An Antimicrobial Compound Isolated from Cinnamomum Iners Leaves with Activity against Methicillin-Resistant Staphylococcus Aureus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial Activity
M/o | CSLE | Fractions | Standards | Solvent control (100% methanol) | ||||
---|---|---|---|---|---|---|---|---|
Ethyl acetate | Hexane | Aqueous | Butanol | Chloramphenicol | Miconazole nitrate | |||
Gram positive bacteria | ||||||||
1 | + | + | - | - | + | + | - | - |
2 | + | + | - | + | - | + | - | - |
3 | + | + | - | - | - | + | - | - |
4 | + | + | - | - | - | + | - | - |
Gram negative bacteria | ||||||||
5 | + | + | - | - | + | + | - | - |
6 | + | + | + | + | + | + | - | - |
7 | + | + | - | + | + | + | - | - |
Yeast | - | |||||||
8 | + | - | - | - | + | - | + | - |
9 | + | - | - | - | + | - | + | - |
M/o | Fractions (µg/mL) | Standards (µg/mL) | ||||||
---|---|---|---|---|---|---|---|---|
CSLE (mg/mL) | Ethyl acetate | Hexane | Aqueous | Butanol | Chloramphenicol | Miconazole nitrate | ||
MIC | MIC | MIC | MIC | MIC | MIC | MBC | MIC | |
MBC | MBC | MBC | MBC | MBC | MBC | |||
Gram positive bacteria | ||||||||
1 | 12.50 | >800 | >800 | >800 | 400 | 6.25 | 12.5 | NT |
25.00 | >800 | >800 | >800 | >800 | NT | |||
2 | 3.13 | >800 | >800 | >800 | >800 | 6.25 | 12.5 | NT |
6.25 | >800 | >800 | >800 | >800 | NT | |||
3 | 6.25 | >800 | >800 | >800 | >800 | 6.25 | 12.5 | NT |
12.50 | >800 | >800 | >800 | >800 | NT | |||
4 | 0.78 | 100 | >800 | >800 | >800 | 6.25 | 12.5 | NT |
1.50 | 200 | >800 | >800 | >800 | NT | |||
Gram negative bacteria | ||||||||
5 | 0.78 | 200 | >800 | >800 | 100 | 6.25 | 12.5 | NT |
1.50 | 400 | >800 | >800 | 400 | NT | |||
6 | 25.00 | >800 | >800 | >800 | >800 | 6.25 | 12.5 | NT |
50.00 | >800 | >800 | >800 | >800 | NT | |||
7 | 6.25 | >800 | >800 | >800 | >800 | 6.25 | 12.5 | NT |
12.50 | >800 | >800 | >800 | >800 | NT | |||
Yeast | ||||||||
8 | 3.13 | >800 | >800 | >800 | >800 | NT | NT | 6.25 |
6.25 | >800 | >800 | >800 | >800 | 12.5 | |||
9 | 25.00 | >800 | >800 | >800 | >800 | NT | NT | 6.25 |
50.00 | >800 | >800 | >800 | >800 | 12.5 |
M/o | CSLE (mg/mL) | Ethyl acetate fraction (μg/mL) | Xanthorrhizol (μg/mL) | Vancomycin | Methicillin |
---|---|---|---|---|---|
1 | 0.78 | 200 | >200 | 12.5 | 12.5 |
2 | 0.78 | 100 | 12.5 | 12.5 | 12.5 |
3 | 0.78 | 100 | 25.0 | >50 | >50 |
2.2. Isolation and Identification of Antimicrobial Compound
3. Experimental
3.1. General
3.2. Plant Materials
3.3. Extraction and Fractionation Procedures
3.4. Isolation and Characterization of Xanthorrhizol
3.5. Microbial Strains
3.6. Disk Diffusion Assay
3.7. Determination of Minimum Inhibitory Concentrations (MIC)
3.8. Determination of Minimum Bactericidal and Fungicidal Concentration (MBC and MFC)
3.9. Bioautography and Identification of Antimicrobial Compound
4. Conclusions
Acknowledgements
References
- Buzby, J.C.; Roberts,, T. Economic costs and trade impacts of microbial foodborne illness. World Health Stat. Q. 1997, 50, 57–66. [Google Scholar]
