Impact of Elevated Carbon Dioxide on Primary, Secondary Metabolites and Antioxidant Responses of Eleais guineensis Jacq. (Oil Palm) Seedlings
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Flavonoids and Phenolics Profiling
CO2 levels (µmol·mol−1) | Plant parts | Total flavonoid, TF (mg·g−1 rutin dry weight) | Total phenolics, TP (mg·g−1 gallic acid dry weight) |
---|---|---|---|
400 | Leaf | 0.10 ± 0.01 c | 3.81 ± 0.01 c |
Stem | 0.07 ± 0.02 d | 3.51 ± 0.02 c | |
Root | 0.05 ± 0.03 d | 3.02 ± 0.01 c | |
800 | Leaf | 0.19 ± 0.01 b | 5.86 ± 0.04 b |
Stem | 0.17 ± 0.02 b | 5.17 ± 0.04 b | |
Root | 0.12 ± 0.02 c | 4.94 ± 0.05 b | |
1200 | Leaf | 0.24 ± 0.02 a | 7.28 ± 0.07 a |
Stem | 0.23 ± 0.03 a | 6.87 ± 0.05 a | |
Root | 0.20 ± 0.03 a | 6.55 ± 0.06 a |
Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
1.Flavonoid | 1.00 | ||||||||||
2. Phenolics | 0.87 * | 1.00 | |||||||||
3. Sucrose | 0.95 * | 0.88 * | 1.00 | ||||||||
4. Starch | 0.88 * | 0.76 * | 0.67 ** | 1.00 | |||||||
5. TNC | 0.78 * | 0.78 * | 0.76 * | 0.86 ** | 1.00 | ||||||
6. Suc/Starch | −0.76 * | −0.75 * | 0.67 | 0.68 | 0.57 | 1.00 | |||||
7. PAL | 0.97 * | 0.98 * | 0.67 | 0.87 * | 0.75 * | −0.72 * | 1.00 | ||||
8. Protein | −0.87 * | −0.86 * | −0.79 * | −0.80 * | −0.75 * | 0.84 * | −0.75 * | 1.00 | |||
9. Nitrogen | −0.77 * | −0.79 * | −0.84 * | −0.72 * | −0.77 * | 0.84 * | −0.93 * | 0.97 * | 1.00 | ||
10. C/N | 0.89 * | 0.89 * | 0.76 * | 0.77 * | 0.81 * | 0.12 | 0.86 * | −0.76 * | −0.87 * | 1.00 | |
11. FRAP | 0.98 * | 0.98 * | 0.77 * | 0.76 * | 0.75 * | 0.14 | 0.89 * | −0.87 * | −0.88 * | 0.78 * | 1.00 |
2.2. Total Soluble Sugar, Starch and Total Non Structural Carbohydrate Profiling
CO2 levels (µmol·mol−1) | Plant parts | Soluble sugar (mg·g−1 sucrose dry weight) | Starch (mg·g−1 glucose dry weight) | TNC (mg·g−1 dry weight) |
---|---|---|---|---|
400 | Leaf | 15.10 ± 0.55 c | 49.34 ± 0.98 c | 63.14 ± 1.31 d |
Stem | 11.32 ± 0.47 d | 40.24 ± 0.77 d | 51.57 ± 1.16 e | |
Root | 9.34 ± 0.37 e | 34.34 ± 0.56 e | 12.68 ± 2.09 f | |
800 | Leaf | 20.10 ± 0.16 b | 65.67 ± 0.57 b | 85.65 ± 0.99 b |
Stem | 18.76 ± 0.24 b | 59.67 ± 0.64 b | 76.78 ± 0.68 c | |
Root | 16.32 ± 0.76 c | 57.16 ± 0.67 b | 72.67 ± 1.85 c | |
1200 | Leaf | 27.97 ± 0.76 a | 77.24 ± 0.45 a | 103.21 ± 4.21 a |
Stem | 25.45 ± 0.36 a | 70.54 ± 0.35 a | 94.89 ± 4.12 a | |
Root | 21.43 ± 0.13 b | 69.67 ± 0.32 a | 90.10 ± 4.32 a |
2.3. Sucrose/Starch Ratio
Parameters | 400 µmol·mol−1 | 800 µmol·mol−1 | 1200 µmol·mol−1 |
---|---|---|---|
Sucrose/Starch ratio | 0.390 ± 0.031 a | 0.334 ± 0.244 b | 0.308 ±0.343 c |
PAL activity (nM transcinnamic mg−1 protein h−1) | 17.76 ± 0.02 c | 22.89 ± 0.12 b | 30.93 ± 0.07 a |
Protein content (mg/g fresh weight) | 12.27 ± 1.22 a | 8.87 ± 0.87 b | 3.17 ± 0.21 c |
Leaf nitrogen (%) | 2.96 ± 0.17 a | 1.63 ± 0.06 b | 0.97 ± 0.01 c |
C/N ratio | 9.33 ± 0.77 c | 19.07 ± 0.98 b | 34.55 ± 2.34 a |
2.4. Phenylalanine Lyase (PAL) Activity
2.5. Soluble Protein
2.6. Leaf Nitrogen and C/N Ratio
2.7. Reducing Ability Ferric Reducing Antioxidant Potential (FRAP)
CO2 levels (µmol·mol−1) | Extract source | FRAP activity (µM Fe (II)/g dry weight) |
---|---|---|
Leaf | 582.42 ± 1.65 e | |
400 | Stem | 558.14 ± 1.09 e |
