.65 | 24.84 | 21.75 | % |
Al2O3 | 70.75 | 71.73 | 62.74 | % |
Zn | 78 | 323 | >10000 | ppm |
Ag | 2.2 | >100.0 | N.A.a | ppm |
Fe2O3 | 0.25 | 0.26 | 0.21 | % |
MgO | 0.11 | 0.09 | 0.09 | % |
CaO | 0.06 | 0.04 | 0.07 | % |
Na2O | 0.25 | 0.19 | 0.28 | % |
K2O | 0.46 | 0.37 | 0.41 | % |
TiO2 | 0.02 | 0.02 | 0.02 | % |
P2O5 | 0.04 | 0.04 | 0.04 | % |
MnO | <0.01 | <0.01 | <0.01 | % |
Cr2O3 | <0.002 | <0.002 | <0.002 | % |
Cu | 31 | 132 | 130 | ppm |
Ba | 26457 | 13649 | 27434 | ppm |
Ni | <20 | <20 | <20 | ppm |
Co | <20 | <20 | <20 | ppm |
Sr | 709 | 387 | 782 | ppm |
Zr | 69 | 68 | 60 | ppm |
Ce | <30 | <30 | <30 | ppm |
Y | 17 | 16 | 14 | ppm |
Nb | 6 | 7 | 8 | ppm |
Sc | 2 | 2 | 1 | ppm |
TOT/C | <0.02 | <0.02 | <0.02 | % |
TOT/S | <0.02 | <0.02 | <0.02 | % |
Sum | 99.99 | 99.74 | 99.72 | % |
2.2. Microbiological Evaluation
Ag-Mullitec (CFU ± SD)e | Zn-Mullited (CFU ± SD) e | |||
---|---|---|---|---|
Blank Discs | Ag-Discs | Blank Discs | Zn-Mullite | |
Planktonic cellsa | 8.06 × 107 | 2.25 × 105 | 1.86 × 108 | 1.88 × 108 |
(±5.6 × 107) | (± 2.2 × 105) | (± 6.8 × 107) | (± 6.6 × 107) | |
Sessile Cellsb | 6.03 × 104 | 0 | 5.5 × 104 | 1.10 × 105 |
(± 6.2 × 104) | (± 4.9 × 104) | (±1.05 × 105) |
3. Experimental
3.1 Preparation of Ceramic Discs
3.2. Characterization of Prepared Discs
3.2.1. Powder X-Ray Diffraction
3.2.2. Elemental Analyses
3.2.3. Metal Leaching Studies
3.3. Antibacterial Studies
3.3.1. Bacterial Strain
3.3.2. Media and Chemicals
3.3.3. Preparation of Ceramic Discs for Antibacterial Experiments
3.3.4. Evaluation of Discs Resistance against Bacterial Biofilm Formation
3.3.5. Measuring Anti-adherence Activity of Discs
3.3.6. Minimal Inhibitory Concentration Determination (MIC)
4. Conclusions
References
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef]
- Yala, J.; Thebault, P.; Héquet, A.; Humblot, V.; Pradier, C. Elaboration of antibiofilm material by chemical grafting of an antimicrobial peptide. Appl. Microbiol. Biotechnol. 2010, 89, 623–634. [Google Scholar]
- Coughlan, A.; Ryan, M.P.; Cummins, N.M.; Towler, M.R. The response of Pseudomonas aeruginosa biofilm to the presence of a glass polyalkenoate cement formulated from a silver containing glass. J. Mater. Sci. Lett. 2010, 46, 285–287. [Google Scholar]
- de Carvalho, C.C.R. Biofilms: Recent developments on an old battle. Recent Pat. Biotechnol. 2007, 1, 49–57. [Google Scholar] [CrossRef]
- Kalishwaralal, K.; BarathManiKanth, S.; Pandian, S.R.K.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeroginosa and Staphylococcus epidermidis. J. Ind. Microbiol. Biotechnol. 2010, 30, 102–106. [Google Scholar]
- Costa, F.; Carvalho, I.F.; Montelaro, R.C.; Gomes, P.; Martins, M.C. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2010. [Google Scholar] [CrossRef]
- Chandra, J.; Patel, J.D.; Li, J.; Zhou, G.; Mukherjee, P.K.; McCormick, T.S.; Anderso, J.M.; Ghannoum, M.A. Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Appl. Environ. Microbiol. 2005, 71, 8795–8801. [Google Scholar] [CrossRef]
- Lawson, M.C.; Holt, K.C.; DeForest, C.A.; Bowman, C.N.; Anseth, K.S. Inhibition of Staphylococcus epidermidis biofilms using polymerizable vacomycin derivatives. Clin. Orthop. Relat. Res. 2010, 468, 2081–2091. [Google Scholar] [CrossRef]
- Jacquelin, L.F.; Khassanova, L.A.; Arsac, F.; Gelle, M.P.; Choisy, C. Sensitivity of bacterial biofilms settled on copper tubing to toxic shocks induced by copper ions, with or without previous exposure. Met. Ions Biol. Med. 2002, 7, 651–654. [Google Scholar]
- Coughlan, A.; Scanlon, K.; Mahon, B.P.; Towler, M.R. Zinc and silver glass polyalkenoate cements: An evaluation of their antibacterial nature. Biomed. Mater. Eng. 2010, 20, 99–106. [Google Scholar]
- Monteiro, D.R.; Gorup, L.F.; Takamiya, A.S.; Ruvollo-Filho, A.C.; de Camargo, E.R.; Barbosa, D.B. The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents 2009, 34, 103–110. [Google Scholar] [CrossRef]
