Chemical Genetics of Acetyl-CoA Carboxylases
Abstract
:1. Introduction
2. Acetyl-CoA Carboxylase Genes, Expression Regulation and Posttranslational Modifications
3. Chemical Genetics of Acetyl-CoA Carboxylases
3.1. Cellular Metabolites and Proteins Modulating ACC Activity
3.2. Natural Acetyl-CoA Carboxylase Inhibitors
3.2.1. Soraphen A
3.2.2. Andrimid
3.3. Chemically Synthesized Acetyl-CoA Carboxylase Inhibitors
3.3.1. 5-(Tetradecyloxy)-2-furancarboxylic acid (TOFA)
3.3.2. CP-640186
3.3.3. ESP-55016
3.3.4. TEI-B00422
3.3.5. MEDICA 16
3.3.6. Chloroacetylated Biotin
3.3.7. S-2E
3.3.8. 4m-(S)
4. ACC Inhibitors in Cancer Therapy
5. Conclusions
Acknowledgments
References
- Harwood, H.J., Jr. Treating the metabolic syndrome: Acetyl-CoA carboxylase inhibition. Expert Opin. Ther. Targets 2005, 9, 267–281. [Google Scholar] [CrossRef]
- Harwood, H.J., Jr.; Petras, S.F.; Shelly, L.D.; Zaccaro, L.M.; Perry, D.A.; Makowski, M.R.; Hargrove, D.M.; Martin, K.A.; Tracey, W.R.; Chapman, J.G.; et al. Isozyme-nonselective N-substituted bipiperidylcarboxamide acetyl-CoA carboxylase inhibitors reduce tissue malonyl-CoA concentrations, inhibit fatty acid synthesis, and increase fatty acid oxidation in cultured cells and in experimental animals. J. Biol. Chem. 2003, 278, 37099–37111. [Google Scholar]
- Reaven, G.M. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab. 2005, 1, 9–14. [Google Scholar] [CrossRef]
- Kim, K.H. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu. Rev. Nutr. 1997, 17, 77–99. [Google Scholar] [CrossRef]
- Tong, L. Acetyl-coenzyme A carboxylase: Crucial metabolic enzyme and attractive target for drug discovery. Cell. Mol. Life Sci. 2005, 62, 1784–1803. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem. 2002, 277, 25847–25850. [Google Scholar] [CrossRef]
- Tong, L.; Harwood, H.J., Jr. Acetyl-coenzyme A carboxylases: Versatile targets for drug discovery. J. Cell Biochem. 2006, 99, 1476–1488. [Google Scholar] [CrossRef]
- Carson, M. Ribbon models of macromoleculars. J. Mol. Graph. 1987, 5, 103–106. [Google Scholar] [CrossRef]
- Artymiuk, P.J.; Poirrette, A.R.; Rice, D.W.; Willett, P. Biotin carboxylase comes into the fold. Nat. Struct. Biol. 1996, 3, 128–132. [Google Scholar] [CrossRef]
- Galperin, M.Y.; Koonin, E.V. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci. 1997, 6, 2639–2643. [Google Scholar] [CrossRef]
- Thoden, J.B.; Blanchard, C.Z.; Holden, H.M.; Waldrop, G.L. Movement of the biotin carboxylase B-domain as a result of ATP binding. J. Biol. Chem. 2000, 275, 16183–16190. [Google Scholar]
- Waldrop, G.L.; Rayment, I.; Holden, H.M. Three-dimensional structure of the biotin carboxylase subunit of acetyl-CoA carboxylase. Biochemistry 1994, 33, 10249–10256. [Google Scholar]
- Zhang, H.; Yang, Z.; Shen, Y.; Tong, L. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science 2003, 299, 2064–2067. [Google Scholar]
- Fall, R.R.; Vagelos, P.R. Acetyl coenzyme A carboxylase. Molecular forms and subunit composition of biotin carboxyl carrier protein. J. Biol. Chem. 1972, 247, 8005–8015. [Google Scholar]
- Nenortas, E.; Beckett, D. Purification and characterization of intact and truncated forms of the Escherichia coli biotin carboxyl carrier subunit of acetyl-CoA carboxylase. J. Biol. Chem. 1996, 271, 7559–7567. [Google Scholar] [CrossRef]
- Polyak, S.W.; Abell, A.D.; Wilce, M.C.; Zhang, L.; Booker, G.W. Structure, function and selective inhibition of bacterial acetyl-coa carboxylase. Appl. Microbiol. Biotechnol. 2012, 93, 983–992. [Google Scholar] [CrossRef]