- Levy, S.B. The challenge of antibiotic resistance. Sci. Am. 1998, 278, 46–53. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar]
- Holah, J.T.; Taylor, J.H.; Dawson, D.J.; Hall, K.E. Biocide use in the food industry and the disinfectant resistance of persistent strains of Listeria monocytogenes and Escherichia coli. J. Appl. Microbiol. 2002, 92, 111–120. [Google Scholar] [CrossRef]
- Styers, D.; Sheehan, D.J.; Hogan, P.; Sahm, D.F. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann. Clin. Microbiol. Antimicrob. 2006, 5, 2. [Google Scholar] [CrossRef]
- Deresinski, S. Methicillin-resistant Staphylococcus aureus: An evolutionary, epidemiologic, and therapeutic odyssey. Clin. Infect. Dis. 2005, 40, 562–573. [Google Scholar] [CrossRef]
- Choi, O.H. Tumbuhan liar, khasiat ubatan dan kegunaan lain, 1st ed; Utusan Kuala Lumpur Publications and Distributors Sdn Bhd: Kuala Lumpur, Malaysia, 2003; pp. 132–133. [Google Scholar]
- Wan, O.A.; Ngah, Z.U.; Zaridah, M.Z.; Noor, R.A. In vitro and in vivo antiplasmodial properties of some Malaysian plants used in traditional medicine. Infect. Dis. J. Pak. 2007, 16, 97–101. [Google Scholar]
- Iida, N.; Ishii, R.; Hakamata, J.; Myamoto, S.; Oozeki, H. Amylase inhibitors for food and pharmaceutical. Japanese Kokai Tokkyo Koho Patent No. JP 09040572, 1997. [Google Scholar]
- Baruah, A.; Nath, S.C.; Hazarika, A.K. Stem bark oil of Cinnamomum iners Reinw. Indian Perfumer. 2001, 45, 261–263. [Google Scholar]
- Mustaffa, F.; Indurkar, J.; Ismail, S.; Mordi, M.N.; Surash, R.; Mansor, S.M. Analgesic activity, toxicity study and phytochemical screening of Cinnamomum iners standardized leaves methanolic extract. Pharmacogn. Res. 2010, 2, 76–81. [Google Scholar] [CrossRef]
- Mustaffa, F.; Indurkar, J.; Ismail, S.; Mordi, M.N.; Surash, R.; Mansor, S.M. Antioxidant capacity and toxicity screening of Cinnamomum iners standardized leaves methanolic extract. Int. J. Pharmacol. 2010, 6, 888–895. [Google Scholar] [CrossRef]
- Pengelly, A. Constituents of Medicinal Plants, 2nd ed; CABI Publisher: Cambridge, UK, 2004; p. 66. [Google Scholar]
- Eloff, J.N.; Masoko, P. The diversity of antifungal compounds of six South African Terminalia species (Combretaceae) determined by bioautography. Afr. J. Biotechnol. 2005, 4, 1425–1431. [Google Scholar]
- Sieradzki, K.; Roberts, R.B.; Haber, S.W.; Tomasz, A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N. Engl. J. Med. 1999, 340, 517–523. [Google Scholar] [CrossRef]
- Shanab, B.A.; Adwan, G.; Jarrar, N.; Hijleh, A.A.; Adwan, K. Antibacterial activity of four plant extracts used in Palestine in folkloric medicine against methicillin-resistant Staphylococcus aureus. Turk. J. Biol. 2006, 30, 195–198. [Google Scholar]
- Mata, R.; Martinez, E.; Bye, R.; Morales, G.; Singh, M.P.; Janso, J.E.; Maiese, W.M.; Timmermann, B. Biological and mechanistic activities of xanthorrhizol and 4-(1,5-dimethylhex-4-enyl)-2-methylphenol isolated from Iostephane Heterophylla. J. Nat. Prod. 2001, 64, 911–914. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed; Springer-Verlag: New York, NY, USA, 2001; p. 124. [Google Scholar]
