Phenolics, Flavonoids, Antioxidant Activity and Cyanogenic Glycosides of Organic and Mineral-base Fertilized Cassava Tubers
Abstract
:1. Introduction
2. Results and Discussion
Source | Total phenolics | Total flavonoids | DPPH scavenging assay | FRAP scavenging assay | Cyanogenic glycoside |
---|---|---|---|---|---|
Fertilizer (F) | 259.23 * | 53.76 ** | 502.98 ** | 672.65 ** | 0.022 * |
Variety (V) | 134.48 * | 5.44 * | 494.02 ** | 0.375ns | 0.002ns |
F × V | 56.91 * | 17.43 ** | 45.34 ** | 13.31 * | 0.001ns |
CV (%) | 2.91 | 2.75 | 3.68 | 3.55 | 9.02 |
Source | Total phenolics (mg GAE/g) | Total flavonoids (mg CE/g) | DPPH scavenging assay (%) | FRAP scavenging assay (%) | Cyanogenic glycoside (mg/100 g) |
---|---|---|---|---|---|
Fertilizer source VWV | 10.88a z | 2.71a | 67.30a | 68.11a | 0.40b |
EFBC | 9.44b | 2.32b | 54.70b | 54.45b | 0.42b |
Inorganic | 8.35c | 2.18c | 44.37c | 50.08c | 0.51a |
Variety Medan | 9.83a | 2.47a | 47.58a | 37.50a | 0.43 |
Sri Pontian | 9.20b | 2.30b | 37.11b | 37.21a | 0.45 |
TPC | TFC | DPPH | FRAP | |
---|---|---|---|---|
TPC | - | 0.62 * | 0.83 ** | 0.82 ** |
TFC | - | - | 0.61ns | 0.74 ** |
DPPH | - | - | - | 0.79 ** |
FRAP | - | - | - | - |
3. Experimental
3.1. General
3.2. Extraction of Total Phenolic Acids and Total Flavonoids
3.3. Total Phenolics
3.4. Total Flavonoid Assay
3.5. Extraction of Antioxidant Compounds
3.6. DPPH Free Radical Scavenging Assay
3.7. Ferric Reducing Antioxidant Power Assay (FRAP)
3.8. Determination of Cyanogenic Glycoside
4. Conclusions
Acknowledgements
- Sample Availability: Samples of the compounds are available from the authors.
References and Notes
- Agbaje, G.O.; Ogunsumi, L.O.; Oluokun, J.A.; Akinlosotu, T.A. Survey of yam production system and the impact of government policies in south-western Nigeria. J. Food Agric. Environ. 2005, 3, 222–229. [Google Scholar]
- Howeler, R.H. Diagnosis of Nutritional Disorders and Soil Fertility Maintenance of Cassava. In Tropical Tuber Crops Problems, Prospects and Future Strategies; Kurup, G.T., Palaniswami, M.S., Potty, V.P., Padmaja, G., Kabeerathumma, S., Pillai, S.V., Eds.; Oxford and IBH Publishing: New Delhi, India, 1996; pp. 181–193. [Google Scholar]
- Obigbesan, G.O.; Fayemi, A.A. Investigations on Nigerian root and tuber crops: Influence of nitrogen fertilization on the yield and chemical composition of two cassava cultivars Manihot esculenta. J. Agr. Sci. 1976, 86, 401–406. [Google Scholar] [CrossRef]
- Asian Vegetable Research and Development Center. AVRDC strikes gold with vitamin-rich tomato. Centerpoint 2003, 21. No. 1..
