Phenolic Compounds and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content (TPC), Total Flavonoid Content (TFOC) and Total Flavanol Content (TFAC)
2.2. Antioxidant Activities of Lily Bulb Extracts
2.2.1. DPPH Radical-Scavenging Activity
2.2.2. ABTS Radical-Scavenging Activity
2.2.3. Cupric ion Reducing Antioxidant Capacity (CUPRAC)
2.2.4. Hydroxyl Radical Scavenging Activities (HRSA)
2.3. Identification and Determination of Phenolic Constituents in Extracts
2.4. Relationships amongst Different Antioxidant Variables
2.5. Cluster Analysis
3. Experimental Section
3.1. Plant Materials and Chemicals
3.2. Preparation of Phenolic Extracts
3.3. Determination of Total Phenolic, Total Flavonoid and Total Flavanols Contents
3.4. Antioxidant Activity Evaluation
3.5. HPLC Assay for Significant Individual Phenolic Compounds
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
References
- Bagchi, D.; Bagchi, M.; Stohs, S.J.; Das, D.K.; Ray, S.D.; Kuszynski, C.A.; Joshi, S.S.; Pruess, H.G. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology 2000, 148, 187–197. [Google Scholar] [CrossRef]
- Meng, J.F.; Fang, Y.L.; Qin, M.Y.; Zhuang, X.F.; Zhang, Z.W. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chem. 2012, 134, 2049–2056. [Google Scholar] [CrossRef] [PubMed]
- Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. JAPI 2004, 52, 794–804. [Google Scholar] [PubMed]
- Halliwell, B.; Gutteridge, J.; Cross, C. Free radicals, antioxidants, andhuman disease: Where are we now? J. Lab. Clin. Med. 1992, 119, 598–620. [Google Scholar] [PubMed]
- Formanek, Z.; Kerry, J.P.; Higgins, F.M.; Buckley, D.J.; Morrissey, P.A.; Farkas, J. Addition of synthetic and natural antioxidants tocopheryl acetate supplemented beef patties: Effects of antioxidants and packaging on lipid oxidation. Meat Sci. 2001, 58, 337–341. [Google Scholar] [CrossRef]
- Ito, N.; Fukushima, S.; Tsuda, H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT and other antioxidants. Crit. Rev. Toxicol. 1985, 15, 109–150. [Google Scholar] [CrossRef] [PubMed]
- Hao, P.P.; Ni, J.R.; Sun, W.L.; Huang, W. Determination of tertiary butylhydroquinone in edible vegetable oil by liquid chromatography/ion trap mass spectrometry. Food Chem. 2007, 105, 1732–1737. [Google Scholar] [CrossRef]
- Fiorentino, A.; D’Abrosca, B.; Pacifico, S.; Mastellone, C.; Piscopo, V.; Caputo, R.; Monaco, P. Isolation and structure elucidation of antioxidant polyphenols from quince (Cydonia vulgaris) Peels. J. Agric. Food Chem. 2008, 56, 2660–2667. [Google Scholar] [CrossRef] [PubMed]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Ares, G.; Barreiro, C.; Deliza, R.; Gámbaro, A. Alternatives to reduce the bitterness, astringency and characteristic flavour of antioxidant extracts. Food. Res. Int. 2009, 42, 871–878. [Google Scholar] [CrossRef]
- Luo, J.G.; Li, L.; Kong, L.Y. Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chem. 2012, 131, 1056–1062. [Google Scholar] [CrossRef]
- Rong, L.P.; Lei, J.J.; Wang, C. Collection and evaluation of the genus Lilium resources in Northeast China. Genet. Resour. Crop Evol. 2011, 58, 115–123. [Google Scholar] [CrossRef]