- Ehara, T.; Tanikawa, S.; Ono, M.; Akita, H. Synthesis of (R)-curcumene and (R)-xanthorrhizol based on 1, 2-aryl migration via phenonium ion. Chem. Pharm. Bull. 2007, 55, 1361–1364. [Google Scholar] [CrossRef]
- Hwang, J.K.; Shim, J.S.; Pyun, Y.R. Antibacterial activity of xanthorrhizol from Curcuma xanthorriza against oral pathogens. Fitoterapia 2000, 71, 321–323. [Google Scholar] [CrossRef]
- Rukayadi, Y.; Hwang, J.K. In vitro antimycotic activity of xanthorrhizol isolated from Curcuma xanthorriza Roxb. against opportunistic filamentous fungi. Phytother. Res. 2007, 21, 434–438. [Google Scholar] [CrossRef]
- Lim, C.S.; Jin, D.Q.; Mok, H.; Oh, S.J.; Lee, J.U.; Hwang, J.K.; Ha, I.; Han, J.S. Antioxidant and antiinflammatory activities of xanthorrhizol in Hippocampal neurons and primary cultured microglia. J. Neurosci. Res. 2005, 82, 831–838. [Google Scholar] [CrossRef]
- Rukayandi, Y.; Yong, D.; Hwang, J.K. In vitro anticandidal activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. J. Antimicrob. Chemother. 2006, 57, 1231–1234. [Google Scholar] [CrossRef]
- Oh, H.I.; Shim, J.S.; Gwon, H.S.; Kwon, H.J.; Hwang, J.K. The effect of xanthorrhizol on the expression of matrix metalloproteinase-1 and type-I procollagen in ultraviolet-irradiated human skin fibroblasts. Phytother. Res. 2009, 23, 1299–1302. [Google Scholar] [CrossRef]
- Alzoreky, N.S.; Nakahara, K. Antibacterial activity of extracts from some edible plant commonly consumed in Asia. Int. J. Food Microbiol. 2003, 80, 223–230. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar]
- Doughari, J.H. Antimicrobial activity of Tamarindus indica Linn. Trop. J. Pharm. Res. 2006, 5, 597–603. [Google Scholar]
- Ishikawa, N.K.; Kasuya, M.C.M.; Vanetti, M.C.D. Antibacterial activity of Lentinula edodes grown in liquid medium. Braz. J. Microbiol. 2001, 32, 206–210. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mustaffa, F.; Indurkar, J.; Ismail, S.; Shah, M.; Mansor, S.M. An Antimicrobial Compound Isolated from Cinnamomum Iners Leaves with Activity against Methicillin-Resistant Staphylococcus Aureus. Molecules 2011, 16, 3037-3047. https://doi.org/10.3390/molecules16043037
Mustaffa F, Indurkar J, Ismail S, Shah M, Mansor SM. An Antimicrobial Compound Isolated from Cinnamomum Iners Leaves with Activity against Methicillin-Resistant Staphylococcus Aureus. Molecules. 2011; 16(4):3037-3047. https://doi.org/10.3390/molecules16043037
Chicago/Turabian StyleMustaffa, Fazlina, Jayant Indurkar, Sabariah Ismail, Marina Shah, and Sharif Mahsufi Mansor. 2011. "An Antimicrobial Compound Isolated from Cinnamomum Iners Leaves with Activity against Methicillin-Resistant Staphylococcus Aureus" Molecules 16, no. 4: 3037-3047. https://doi.org/10.3390/molecules16043037
APA StyleMustaffa, F., Indurkar, J., Ismail, S., Shah, M., & Mansor, S. M. (2011). An Antimicrobial Compound Isolated from Cinnamomum Iners Leaves with Activity against Methicillin-Resistant Staphylococcus Aureus. Molecules, 16(4), 3037-3047. https://doi.org/10.3390/molecules16043037