- Rekika, D.; Khanizadeh, S.; Deschenes, M.; Levasseur, A.; Charles, M.T. Antioxidant capacity and phenolic content of selected strawberry genotypes. HortScience 2005, 40, 1777–1781. [Google Scholar]
- Bok, J.W.; Hoffmeister, D.; Maggio-Hall, L.; Murillo, R.; Glasner, J.; Keller, N.P. Genomic mining for Aspergillus natural products. Chem. Biol. 2006, 13, 31–37. [Google Scholar] [CrossRef]
- Weston, L.A.; Barth, M.M. Preharvest factors affecting postharvest quality of vegetables. HortScience 1997, 32, 812–816. [Google Scholar]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar]
- Worthington, V. Nutritional quality of organic versus conventional fruits, vegetables, and grains. J. Altern. Complem. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Perez-Lopez, A.J.; del Amor, F.M.; Serrano-Martinez, A.; Fortea, M.I.; Nunez-Delicado, E. Influence of agricultural practices on the quality of sweet pepper fruits as affected by maturity stage. J. Sci. Food Agr. 2007, 87, 2075–2080. [Google Scholar] [CrossRef]
- Bímová, P.; Pokluda, R. Impact of organic fertilizers on total antioxidant capacity in head cabbage. Hortic. Sci. 2009, 36, 21–25. [Google Scholar]
- Julie, A.M.; Christopher, R.D.; Sherry, A.T. Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Compr. Rev. Food Sci. Food Saf. 2008, 8, 17–27. [Google Scholar]
- Iglesias, I.; Graell, G.; Echeverria, G.; Vendrell, M. Differences in fruit color development, anthocyanidin content, yields and quality of seven ‘Delicious’ apple strains. Fruit Varieties J. 1999, 53, 133–145. [Google Scholar]
- Toor, R.K.; Savage, G.P.; Heeb, A. Influence of different types of fertilizers on the major antioxidant components of tomatoes. J. Food Compos. Anal. 2006, 19, 20–27. [Google Scholar] [CrossRef]
- Abou El-Magd, M.M.; El-Bassiony, A.M.; Fawzy, Z.F. Effect of organic manure with or without chemical fertilizers on growth, yield and quality of some varieties of broccoli plants. J. Appl. Sci. Res. 2006, 2, 791–798. [Google Scholar]
- Klimczak, I.; Malecka, M.; Szlachta, M.; Gliszczyńska-Świgło, A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J. Food Compos. Anal. 2007, 20, 313–322. [Google Scholar] [CrossRef]
- Luximon-Ramma, A.; Bahorun, T.; Crozier, A.; Zbarsky, V.; Datla, K.P.; Dexter, D.T.; Aruoma, O.I. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauratian black teas. Food Res. Int. 2005, 38, 357–367. [Google Scholar] [CrossRef]
- Alizadeh, H.A.; Abbasi, F.; Liaghat, A. Evaluation of distribution uniformity and nitrate losses under furrow fertigation. J. Water Soil 2010, 51, 20–31. [Google Scholar]
- Atiyeh, R.M.; Edwards, C.A.; Subler, S.; Metzger, J. Earthworm-processed organic wastes as components of horticultural potting media for growing marigold and vegetable seedlings. Compost Sci. Util. 2000, 82, 215–223. [Google Scholar]
- Sarkiyaki, S.; Agar, T.M. Comparative analysis on the nutritional and anti-nutritional contents of the sweet and bitter cassava varieties. Adv. J. Food Sci. Technol. 2010, 2, 328–334. [Google Scholar]
- Siritunga, D.; Sayre, R.T. Generation of cyanogen-free transgenic cassava. Planta 2003, 217, 367–373. [Google Scholar]
- Aregheore, E.M.; Agunbaider, O.O. The toxic effects of cassava diet on human. Vet. Hum. Toxicol. 1991, 33, 274–275. [Google Scholar]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Wong, S.P.; Lai, P.L.; Jen, H.W.K. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef] [PubMed]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Omar, N.F.; Hassan, S.A.; Yusoff, U.K.; Abdullah, N.A.P.; Wahab, P.E.M.; Sinniah, U.R. Phenolics, Flavonoids, Antioxidant Activity and Cyanogenic Glycosides of Organic and Mineral-base Fertilized Cassava Tubers. Molecules 2012, 17, 2378-2387. https://doi.org/10.3390/molecules17032378
Omar NF, Hassan SA, Yusoff UK, Abdullah NAP, Wahab PEM, Sinniah UR. Phenolics, Flavonoids, Antioxidant Activity and Cyanogenic Glycosides of Organic and Mineral-base Fertilized Cassava Tubers. Molecules. 2012; 17(3):2378-2387. https://doi.org/10.3390/molecules17032378
Chicago/Turabian StyleOmar, Nur Faezah, Siti Aishah Hassan, Umi Kalsom Yusoff, Nur Ashikin Psyquay Abdullah, Puteri Edaroyati Megat Wahab, and Uma Rani Sinniah. 2012. "Phenolics, Flavonoids, Antioxidant Activity and Cyanogenic Glycosides of Organic and Mineral-base Fertilized Cassava Tubers" Molecules 17, no. 3: 2378-2387. https://doi.org/10.3390/molecules17032378
APA StyleOmar, N. F., Hassan, S. A., Yusoff, U. K., Abdullah, N. A. P., Wahab, P. E. M., & Sinniah, U. R. (2012). Phenolics, Flavonoids, Antioxidant Activity and Cyanogenic Glycosides of Organic and Mineral-base Fertilized Cassava Tubers. Molecules, 17(3), 2378-2387. https://doi.org/10.3390/molecules17032378