HPLC Analysis of Supercritical Carbon Dioxide and Compressed Propane Extracts from Piper amalago L. with Antileishmanial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Method Development
2.2. Validation
2.2.1. Linearity
2.2.2. Precision
2.2.3. Accuracy
Alkaloid | Analyte concentration (μg/mL) | Repeatability (RSD%) | Intermediate precision(RSD%) 1 | Recovery (%) (mean ± SD 2) | Mean ± SD | RSD (%) |
---|---|---|---|---|---|---|
Compound 1 | 23.05 | 1.34 | 2.29 | 103.00 ± 3.19 | 102.91 ± 0.94 | 0.91 |
92.2 | 2.27 | 1.13 | 101.93 ± 2.04 | |||
184.4 | 0.83 | 2.50 | 103.80 ± 3.10 |
2.2.4. Limits of Detection and Quantification
2.3. Analysis of Alkaloid Content in Extracts Obtained by Supercritical CO2, Compressed Propane and Chloroform
Extraction Method | mg of alkaloid/g of extract (w/w) | mg of alkaloid/g dried plant (w/w) |
---|---|---|
mean ± SD (n = 3) | mean ± SD (n = 3) | |
SFE-CO2 | 600.53 ± 21.08 | 5.11 ± 0.18 b |
313 K and, 12.55 MPa | ||
SFE-CO2 | 454.63 ± 18.93 | 4.70 ± 0.19 b |
333 K and, 20.5 MPa | ||
Compressed propane | 296.06 ± 11.23 a | 1.40 ± 0.05 c |
293 K and, 15.0 MPa | ||
Compressed propane | 345.56 ± 10.45 | 2.20 ± 0.06 |
313 K and, 15.0 MPa | ||
Compressed propane | 209.60 ± 4.55 | 1.51 ± 0.03 c |
333 K and, 15.0 MPa | ||
Maceration with chloroform | 306.83 ± 5.82 a | 12.96 ± 0.24 |
2.4. Antileishmanial Activity of the Extracs Against the Promastigotes and Intracellular Amastigotes Forms
Sample | Promastigotes | Cytotoxicity | Intracellular amastigotes | |
---|---|---|---|---|
IC50 (μg/mL) * | CC50 (μg/mL) * | IC50 * | SI | |
SFE-CO2 | 16 ± 0.25 a | 93 ± 1.52 c | 7 ± 0.15 | 13.28 |
313 K and, 12.55 MPa | ||||
SFE-CO2 | 27.9 ± 3.9 b | 67.5 ± 15 d | 13.65 ± 1.25 e | 4.94 |
333 K and, 20.5 MPa | ||||
Compressed propane | 29.8 ± 3.8 b | 55 ± 4.45 d | 22.85 ± 1.85 f | 2.41 |
293 K and, 15.0 MPa | ||||
Compressed propane | 23.5 ± 3.2 a,b | 43 ± 7.55 d | 12.85 ± 0.35 e | 3.34 |
313 K and, 15.0 MPa | ||||
Compressed propane | 34.4 ± 7.63 b | 91 ± 8.5 c | 23.65 ± 1.25 f | 3.84 |
333 K and, 15.0 MPa | ||||
Chloroform extract | 15.0 ± 3.0 a | 49.5 ± 1.45 | 13.6 ± 1.0 e | 3.64 |
Pentamidine Isethionate | 1.3 ± 0.08 | 41.48 ± 2.96 | 0.89 ± 0.12 | 46.61 |
3. Experimental
3.1. Plant Material
3.2. Extraction Using Supercritical Carbon Dioxide and Compressed Propane
Solvent | Dried plant amount (g) | Temperature (K) | Pressure(MPa) | Density (g/mL) | Flow rate(mL/min) |
---|---|---|---|---|---|
CO2 | 12.92 | 313 | 12.55 | 0.7349 | 2 |
CO2 | 12.57 | 333 | 20.50 | 0.7331 | 2 |
Propane | 10.09 | 293 | 15.0 | 0.5320 | 2 |
Propane | 10.52 | 313 | 15.0 | 0.5088 | 2 |
Propane | 11.07 | 333 | 15.0 | 0.4836 | 2 |
3.3. General Experimental Procedures
3.3.1. Purification of Alkaloids
3.4. HPLC Analysis