- Goldman, P.; Alberts, A.W.; Vagelos, P.R. Requirement for a malonyl CoA-CO2 exchange reaction in long chain but not short chain fatty acid synthesis in Clostridium Kluvveri. Biochem. Biophys. Res. Commun. 1961, 5, 280–285. [Google Scholar] [CrossRef]
- Seubert, W.; Lamberts, I.; Kramer, R.; Ohly, B. On the mechanism of malonyl-CoA-independent fatty acid synthesis. I. The mechanism of elongation of long-chain fatty acids by acetyl-CoA. Biochim. Biophys. Acta 1968, 164, 498–517. [Google Scholar]
- Ventura, F.V.; Costa, C.G.; Ijist, L.; Dorland, L.; Duran, M.; Jakobs, C.; Tavares de Almeida, I.; Wanders, R.J.A. Broad specificity of carnitine palmitoyltransferase II towards long-chain acyl-CoA beta-oxidation intermediates and its practical approach to the synthesis of various long-chain acylcarnitines. J. Inherit. Metab. Dis. 1997, 20, 423–426. [Google Scholar] [CrossRef]
- Diacovich, L.; Peiru, S.; Kurth, D.; Rodriguez, E.; Podesta, F.; Khosla, C.; Gramajo, H. Kinetic and structural analysis of a new group of Acyl-CoA carboxylases found in Streptomyces coelicolor A3(2). J. Biol. Chem. 2002, 277, 31228–31236. [Google Scholar]
- Lee, J.J.; Moon, Y.A.; Ha, J.H.; Yoon, D.J.; Ahn, Y.H.; Kim, K.S. Cloning of human acetyl-CoA carboxylase beta promoter and its regulation by muscle regulatory factors. J. Biol. Chem. 2001, 276, 2576–2585. [Google Scholar]
- Atkinson, L.L.; Fischer, M.A.; Lopaschuk, G.D. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. J. Biol. Chem. 2002, 277, 29424–29430. [Google Scholar]
- Foufelle, F.; Ferre, P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: A role for the transcription factor sterol regulatory element binding protein-1c. Biochem. J. 2002, 366, 377–391. [Google Scholar] [CrossRef]
- Oh, S.Y.; Park, S.K.; Kim, J.W.; Ahn, Y.H.; Park, S.W.; Kim, K.S. Acetyl-CoA carboxylase beta gene is regulated by sterol regulatory element-binding protein-1 in liver. J. Biol. Chem. 2003, 278, 28410–28417. [Google Scholar]
- Eberle, D.; Hegarty, B.; Bossard, P.; Ferre, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 2004, 86, 839–848. [Google Scholar] [CrossRef]
- Zhao, L.F.; Iwasaki, Y.; Zhe, W.; Nishiyama, M.; Taguchi, T.; Tsugita, M.; Kambayashi, M.; Hashimoto, K.; Terada, Y. Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription. Endocr. J. 2010, 57, 317–324. [Google Scholar] [CrossRef]
- Murayama, Y.; Mochizuki, K.; Shimada, M.; Fujimoto, S.; Nukui, K.; Shibata, K. Dietary supplementation with alpha-amylase inhibitor wheat albumin to high-fat diet-induced insulin-resistant rats is associated with increased expression of genes related to fatty acid synthesis in adipose tissue. J. Agric. Food Chem. 2009, 57, 9332–9338. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, M.Y.; Park, S.W.; Moon, J.S.; Koh, Y.K.; Ahn, Y.H.; Park, B.W.; Kim, K.S. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J. Biol. Chem. 2007, 282, 26122–26131. [Google Scholar]
- Park, S.H.; Gammon, S.R.; Knippers, J.D.; Paulsen, S.R; Rubink, D.S.; Winder, W.W. Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J. Appl. Physiol. 2002, 92, 2475–2482. [Google Scholar]
- Rubink, D.S.; Winder, W.W. Effect of phosphorylation by AMP-activated protein kinase on palmitoyl-CoA inhibition of skeletal muscle acetyl-CoA carboxylase. J. Appl. Physiol. 2005, 98, 1221–1227. [Google Scholar] [CrossRef]