Root | 532.21 ± 1.08 e | |
Leaf | 688.83 ± 1.05 d | |
800 | Stem | 675.11 ± 0.98 d |
Root | 647.73 ± 0.43 d | |
Leaf | 777.43 ± 0.23 c | |
1200 | Stem | 744.74 ± 0.98 c |
Root | 704.31 ± 1.21 c | |
BHT | 88.81 ± 10.34 f | |
Controls | α-tocopherol | 998.41 ± 41.24 b |
Vitamin C | 2879.67 ± 56.78 a |
3. Experimental
3.1. Experimental Location, Plant Materials and Treatments
3.2. Total Phenolics and Total Flavonoids Quantification
3.3. Soluble Sugar Determination
3.4. Starch Determination
3.5. Total Non Structural Carbohydrate (TNC) and Sucrose to Starch Ratio
3.6. Phenylalanine-Ammonia-Lyase (PAL) Activity
3.7. Soluble Protein Determination
3.8. Total Carbon, Nitrogen and C:N Ratio
3.9. Reducing Ability (FRAP Assay)
3.10. Statistical Analysis
4. Conclusions
Acknowledgements
- Samples Availability: Not available.
References and Notes
- Sowunni, M.A. The significance of oil palm in the late Holocene environments of west and west central Africa: A further consideration. Veg. His. Archeobot. 1999, 8, 199–210. [Google Scholar] [CrossRef]
- Corley, R.H.V.; Tinker, P.B. The Oil Palm. In The Classification and Morphology of the Oil Palm; Blackwell Publishing Asia: Perth, Australia, 2003; p. 27. [Google Scholar]
- Namvar, F.; Mohamed, S.; Behravan, J.; Mustapha, N.M.; Alitheen, N.B.M.; Othman, F. Estrogenic activity of Elaeis guineensis leaf. Pharmacologyonline 2009, 2, 818–826. [Google Scholar]
- Abeywardena, M.; Runnie, I.; Nizar, M.; Suhaila, M.; Head, R. Polyphenol-enriched extract of oil palm fronds (Elaeis guineensis) promotes vascular relaxation via endothelium-dependent mechanisms. Asia Pac. J. Clin. Nutr. 2002, 11, 467–472. [Google Scholar] [CrossRef]
- Carroll, K.K. Palm oil tocotrienols and plant flavonoids act synergistically with each other and with Tamoxifen in inhibiting proliferation and growth of estrogen receptor-negative MDA-MB-435 and -Positive MCF-7 human breast cancer cells in culture. Asia Pac. J. Clin. Nutr. 1997, 6, 41–45. [Google Scholar]
- Norhaiza, M.; Maziah, M.; Hakiman, M. Antioxidative properties of leaf extracts of popular Malaysian herb Labisia pumila. J. Med. Plant Res. 2009, 3, 217–223. [Google Scholar]
- Kim, D.O.; Jeond, S.W.; Lee, C.Y. Antoxidant capacity of phenolics phytochemicals from various cultivars of plums. Food Chem. 2005, 89, 27–36. [Google Scholar] [CrossRef]
- Mandel, S.; Youdim, M.B. Catechin polyphenols: Neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic. Biol Med. 2004, 37, 304–317. [Google Scholar] [CrossRef]
- Galati, G.; O’Brien, P.J. Potential toxicity of flavonoids and other dietary phenolics: Significance for thier chemoproventive and anticancer properties. Free Radic. Biol. Med. 2004, 32, 4–28. [Google Scholar]
- Fine, P.V.A.; Miller, Z.J.; Mesones, I.; Irazuzta, S.; Appel, H.M.; Stevens, M.H.H. The growth defense tradeoff and habitat specialization by plants in Amazonian forest. Ecology 2006, 87, 150–162. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Rahmat, A.; Abdul, R.Z. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip fatimah (Labisia pumila Blume). Int. J. Mol. Sci. 2011, 12, 5238–5254. [Google Scholar] [CrossRef]