3.4.1. Reagents and Chemicals
3.4.2. Sample Preparation
3.4.3. Chromatographic Conditions
3.4.4. Validation Parameters
3.4.4.1. Linearity
3.4.4.2. Precision
3.4.4.3. Accuracy
3.4.4.4. Limit of Detection and Quantification
3.5. Evaluation of the Extracts Against the Promastigote and Intracellular Amastigote Forms of L. amazonensis
3.5.1. Parasites
3.5.2. Cells
3.5.3. Animals
3.5.4. Stock Solutions
3.5.5. Antileishmanial Activity Against Promastigotes
3.5.6. Cytotoxicity Evaluation
3.5.7. Antileishmanial Activity Against Intracellular Amastigotes
3.5.8. Assay for Nitric Oxide Production
3.5.9. Statistical Analysis
4. Conclusions
Acknowledgements
References and Notes
- Singh, S.; Sivakumar, R. Challenges and new discoveries in the treatment of leishmaniasis. J. Infect. Chemother. 2004, 10, 307–315. [Google Scholar] [CrossRef]
- Carvalho, P.B.; Arribas, M.A.G.; Ferreira, E.I. Leishmaniasis. What do we know about its chemotherapy? Rev. Bras. Cien. Farm. 2000, 36, 69–96. [Google Scholar]
- Croft, S.L.; Coombs, G.H. Leishmaniasis current chemotheraphy and recent advances in the search for novel drugs. Trends Parasitol. 2003, 19, 502–508. [Google Scholar] [CrossRef]
- Grevelink, S.A.; Lerner, E.A. Leishmaniasis. J. Am. Acad. Dermatol. 1996, 34, 257–272. [Google Scholar] [CrossRef]
- Santos, D.O.; Coutinho, C.E.R.; Madeira, M.F.; Bottino, C.G.; Vieira, R.T.; Nascimento, S.B.; Bernardinho, A.; Bourguignon, S.C.; Corte-Real, S.; Pinho, R.T.; et al. Leishmaniasis treatment: A challenge that remains: A rewiew. Parasitol. Res. 2008, 103, 1–10. [Google Scholar]
- Berman, J.D. Current treatment approaches to leishmaniasis. Curr. Opin. Infect. Dis. 2003, 16, 397–401. [Google Scholar] [CrossRef]
- Alécio, A.C.; da Silva Bolzani, V.; Young, M.C.M.; Kato, M.J.; Furlan, M. Antifungal amide from leaves of Piper hispidum. J. Nat. Prod. 1998, 61, 637–639. [Google Scholar] [CrossRef]
- Felipe, F.C.B.; Filho, J.T.S.; de Oliveira Souza, L.E.; Silveira, J.A.; de Andrade Uchoa, D.E.; Silveira, E.R.; Pessoa, O.D.L.; de Barros Viana, G.S. Piplartine, an alkaloid from Piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine 2007, 14, 605–612. [Google Scholar]
- Navickiene, H.M.; Alécio, A.C.; Kato, M.J.; da S. Bolzani, V.; Young, M.C.M.; Cavalheiro, A.J.; Furlan, M. Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 2000, 55, 621–626. [Google Scholar]
- Parmar, V.S.; Jain, S.C.; Bisht, K.S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O.D.; Prasad, A.K.; Wengel, J.; Olsen, C.E.; Boll, P.M. Phytochemistry of the genus Piper. Phytochemistry 1997, 46, 597–673. [Google Scholar]
- Rho, M.C.; Lee, S.W.; Park, H.R.; Choi, J.H.; Kang, J.Y.; Kim, K.; Lee, H.S.; Kim, Y.K. ACAT inhibition of alkamides identified in the fruits of Piper nigrum. Phytochemistry 2007, 68, 899–903. [Google Scholar]