- Chau, C.F.; Wu, S.H. The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends Food Sci. Technol. 2006, 17, 313–323. [Google Scholar] [CrossRef]
- You, X.; Xie, C.; Liu, K.; Gu, Z. Isolation of non-starch polysaccharides from bulb of tiger lily (Lilium lancifolium Thunb) with fermentation of Saccharomyces cerevisiae. Carbohyd. Polym. 2010, 81, 35–40. [Google Scholar] [CrossRef]
- Mimaki, Y.; Sashida, Y. Steroidal saponins and alkaloids from the bulbs of Lilium brownii var. colchesteri. Chem. Pharm. Bull. 1991, 38, 3055–3059. [Google Scholar] [CrossRef]
- Niu, L.X.; Li, Z.N.; Li, H.J.; Zhang, Y.L. Study on ultrasonic wave extraction of flavonoids from the bulb of Lilium lancifolium. Zhongyaocai 2007, 30, 85–88. [Google Scholar] [PubMed]
- Hussein, L.; Fattah, M.; Salem, E. Characterization of pure anthocyanidins isolated from the hulls of faba beans. J. Agric. Food Chem. 1990, 38, 95–98. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barret, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Lu, X.N.; Wang, J.; Al-Qadiri, H.M.; Hamzah, M.A.Q.; Ross, C.F.; Powers, J.R.; Tang, J.M.; Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011, 129, 637–644. [Google Scholar] [CrossRef]
- Kondo, K.; Hirano, R.; Matsumoto, A.; Igarashi, O.; Itakura, H. Inhibition of LDL oxidation by cocoa. Lancet 1996, 348, 1514–1518. [Google Scholar] [CrossRef]
- Christian, H.; Carl, L.K.; Malte, K. Flavanols and cardiovascular disease prevention. Eur. Heart J. 2010, 31, 2583–2592. [Google Scholar]
- Lutz, M.; Jorquera, K.; Cancino, B.; Ruby, R.; Henriquez, C. Phenolics and antioxidant capacity of table grape (Vitis vinifera L.) cultivars grown in Chile. J. Food Sci. 2011, 76, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.Y.; Li, Y.; Li, P.H.; Wang, H. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem. 2009, 112, 454–460. [Google Scholar] [CrossRef]
- Leong, L.P.; Shui, G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002, 76, 69–75. [Google Scholar] [CrossRef]
- Lissi, E.A.; Modak, B.; Torres, R.; Escobar, J.; Urzua, A. Total antioxidant potential of resinous exudates from Heliotropium sp. A comparison of ABTS and DPPH methods. Free Radic. Res. 1999, 30, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Abraham, T.E. In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem. Toxicol. 2006, 44, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food. Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, O.; Burcu, B.; Cubilay, G.; Resat, A. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modifiedcupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Anal. Chim. Acta 2008, 616, 196–206. [Google Scholar]
- Tedesco, I.; Russo, M.; Russo, P.; Iacomino, G.; Russo, G.L.; Carraturo, A.; Faruolo, C.; Moio, L.; Palumbo, R. Antioxidant effect of red wine polyphenols on red blood cells. J. Nutr. Biochem. 2000, 11, 114–119. [Google Scholar] [CrossRef]
- Mustafa, O.; Burcu, B.; Cubilay, G.; Resat, A. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation. Anal. Chim. Acta 2008, 616, 196–206. [Google Scholar]
- Zhou, K.Q.; Yu, L.L. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT-Food Sci. Technol. 2006, 39, 1155–1162. [Google Scholar] [CrossRef]
