Next Article in Journal
Two New Oleanane-Type Triterpenoids from Platycodi Radix and Anti-proliferative Activity in HSC-T6 Cells
Previous Article in Journal
Chemical Composition and Insecticidal Activity of the Essential Oil of Illicium pachyphyllum Fruits against Two Grain Storage Insects
Article Menu

Article Versions

Export Article

Open AccessArticle
Molecules 2012, 17(12), 14882-14898; doi:10.3390/molecules171214882

Synthesis and in Vitro Antioxidant Activity Evaluation of 3-Carboxycoumarin Derivatives and QSAR Study of Their DPPH• Radical Scavenging Activity

1
Facultad de Ciencias Químicas, Universidad de Colima, kilómetro 9 carretera Colima-Coquimatlán, Col., México, C.P. 28400, Mexico
2
Asociación de Jubilados de la Universidad de Guanajuato, Paseo de la Presa No 77, Guanajuato, Gto., México, C.P. 36000, Mexico
3
Secretaria de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura "Amado Nervo", Boulevard Tepic-Xalisco S/N, Tepic, Nayarit CP 63190, Mexico
*
Authors to whom correspondence should be addressed.
Received: 21 September 2012 / Revised: 3 December 2012 / Accepted: 5 December 2012 / Published: 13 December 2012
Download PDF [379 KB, 18 June 2014; original version 18 June 2014]   |  

Abstract

The in vitro antioxidant activities of eight 3-carboxycoumarin derivatives were assayed by the quantitative 1,1-diphenyl-2-picrylhydrazil (DPPH•) radical scavenging activity method. 3-Acetyl-6-hydroxy-2H-1-benzopyran-2-one (C1) and ethyl 6-hydroxy-2-oxo-2H-1-benzopyran-3-carboxylate (C2) presented the best radical-scavenging activity. A quantitative structure-activity relationship (QSAR) study was performed and correlated with the experimental DPPH• scavenging data. We used structural, geometrical, topological and quantum-chemical descriptors selected with Genetic Algorithms in order to determine which of these parameters are responsible of the observed DPPH• radical scavenging activity. We constructed a back propagation neural network with the hydrophilic factor (Hy) descriptor to generate an adequate architecture of neurons for the system description. The mathematical model showed a multiple determination coefficient of 0.9196 and a root mean squared error of 0.0851. Our results shows that the presence of hydroxyl groups on the ring structure of 3-carboxy-coumarins are correlated with the observed DPPH• radical scavenging activity effects.
Keywords: coumarins; QSAR; DPPH•; artificial neural networks coumarins; QSAR; DPPH•; artificial neural networks
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Martínez-Martínez, F.J.; Razo-Hernández, R.S.; Peraza-Campos, A.L.; Villanueva-García, M.; Sumaya-Martínez, M.T.; Cano, D.J.; Gómez-Sandoval, Z. Synthesis and in Vitro Antioxidant Activity Evaluation of 3-Carboxycoumarin Derivatives and QSAR Study of Their DPPH• Radical Scavenging Activity. Molecules 2012, 17, 14882-14898.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top