- Liao, K.; Ou, K.; Cheng, H.; Lin, C.; Peng, P. Effect of silver on antibacterial properties of stainless steel. Appl. Surf. Sci. 2010, 256, 3642–3646. [Google Scholar] [CrossRef]
- Cowan, M.M.; Abshire, K.Z.; Houk, S.L.; Evans, S.M. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J. Ind. Microbiol. Biotechol. 2003, 30, 102–106. [Google Scholar]
- Rusin, P.; Bright, K.; Gerba, C. Rapid reduction of Legionella pneumophila on stainless steel with Zeolite coating containing silver and zinc ions. Lett. Appl. Microbiol. 2003, 36, 69–72. [Google Scholar] [CrossRef]
- Pallavicini, P.; Taglietti, A.; Dacarro, G.; Diaz-Fernandez, Y.A.; Galli, M.; Grisoli, P.; Patrini, M.; De Magistris, G.S.; Zanoni, R. Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity. J. Colloid. Interface. Sci. 2010, 350, 110–116. [Google Scholar] [CrossRef]
- Aheam, D.G.; May, L.L.; Gabriel, M.M. Adherence of organisms to silver-coated surfaces. J. Ind. Microbiol. 1995, 15, 372–376. [Google Scholar] [CrossRef]
- Kim, T.N.; Feng, Q.L.; Kim, J.O.; Wang, H.; Chen, G.C.; Cui, F.Z. Antimicrobial effect of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 1998, 9, 129–134. [Google Scholar] [CrossRef]
- Coughlan, A.; Boyd, D.; Douglas, C.W.I.; Towler, M.R. Antibacterial coatings for medical devices based on glass polykenoate cement chemistry. J. Mater. Sci. Mater. Med. 2008, 19, 3555–3560. [Google Scholar] [CrossRef]
- Kawahara, K.; Tsuruda, K.; Morishita, M.; Uchida, M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic. Dent. Mater. 2000, 16, 452–455. [Google Scholar] [CrossRef]
- Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 2003, 69, 4278–4281. [Google Scholar] [CrossRef]
- Treadwell, D.R; Dabbs, D.M.; Aksay, I.A. Mullite (3Al2O3-2SiO2) Synthesis with Aluminosiloxanes. Chem. Mater. 1996, 8, 2056–2060. [Google Scholar] [CrossRef]
- Goodridge, R.D.; Dalgarno, K.W.; Wood, D.J. Indirect selective laser sintering of an apatite–mullite glass–ceramic for potential use in bone replacement applications. Proc. Inst. Mech. Eng. Part H. 2006, 220, 57–68. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, M.; Hon, M. Kinetics of secondary mullite formation in kaolinite-Al2O3 ceramics. Scripta. Mater. 2004, 51, 231–235. [Google Scholar] [CrossRef]
- Sarin, P.; Yoon, W.; Haggerty, R.P.; Chiritescu, C.; Bhorkar, N.C.; Kriven, W.M. Effect of transition-metal-ion doping on high temperature thermal expansion of 3:2 mullite—An in situ, high temperature, synchrotron diffraction study. J. Eur. Ceram. Soc. 2008, 28, 353–365. [Google Scholar] [CrossRef]
- Batyan, E.; Branitskii, G.A.; Matveichuk, S.V. Special Features of the Formation of Aluminosilicate Ceramics in the Presence of Silver Ions. Zh. Fiz. Khim+. 1996, 70, 1380–1384. [Google Scholar]
- Cesarano, J.; King, B.H.; Denham, H.B. Recent Developments in Robocasting of Ceramics and Muhimaterial Deposition. Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA; 1998. [Google Scholar]
- Samples Availability: Samples of the Ag-mullite and Zn-mullite are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Saleh, S.; Taha, M.O.; Haddadin, R.N.; Marzooqa, D.; Hodali, H. Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties. Molecules 2011, 16, 2862-2870. https://doi.org/10.3390/molecules16042862
Saleh S, Taha MO, Haddadin RN, Marzooqa D, Hodali H. Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties. Molecules. 2011; 16(4):2862-2870. https://doi.org/10.3390/molecules16042862
Chicago/Turabian StyleSaleh, Suhair, Mutasem O. Taha, Randa N. Haddadin, Duá Marzooqa, and Hamdallah Hodali. 2011. "Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties" Molecules 16, no. 4: 2862-2870. https://doi.org/10.3390/molecules16042862
APA StyleSaleh, S., Taha, M. O., Haddadin, R. N., Marzooqa, D., & Hodali, H. (2011). Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties. Molecules, 16(4), 2862-2870. https://doi.org/10.3390/molecules16042862