- Rukachaisirikul, T.; Siriwattanakit, P.; Sukcharoenpol, K.; Wongvein, C.; Ruttanaweang, C.; Wongwattanavuch, P.; Suksamrarn, A. Chemical constituents and bioactivity of Piper sarmentosum. J. Ethnopharmacol. 2004, 93, 173–176. [Google Scholar] [CrossRef]
- Rodrigues Silva, D.; Baroni, S.; Svidzinski, A.E.; Bersani-Amado, C.A.; Cortez, D.A.G. Anti-inflammatory activity of the extract, fractions and amide from the leaves of Piper ovatum Vahl (Piperaceae). J. Ethnopharmacol. 2008, 116, 569–573. [Google Scholar] [CrossRef]
- da Silva, R.V.; Navickiene, H.M.D.; Kato, M.J.; da Bolzani, V.S.; Méda, C.I.; Young, M.C.M.; Furlan, M. Antifungal amides from Piper arboreum and Piper tuberculatum. Phytochemistry 2002, 59, 521–527. [Google Scholar] [CrossRef]
- Soares, D.C.; Pereira, C.G.; Meireles, M.A.A.; Saraiva, E.M. Leishmanicidal activity of a supercritical fluid fraction obtained from Tabernaemontana catharinensis. Parasitol. Int. 2007, 56, 135–139. [Google Scholar] [CrossRef]
- Sunila, E.S.; Kuttan, G. Immunomodulatory and antitumor activity of Piper longum and piperine. J. Ethnopharmacol. 2004, 90, 339–346. [Google Scholar] [CrossRef]
- Achenbach, H.; Grob, J.; Portecop, J. Ishwarol, the main sesquiterpene in Piper amalago. Planta Med. 1984, 50, 528–529. [Google Scholar] [CrossRef]
- Achenbach, H.; Fietz, W.; Wörth, J.; Waibel, R.; Portecop, J. Constituents of tropical medicinal plants IXX. GC/MS-investigations of the constituents of Piper amalago—30 New amides of the piperine-type. Planta Med. 1986, 52, 12–18. [Google Scholar] [CrossRef]
- da Carrara, V.S.; de Souza, A.; Dias-Filho, B.P.; Nakamura, C.V.; de Paulo, L.F.; Young, M.C.M.; Svidzinski, T.I.E.; Cortez, D.A.G. Chemical composition and antifungal activity of essential oil from Piper amalago L. Latin Am. J. Pharm. 2010, 29, 1459–1462. [Google Scholar]
- Domínguez, X.A.; Verde, J.; Sugar, S.; Trevino, R. Two amides from Piper amalago. Phytochemistry 1986, 25, 239–240. [Google Scholar]
- Jacobs, H.; Seeram, N.P.; Nair, M.G.; Reynolds, W.F.; McLean, S. Amides of Piper amalago var. nigrinodum. J. Indian Chem. Soc. 1999, 76, 713–717. [Google Scholar]
- da Carrara, V.S.; Cunha-Júnior, E.F.; Torres-Santos, E.C.; Corrêa, A.G.; Monteiro, J.L.; Cortez, D.A.G. Structure-activity relationship of pyrrolidine alkaloids derivatives against Leishmania amazonensis. Bioorg. Chem. 2011. submitted. [Google Scholar]
- Illés, V.; Ottó, A. Supercritical extraction for the recovery of vegetable materials II. Oil extraction from plant seeds by supercritical carbon dioxide. J. Hung. Chem. 1992, 47, 246–252. [Google Scholar]