- Bryant, J.P.; Chapin, F.S.; Klein, D.R. Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 1983, 40, 357–368. [Google Scholar] [CrossRef]
- Herms, D.A.; Matson, W.J. The dilemma of plants: To grow or defend. Quar. Rev. Biol. 1992, 67, 283–335. [Google Scholar]
- Panuelas, J.; Estiarte, M. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol. Evol. 1998, 13, 20–24. [Google Scholar] [CrossRef]
- Reichardt, P.B.; Chapin, F.S.; Bryant, J.P.; Mattes, B.R.; Clausen, T.P. Carbon nutrient balance as a predictor of plant defense in Alaskan balsam poplar: A potential importance of metabolite turnover. Oecologica 1991, 88, 401–406. [Google Scholar] [CrossRef]
- Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Regerat, F.; Remesy, C. Bioavailability of the flavone naringenin and its glycosides in rats. Amer. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, 1148–1154. [Google Scholar]
- Hogy, P.; Fangmeier, A. Atmopsheric CO2 enrichment affects potatoes: Tuber quality traits. Eur. J. Agron. 2009, 30, 85–94. [Google Scholar] [CrossRef]
- Idso, S.B.; Kimball, B.A.; Pettit, G.R., III.; Garner, L.C.; Pettit, G.R.; Backhaus, R.A. Effects of atmospheric CO2 enrichment on the growth and development of Hymenocallis littoralis (Amaryllidaceae) and the concentrations of several antineoplastic and antiviral constituents of its bulbs. Am. J. Bot. 2000, 87, 769–773. [Google Scholar] [CrossRef]
- Pettit, G.R.; Gaddamidi, V.; Herald, D.L.; Singh, S.B.; Cragg, G.M.; Schmidt, J.M.; Boettner, F.E.; Williams, M.; Sagawa, Y. Antineoplastic agents, 120. Pancratium littorale. J. Nat. Prod. 1986, 49, 995–1002. [Google Scholar] [CrossRef]
- Barbale, D. The influence of the carbon dioxide on the yield and quality of cucumber and tomato in the coveredareas. Augsne un Raza (Riga) 1970, 16, 66–73. [Google Scholar]
- Madsen, E. The influence of CO2-concentration on the content of ascorbic acid in tomato leaves. Ugeskr. Agron. 1971, 116, 592–594. [Google Scholar]
- Baas, W.J. Secondary Plant Compounds, Their Ecological Significance and Consequences for the Carbon Budget. Introduction of the Carbon/Nutrient Cycle Theory. In In Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plant; Lambers, H., Cambridge, M., Konings, H., Pons, T.L., Eds.; SPB Academic Publishing: The Hague, The Netherlands, 1989; pp. 313–340. [Google Scholar]
- Jones, C.G.; Hartley, S.E. A protein competition model of phenolic allocation. Oikos 1999, 86, 27–44. [Google Scholar] [CrossRef]
- Booker, F.L. Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton (Gossypium hirsutum L.) leaf and root composition. Plant Cell Environ. 2000, 23, 573–583. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Haniff, M.H.; Raffi, M.Y. Changes in growth and photosynthetic patterns of oil palm seedling exposed to short term CO2 enrichment in a closed top chamber. Acta Physiol. Plant. 2010, 32, 305–313. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E. Enhancement of leaf gas exchange and primary metabolites, up-regulate the production of secondary metabolites of Labisia Pumila Blume seedlings under carbon dioxide enrichment. Molecules 2011, 16, 3761–3777. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E. Involvement of carbohydrate, protein and phenylanine ammonia lyase on up-regulation of production of secondary metabolites (total phenolics and flavonoid) in Labisia pumila (Blume) Fern-Vill (Kacip Fatimah) under high CO2 and different nitrogen levels. Molecules 2011, 16, 4172–4190. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E. Carbon dioxide fertilization enhanced antioxidant compounds in malaysian kacip fatimah (Labisia pumila Blume). Molecules 2011, 16, 6068–6081. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Asmah, R. Elevated carbon dioxide increases contents of flavonoids and phenolics compound, and antioxidant activities in Malaysian Young Ginger (Zingiber officinale Roscoe) varieties. Molecules 2010, 15, 7907–7922. [Google Scholar] [CrossRef]
- Amin, A.A.; Rashad, M.; El-Abagy, H.M.H. Physiological effects of indole-3-butyric-acid and salicylic acid on growth, yield and chemical constituents of onion plants. J. Appl. Sci. Res. 2007, 3, 1554–1563. [Google Scholar]
- Wang, Y.S.H.; Bunce, A.J.; Maas, L.J. Elevated carbon dioxide increases contents of antioxidant compound in field grown strawberries. J. Agron. Food Chem. 2003, 51, 4315–4320. [Google Scholar] [CrossRef]
- Stutte, G.W.; Eraso, I. Carbon dioxide enrichment enhances growth and flavonoid content of two Scutellaria species. J. Am. Soc. Hort. Sci. 2008, 133, 631–638. [Google Scholar]
- Kaufman, P.B.; Cseke, L.J.; Warber, S.; Duke, J.A.; Brielmanm, H.L. Natural Products from Plants; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Wink, M. Introduction: Biochemistry, Role and Biotechnology of Secondary Products; CRS Press: Boca Raton, FL, USA, 1999; pp. 1–16. [Google Scholar]
- Den-Hertog, J.; Stulen, L.; Fonseca, E.; Delea, P. Modulation of carbon and nitrogen allocation in Urtica diocia and Plantago major by elevated CO2: Impact of accumulation of non-structural carbohydrates and ontogenic drift. Physiol. Plant. 1996, 98, 77–88. [Google Scholar] [CrossRef]
- Poorter, H.; Berkel, V.; Baxter, R.; Den-Hertog, J.; Dijkstra, P.; Gifford, R.M.; Griffin, K.L.; Roumet, C.; Roy, J.; Wong, S.C. The effects of elevated CO2 on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ. 1997, 20, 472–482. [Google Scholar]
- Baxter, R.; Ashenden, T.W.; Farrar, J. Effects of elevated CO2 and nutrient status on growth, dry matter partitioning and nutrient content of Poa alpinia var. vivpara L. J. Exp. Bot. 1997, 48, 1477–1486. [Google Scholar] [CrossRef]
- Fonseca, F.; Bowsher, C.; Stulen, I. Impact of elevated atmospheric CO2 and nitrate reductase transcription and activity in leaves and roots of Plantago major. Physiol. Plant. 1997, 100, 940–948. [Google Scholar] [CrossRef]
- De-souza, A.P.; Gaspar, M.; Da-silva, E.A.; Ulian, E.C.; Waclawovsky, A.J.; Nishiyama, M.Y.; Dos, M.R.V.; Bucjkeridge, M.S. Elevated CO2 increases photosynthesis, biomass and productivity and modifies gene expression in sugarcane. Plant Cell Environ. 2008, 31, 1116–1127. [Google Scholar] [CrossRef]
- Herrmann, K.M.; Weaver, L.M. The shikimate pathway. Ann. Rev. Plant Phys. Plant Mol. Biol. 1999, 50, 473–503. [Google Scholar] [CrossRef]