- Ksouri, R.; Falleh, H.; Megdiche, W.; Trabelsi, N.; Mhamdi, B.; Chaieb, K. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem. Toxicol. 2009, 47, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Javanovic, S.V.; Steenken, S.; Hara, Y.; Simic, M.G. Reduction potential of flavonoid and model phenoxyl radicals. Which ring in Flavonoids is responsible for antioxidant activity? J. Chem. Soc. Perk. T. 1996, 2, 2497–2504. [Google Scholar] [CrossRef]
- Dempke, W.; Rie, C.; Grothey, A.; Schmoll, H.J. Cyclooxygenase-2: A Novel target for cancer chemotherapy? J. Cancer Res. Clin. 2001, 127, 411–417. [Google Scholar] [CrossRef]
- Francis, J.A.; Rumbeiha, W.; Nair, M.G. Constituents in Easter lily flowers with medicinal activity. Life Sci. 2004, 76, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Bernonville, T.D.; Guyot, S.; Paulin, J.P.; Gaucher, M.; Loufrani, L.; Henrion, D.; Derbré, S.; Guilet, D.; Richomme, P.; Dat, J.F.; et al. Dihydrochalcones: Implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction. Phytochemistry 2010, 71, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.F.; Wang, Y.S.; Li, S.W.; Chen, C.S.; Ke, S.Y. Synthesis and Biological Activity of a Series of Novel N-Substituted β-Lactams Derived from Natural Gallic Acid. J. Chin. Chem. Soc. 2011, 58, 35–40. [Google Scholar] [CrossRef]
- Kadoma, Y.; Fujisawa, S.A. Comparative Study of the Radical-scavenging activity of the phenolcarboxylic acids caffeic Acid, p-coumaric acid, chlorogenic acid and ferulic acid, with or without 2-mercaptoethanol, a thiol, using the induction period method. Molecules 2008, 13, 2488–2499. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, M.; Verny, M.; Besson, C.; Remesy, C.; Scalbert, A. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J. Nutr. 2003, 133, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Du, G.R.; Li, M.J.; Ma, F.W.; Liang, D. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem. 2009, 113, 557–562. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar]
- Chang, C.; Yang, M.; Wen, H.; Chern, J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Price, M.L.; Scoyoc, S.V.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1998, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Guclu, K.; Ozyurek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupricion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Sroka, Z.; Cisowski, W. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
Sample Availability: Samples of the six tested Lilium spiecies are available from the authors. |
Species | TPC (GAE mg/100 g) | TFOC (RE mg/100 g) | TFAC (CE mg/100 g) |
---|---|---|---|
L. concolor | 3897.60 ± 42.54 c | 413.45 ± 2.03 c | 296.13 ± 18.17 b |
L. leucanthum | 2336.00 ± 29.28 e | 521.19 ± 17.77 b | 107.36 ± 8.40 d |
L. davidii var. unicolor | 2017.17 ± 140.20 f | 150.53 ± 3.66 f | 66.07 ± 9.07 e |
L. regale | 10381.49 ± 49.12 a | 1428.21 ± 38.52 a | 407.25 ± 10.91 a |
L. lancifolium | 2827.25 ± 55.50 d | 227.24 ± 3.66 e | 112.12 ± 12.96 d |
L. pumilum | 4177.39 ± 57.19 b | 339.13 ± 9.17 d | 193.92 ± 7.95 c |
Species | DPPH (TE µmol/100g) | ABTS (TE µmol/100g) | CUPRAC (TE µmol/100g) | HRSA (%) |
---|---|---|---|---|