- Illés, V.; Szalai, O.; Then, M.; Daood, H.; Perneczki, S. Extraction of hiprose fruit by supercrítical CO2 and propane. J. Supercrit. Fluids 1997, 10, 209–218. [Google Scholar] [CrossRef]
- Reverchon, E. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluids 1997, 10, 1–37. [Google Scholar] [CrossRef]
- Stahl, E.; Schütz, E.; Mangold, H.K. Extraction of seed oils with liquid and supercritical CO2. J. Agric. Food Chem. 1980, 28, 1153–1157. [Google Scholar] [CrossRef]
- Reverchon, E.; de Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Bicchi, C.; Rubiolo, P.; Frattini, C. Off line supercritical fluid extraction and gás of pyrrolidizine alkaloids in Senecio species. J. Nat. Prod. 1991, 54, 941–945. [Google Scholar] [CrossRef]
- Cardozo, E.L., Jr; Cardozo-Filho, L.; Ferrarese, F.O.; Zanoelo, E.F. Selective liquid CO2 extraction of purine alkaloids in different Ilex paraguaiensis progenies grown under environmental influences. J. Agric. Food Chem. 2007, 55, 6835–6841. [Google Scholar] [CrossRef]
- Kumoro, A.C.; Singh, H.; Hasan, M.C. Solubility of piperine in supercritical and near critical carbon dioxide. Chin. J. Chem. Eng. 2009, 17, 1014–1020. [Google Scholar] [CrossRef]
- Ling, J.Y.; Zhang, G.H.; Cui, Z.J.; Zhang, C.K. Supercritical fluid extraction of quinolizidine alkaloids Sophora flavescens Ait. And purification by counter current chromatography. J. Chromatogr. A 2007, 1145, 123–127. [Google Scholar] [CrossRef]
- Liu, B.; Shen, B.; Guo, F.; Chang, Y. Optimization of supercritical fluid extraction of dl-tetrahydropalmatine from rhizome of Corydallis yanhusuo W.T. Wang with orthogonal array design. Sep. Purif. Technol. 2008, 64, 242–246. [Google Scholar] [CrossRef]
- Pereira, C.G.; Rosa, P.T.V.; Meireles, M.A.A. Extraction and isolation of indole alkaloids from Tabernaemontana catharinensi A. DC: Technical and economical analysis. J. Supercrit. Fluids 2007, 40, 232–238. [Google Scholar] [CrossRef]
- Soares, D.C.; Pereira, C.G.; Meireles, M.A.A.; Saraiva, E.M. Leishmanicidal activity of a supercritical fluid fraction obtained from Tabernaemontana catharinensis. Parasitol. Int. 2007, 56, 135–139. [Google Scholar] [CrossRef]
- Zhao, X.; Zu, Y.; Li, Q.; Wang, M.; Zu, B.; Zhang, X.; Jiang, R.; Zu, C. Preparation and characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process. J. Supercrit. Fluids 2010, 51, 412–419. [Google Scholar] [CrossRef]
- Ziemons, E.; Mbakop, N.W.; Rozet, E.; Lejeune, R.; Angenot, L.; Thunus, L.; Hubert, Ph. Optimisation of SFE method on-line coupled to FT-IR spectroscopy for the real-time monitoring of the extraction of tagitinin C in T.diversofolia. J. Supercrit. Fluids 2007, 40, 368–375. [Google Scholar] [CrossRef]