- Rogers, G.S.; Milham, P.J.; Gillings, M.; Conroy, J.P. Sink strength may be the key to growth and nitrogen response in N-deficient wheat at elevated CO2. Aus. J. Plant Physiol. 1996, 23, 253–264. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. What we have learned from 15 years of free CO2 enrichment (FACE). A meta analytic review of the responses of photosynthesis canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A. The responses of photosynthesis and stomatal conductance to rising [CO2]: Mechanism and environmental interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef]
- Parry, M.A.J.; Andralojic, P.J.; Michell, R.A.C.; Madwick, P.J.; Keys, A.J. Manipulation of rubisco: the amount, activity, function and regulation. J. Exp. Bot. 2003, 54, 1321–1333. [Google Scholar] [CrossRef]
- Reddy, A.R.; Reddy, K.R.; Padjung, R.; Hodges, H.F. Nitrogen nutrition and photosynthesis in leaves of pima cotton. J. Plant Nutr. 1996, 19, 755–790. [Google Scholar] [CrossRef]
- Makino, A.; Nakano, H.; Mae, T. Responses of ribulose-1-5-biphoshate carboxylase, cytochrome f and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationship to photosynthesis. Plant Physiol. 1994, 105, 173–179. [Google Scholar]
- Margna, U.; Margna, E.; Vainjarv, T. Influence of nitrogen nutrition on the utilization of L-phenylalanine for building flavonoids in buckwheat seedling tissue. J. Plant Physiol. 1989, 134, 697–702. [Google Scholar] [CrossRef]
- Cruz, C.; Lips, H.; Martins, L.M.A. Nitrogen use efficiency by slow growing species as affected by CO2 levels, root temperature, N source and availability. J. Plant Physiol. 2003, 160, 1421–1431. [Google Scholar] [CrossRef]
- Meyer, S.; Cerovic, Z.G.; Goulas, Y.; Montpied, P.; Demotes, S.; Bidel, L.P.R.; Moya, I.; Dreyer, E. Relationship between assessed polyphenols and chlorophyll contents and leaf mass per area ratio in woody plants. Plant Cell Environ. 2006, 29, 1338–1348. [Google Scholar] [CrossRef]
- Robredo, A.; Pérez-López, U.; Miranda-Apodaca, J.; Lacuesta, M.; Mena-Petite, A.; Muñoz-Rueda, A. Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ. Exp. Bot. 2011, 71, 399–408. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E. The relationship of nitrogen and C/N on secondary metabolites and antioxidant activities in three varieties of malaysia kacip fatimah (Labisia pumila Blume). Molecules 2011, 16, 5514–5526. [Google Scholar] [CrossRef]
- Winger, A.; Purdy, S.; Maclean, A.; Pourtau, N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. New Phytol. 2006, 161, 781–789. [Google Scholar]
- Luximon-Ramma, A.; Bahorun, T.; Soobrattee, A.M.; Aruoma, O.I. Antioxidant activities of phenolic, proanthocyanidin and flavonoid components in extracts of Acacia fistula. J. Agric. Food Chem. 2005, 50, 5042–5047. [Google Scholar]
- Oktay, M.; Gulcin, I.; Kufrevioglu, O.I. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensm. Wiss. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Baumann, J.; Wurn, G.; Bruchlausen, F.V. Prostaglandin synthetase inhibiting O2 radical scavenging properties of some flavonoids and related phenolic compounds. Deutsche Pharmakologische Gesellschaft Abstracts of the 20th spring meeting. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1979, 307, 1–77. [Google Scholar]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Mohd Zin, Z.; Abdul-Hamid, A.; Osman, A. Antioxidative activity of extracts from mengkudu (Morinda citrifolia L.) root, fruit and leaf. Food Chem. 2002, 78, 227–231. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E. Primary, secondary metabolites, H2O2, malondialdehyde and photosynthetic responses of Orthosiphon stimaneus Benth. to different irradiance levels. Molecules 2012, 17, 1159–1176. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Rahmat, A.; Abdul Rahman, Z. The relationship between phenolics and flavonoids production with total non structural carbohydrate and photosynthetic rate in Labisia pumila Benth. under high CO2 and nitrogen fertilization. Molecules 2011, 16, 162–174. [Google Scholar]
- Thayumanam, B.; Sidasivam, S. Carbohydrate chemistry. Qual. Plant Foods Hum. Nutr. 1984, 34, 253–254. [Google Scholar] [CrossRef]
- Tognetti, R.; Johnson, J.D. The effect of elevated atmospheric CO2 concentration and nutrient supply on gas exchange, carbohydrates and foliar phenolics concentration in live oak (Quercus virginiana Mill.) seedlings. Ann. For. Sci. 1999, 56, 379–389. [Google Scholar]
- Bradford, M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Haniff, M.H.; Raffi, M.Y. Changes in growth and photosynthetic patterns of oil palm seedling exposed to short term CO2 enrichment in a closed top chamber. Acta Physiol. Plant. 2010, 32, 305–313. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘Antioxidant Power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E. Photosynthetic capacity, photochemical efficiency and chlorophyll content of three varieties of Labisia pumila Benth. exposed to open field and greenhouse growing conditions. Acta Physiol. Plant. 2011, 33, 111–112. [Google Scholar]
- Ibrahim, M.H.; Jaafar, H.Z.E.; Asmah, R.; Zaharah, A.R. Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of malaysian medicinal plant Labisia pumila Blume (Kacip Fatimah). Int. J. Mol. Sci. 2012, 13, 393–408. [Google Scholar]
- Ibrahim, M.H.; Hawa, Z.E.J. Reduced photoinhibition enhanced kacip fatimah (Labisia pumila Blume) secondary metabolites, phenyl alanine lyase and antioxidant activity. Int. J. Mol. Sci. 2012, 13, 5290–5306. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ibrahim, M.H.; Jaafar, H.Z.E. Impact of Elevated Carbon Dioxide on Primary, Secondary Metabolites and Antioxidant Responses of Eleais guineensis Jacq. (Oil Palm) Seedlings. Molecules 2012, 17, 5195-5211. https://doi.org/10.3390/molecules17055195
Ibrahim MH, Jaafar HZE. Impact of Elevated Carbon Dioxide on Primary, Secondary Metabolites and Antioxidant Responses of Eleais guineensis Jacq. (Oil Palm) Seedlings. Molecules. 2012; 17(5):5195-5211. https://doi.org/10.3390/molecules17055195
Chicago/Turabian StyleIbrahim, Mohd Hafiz, and Hawa Z.E. Jaafar. 2012. "Impact of Elevated Carbon Dioxide on Primary, Secondary Metabolites and Antioxidant Responses of Eleais guineensis Jacq. (Oil Palm) Seedlings" Molecules 17, no. 5: 5195-5211. https://doi.org/10.3390/molecules17055195
APA StyleIbrahim, M. H., & Jaafar, H. Z. E. (2012). Impact of Elevated Carbon Dioxide on Primary, Secondary Metabolites and Antioxidant Responses of Eleais guineensis Jacq. (Oil Palm) Seedlings. Molecules, 17(5), 5195-5211. https://doi.org/10.3390/molecules17055195