L. concolor | 455.31 ± 7.21 d | 1143.67 ± 11.28 a | 1025.14 ± 45.68 b | 40.86 ± 0.52 b |
L. leucanthum | 507.64 ± 6.85 c | 889.38 ± 13.42 b | 799.34 ± 5.81 d | 36.64 ± 0.80 d |
L. davidii var. unicolor | 404.48 ± 14.59 e | 848.49 ± 9.17 b | 595.61 ± 7.24 e | 22.45 ± 0.60 f |
L. regale | 600.33 ± 2.24 a | 1173.28 ± 11.41 a | 1438.01 ± 16.56 a | 53.22 ± 0.99 a |
L. lancifolium | 541.27 ± 3.43 b | 1075.51 ± 2.94 a | 842.04 ± 8.32 c | 26.85 ± 0.79 e |
L. pumilum | 546.51 ± 9.77 b | 1091.96 ± 5.70 a | 1044.10 ± 11.30 b | 37.47 ± 0.82 c |
Phenolic compounds | Retention time (min) | L. concolor | L. leucanthum | L. davidii var. unicolor | L. regale | L. lancifolium | L. pumilum |
---|---|---|---|---|---|---|---|
Gallic acid | 13.57 | 0.94 ± 0.03 b | 0.90 ± 0.02 bc | 0.85 ± 0.06 c | 0.88 ± 0.06 bc | 1.26 ± 0.01 a | 0.85 ± 0.06 c |
Rutinoside | 19.31 | 0.82 ± 0.05 c | 0.97 ± 0.03 b | 0.93 ± 0.02 b | 1.05 ± 0.07 a | ND | 1.09 ± 0.10 a |
(+)-catechin | 23.73 | 1.06 ± 0.10 b | 0.92 ± .001 c | 0.82 ± 0.03 d | 1.26 ± 0.05 a | 1.06 ± 0.02 b | 0.98 ± 0.02 c |
Chlorogenic acid | 24.48 | 2.96 ± 0.06 a | 2.57 ± 0.19 b | 1.14 ± 0.05 c | 0.95 ± 0.04 d | ND | ND |
(−)-epicatechin | 26.84 | 3.71 ± 0.09 a | 1.07 ± 0.03 c | 0.82 ± 0.02 e | 0.99 ± 0.01 d | 1.48 ± 0.03 b | 0.86 ± 0.02 e |
Myricetin | 28.70 | 0.82 ± 0.02 c | 1.02 ± 0.03 c | 2.31 ± 0.28 b | 6.42 ± 0.35 a | 0.81 ± 0.02 c | 1.04 ± 0.08 c |
Rutin | 31.00 | 3.36 ± 0.30 c | 1.35 ± 0.33 e | 0.96 ± 0.03 e | 20.98 ± 1.00 a | 2.36 ± 0.17 d | 4.48 ± 0.20 b |
p-Coumaric acid | 32.63 | 3.91 ± 0.20 b | 1.45 ± 0.06 c | 1.26 ± 0.20 c | 0.80 ± 0.07 a | 4.51 ± 0.31 a | 0.82 ± 0.02 d |
Quercetin | 34.61 | ND | 1.56 ± 0.20 c | 0.89 ± 0.02 d | 6.20 ± 0.20 a | 2.38 ± 0.19 b | 0.96 ± 0.03 d |
Phloridzin | 48.88 | 1.03 ± 0.10 c | 1.02 ± 0.08 c | 0.88 ± 0.04 c | 4.45 ± 0.28 a | 1.92 ± 0.19 b | ND |
Kaempferol | 49.44 | 3.20 ± 0.20 d | 1.45 ± 0.19 e | 1.30 ± 0.20 e | 6.86 ± 0.31 c | 8.03 ± 0.39 b | 12.48 ± 0.90 a |
DPPH | ABTS | CUPRAC | HRSA | |
---|---|---|---|---|
Panel A | ||||
TPC | 0.70 | 0.68 | 0.94 ** | 0.86 * |
TFOC | 0.68 | 0.51 | 0.87 * | 0.89 ** |
TFAC | 0.54 | 0.83 * | 0.95 ** | 0.92 ** |
Panel B | ||||
DPPH | 1.00 | |||
ABTS | 0.63 | 1.00 | ||
CUPRAC | 0.77 * | 0.85 * | 1.00 | |
HRSA | 0.65 | 0.69 | 0.94 ** | 1.00 |
© 2012 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jin, L.; Zhang, Y.; Yan, L.; Guo, Y.; Niu, L. Phenolic Compounds and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China. Molecules 2012, 17, 9361-9378. https://doi.org/10.3390/molecules17089361
Jin L, Zhang Y, Yan L, Guo Y, Niu L. Phenolic Compounds and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China. Molecules. 2012; 17(8):9361-9378. https://doi.org/10.3390/molecules17089361
Chicago/Turabian StyleJin, Lei, Yanlong Zhang, Linmao Yan, Yulong Guo, and Lixin Niu. 2012. "Phenolic Compounds and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China" Molecules 17, no. 8: 9361-9378. https://doi.org/10.3390/molecules17089361
APA StyleJin, L., Zhang, Y., Yan, L., Guo, Y., & Niu, L. (2012). Phenolic Compounds and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China. Molecules, 17(8), 9361-9378. https://doi.org/10.3390/molecules17089361