- Corso, M.P.; Fagundes-Klen, M.R.; Silva, E.A.; Cardozo-Filho, L.; Santos, J.N.; Freitas, L.S.; Dariva, C. Extraction of sesame seed (Sesamun indicum L.) oil using compressed propane and supercritical carbon dioxide. J. Supercrit. Fluids 2010, 52, 56–61. [Google Scholar] [CrossRef]
- White, C. Integration of supercritical fluid chromatography into drug discovery as a routine support tool: Part I. Fast chiral screening and purification. J. Chromatogr. A 2005, 1074, 163–173. [Google Scholar] [CrossRef]
- Dean, J.R.; Khundker, S. Extraction of pharmaceuticals using pressurized carbon dioxide. J. Pharm. Biomed. Anal. 1997, 15, 875–886. [Google Scholar] [CrossRef]
- Lanças, F.M.; Barbirato, M.A.; Galhiane, M.S.; Rissato, S.R. Extraction of fluazinan residue from fruits by CO2 in the supercritical state. J. High Resolut. Chromatogr. 2007, 20, 569–571. [Google Scholar]
- Andlauer, W.; Martena, M.J.; Fürst, P. Determination of selected phytochemicals by reversed-phase high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J. Chromatogr. A 1999, 849, 341–348. [Google Scholar] [CrossRef]
- Blasco, C.; Font, G.; Picó, H. Determination of dithiocarbamates and metabolites in plants by liquid chromatography-mass spectrometry. J. Chromatogr. A 2004, 1028, 267–276. [Google Scholar] [CrossRef]
- Fekete, S.; Fekete, J.; Molnár, I.; Ganzler, K. Rapid high performance liquid chromatography method development with high prediction accuracy, using 5cm long narrow bore columns packed with sub-2μm particles and Design Space computer modeling. J. Chromatogr. A 2009, 1216, 7816–7823. [Google Scholar] [CrossRef]
- Felipe, D.F.; Dias-Filho, B.P.; Nakamura, C.V.; Franco, S.L.; Cortez, D.A.G. Analysis of neolignans compounds of Piper regnelli (Miq.) C. DC. var. pallescens (C. DC.) Yunck by HPLC. J. Pharm. Biomed. Anal. 2006, 41, 1371–1375. [Google Scholar] [CrossRef]
- Oleszek, W.; Biali, Z. Chromatographic determination of plant saponins—An update (2002–2005). J. Chromatogr. A 2006, 1112, 78–91. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Tang, Y.; Zhang, N.; Chen, J.; Cai, B. Supercritical fluid CO2 extraction and simultaneous determination of eight annonaceous acetogenins in Annona genus plant seeds by HPLC–DAD method. J. Pharm. Biomed. Anal. 2009, 49, 140–144. [Google Scholar] [CrossRef]
- Ermer, J. Validation in pharmaceutical analysis. Part I: An integrated approach. J. Pharm. Biomed. Anal. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Souza, T.P.D.; Holzchuh, M.H.; Lionço, M.I.; Ortega, G.G.; Petrovick, P.R. Validation of a LC method for the analysis of phenolic compounds from aqueous extract of Phyllanthus niruri aerial parts. J. Pharm. Biomed. Anal. 2002, 30, 351–356. [Google Scholar] [CrossRef]
- National Health Survelillance Agency, Resolution n. 899 from 29 May 2003; Ministry of Health: Brasilia, Brazil, 02 June 2003; D.O.U.
- González, A.G.; Herrador, M.A. A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal. Chem. 2007, 26, 227–238. [Google Scholar] [CrossRef]
- McConville, M.J.; Handman, E. The molecular basis of Leishmania pathogenesis. Int. J. Parasitol. 2007, 37, 1047–1051. [Google Scholar] [CrossRef]
- Biscaia, D.; Ferreira, S.R.S. Propolis extracts obtained by low pressure methods and supercritical fluid extraction. J. Supercrit. Fluids 2009, 51, 17–23. [Google Scholar] [CrossRef]
- Nimet, G.; da Silva, E.A.; Palu, F.; Dariva, C.; Freitas, L. dos S.; Neto, A.M.; Cardozo-Filho, L. Extraction of sunflower (Helliantus annus L.) oil with supercritical CO2 and subcritical propane: Experimental and modeling. Chem. Eng. J. 2011, 168, 262–268. [Google Scholar] [CrossRef]
- Pederssetti, M.M.; Palú, F.; da Silva, E.A.; Rohling, J.H.; Cardozo-Filho, L.; Dariva, C. Extraction of canola seed (Brassica napus) oil using compressed propane and supercritical carbon dioxide. J. Food Eng. 2011, 102, 189–196. [Google Scholar] [CrossRef]
- Sosa, S.; Balick, M.J.; Arvigo, R.; Esposito, R.G.; Pizza, C.; Altinier, G.; Tubaru, A. A creening of the topical anti-inflammatory activity of some Central American plants. J. Ethnopharmacol. 2002, 81, 211–215. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliabibity. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef]
- Mendez, S.; Traslavina, R.; Hinchman, M.; Huang, L.; Green, P.; Cynamon, M.H.; Welch, J.T. The antituberculosis drug pyrazinamide affects the course of cutaneous leishmaniasis in vivo and increases activation of macrophages and dentritic cells. Antimicrob. Agents Chemother. 2009, 53, 5114–5121. [Google Scholar] [CrossRef]
- Torres-Santos, E.C.; Moreira, D.L.; Kaplan, M.A.C.; Meirelles, M.N.; Rossi-Bergaman, B. Selective effect of 2′,6′-dihydroxy-4′-methoxychalcone isolated from Piper aduncum on Leishmania amazonensis. Antimicrob. Agents Chemother. 1999, 43, 1234–1241. [Google Scholar]
- Ding, A.H.; Nathan, C.F.; Stuher, D.J. Release of reactive nitrogen intermediates and reactive oxygen intermediantes from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 1988, 141, 2407–2412. [Google Scholar]
- Roach, T.I.; Kiderlen, A.F.; Blackwell, J.M. Role of inorganic nitrogen oxides and tumor necrosis factor alpha in killing Leishmania donovani amastigotes in gamma interferon-lipopolysaccharide-activated macrophages from Lshs and Lshr congenic mouse strains. Infect. Immun. 1991, 59, 3935–3944. [Google Scholar]
- Sample Availability: Samples of the N-[7-(3′,4′-Methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl] pyrrolidine and N-[7-(3′,4′-Methylenedioxyphenyl)-2(E),4(E)-heptadienoyl]pyrrolidine are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Carrara, V.d.S.; Serra, L.Z.; Cardozo-Filho, L.; Cunha-Júnior, E.F.; Torres-Santos, E.C.; Cortez, D.A.G. HPLC Analysis of Supercritical Carbon Dioxide and Compressed Propane Extracts from Piper amalago L. with Antileishmanial Activity. Molecules 2012, 17, 15-33. https://doi.org/10.3390/molecules17010015
Carrara VdS, Serra LZ, Cardozo-Filho L, Cunha-Júnior EF, Torres-Santos EC, Cortez DAG. HPLC Analysis of Supercritical Carbon Dioxide and Compressed Propane Extracts from Piper amalago L. with Antileishmanial Activity. Molecules. 2012; 17(1):15-33. https://doi.org/10.3390/molecules17010015
Chicago/Turabian StyleCarrara, Vanessa da Silva, Lara Zampar Serra, Lúcio Cardozo-Filho, Edézio F. Cunha-Júnior, Eduardo C. Torres-Santos, and Diógenes Aparício Garcia Cortez. 2012. "HPLC Analysis of Supercritical Carbon Dioxide and Compressed Propane Extracts from Piper amalago L. with Antileishmanial Activity" Molecules 17, no. 1: 15-33. https://doi.org/10.3390/molecules17010015
APA StyleCarrara, V. d. S., Serra, L. Z., Cardozo-Filho, L., Cunha-Júnior, E. F., Torres-Santos, E. C., & Cortez, D. A. G. (2012). HPLC Analysis of Supercritical Carbon Dioxide and Compressed Propane Extracts from Piper amalago L. with Antileishmanial Activity. Molecules, 17(1), 15-33. https://doi.org/10.3390/molecules17010015