- Hardie, D.G. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim. Biophys. Acta 1123, 231–238. [Google Scholar]
- Munday, M.R. Regulation of mammalian acetyl-CoA carboxylase. Biochem. Soc. Trans. 2002, 30, 1059–1064. [Google Scholar] [CrossRef]
- Barber, M.C.; Price, N.T.; Travers, M.T. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim. Biophys. Acta 1733, 1–28. [Google Scholar]
- Magnard, C.; Bachelier, R.; Vincent, A.; Jaquinod, M.; Kieffer, S.; Lenoir, G.M.; Venezia, N.D. BRCA1 interacts with acetyl-CoA carboxylase through its tandem of BRCT domains. Oncogene 2002, 21, 6729–6739. [Google Scholar] [CrossRef]
- Shen, Y.; Tong, L. Structural evidence for direct interactions between the BRCT domains of human BRCA1 and a phospho-peptide from human ACC1. Biochemistry 2008, 47, 5767–5773. [Google Scholar] [CrossRef]
- Lenhard, J.M.; Gottschalk, W.K. Preclinical developments in type 2 diabetes. Adv. Drug. Deliv. Rev. 2002, 54, 1199–1212. [Google Scholar] [CrossRef]
- Harwood, H.J., Jr. Acetyl-CoA carboxylase inhibition for the treatment of metabolic syndrome. Curr. Opin. Investig. Drugs. 2004, 5, 283–289. [Google Scholar]
- Bar-Tana, J.; Ben-Shoshan, S.; Blum, J.; Migron, Y.; Hertz, R.; Pill, J.; Rose-Khan, G.; Witte, E.C. Synthesis and hypolipidemic and antidiabetogenic activities of beta,beta,beta',beta'-tetrasubstituted, long-chain dioic acids. J. Med. Chem. 1989, 32, 2072–2084. [Google Scholar] [CrossRef]
- Berge, R.K.; Skorve, J.; Tronstad, K.J.; Berge, K.; Gudbrandsen, O.A.; Grav, H. Metabolic effects of thia fatty acids. Curr. Opin. Lipidol. 2002, 13, 295–304. [Google Scholar] [CrossRef]
- Russell, J.C.; Amy, R.M.; Graham, S.E.; Dolphin, P.J.; Wood, G.O.; Bar-Tana, J. Inhibition of atherosclerosis and myocardial lesions in the JCR:LA-cp rat by beta, beta'-tetramethylhexadecanedioic acid (MEDICA 16). Arterioscler Thromb. Vasc. Biol. 1995, 15, 918–923. [Google Scholar] [CrossRef]
- Tzur, R.; Rose-Kahn, G.; Adler, J.H.; Bar-Tana, J. Hypolipidemic, antiobesity, and hypoglycemic-hypoinsulinemic effects of beta,beta'-methyl-substituted hexadecanedioic acid in sand rats. Diabetes 1988, 37, 1618–1624. [Google Scholar]
- Skrede, S.; Sorensen, H.N.; Larsen, L.N.; Steineger, H.H.; Hovik, K.; Spydevold, O.S.; Horn, R.; Bremer, J. Thia fatty acids, metabolism and metabolic effects. Biochim. Biophys. Acta 1997, 1344, 115–131. [Google Scholar] [CrossRef]
- Bremer, J. The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: Metabolism and metabolic effects. Prog. Lipid. Res. 2001, 40, 231–268. [Google Scholar] [CrossRef]
- Abu-Elheiga, L.; Matzuk, M.M.; Abo-Hashema, K.A.; Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291, 2613–2616. [Google Scholar] [CrossRef]
- Moreau, K.; Dizin, E.; Ray, H.; Luquain, C.; Lefai, E.; Foufelle, F.; Billaud, M.G.; Lenoir, M.; Venezia, N.D. BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase. J. Biol. Chem. 2006, 281, 3172–3181. [Google Scholar]
- Sreekrishna, K.; Gunsberg, S; Wakil, S.J.; Joshi, V.C. Interaction of the fluorescent analogue stearoyl-(1,N6)-etheno coenzyme A with chicken liver acetyl coenzyme A carboxylase. J. Biol. Chem. 1980, 255, 3348–3351. [Google Scholar]
- Wakil, S.J.; Stoops, J.K.; Joshi, V.C. Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 1983, 52, 537–579. [Google Scholar] [CrossRef]
- Ogiwara, H.; Tanabe, T.; Nikawa, J.; Numa, S. Inhibition of rat-liver acetyl-coenzyme-A carboxylase by palmitoyl-coenzyme A. Formation of equimolar enzyme-inhibitor complex. Eur. J. Biochem. 1978, 89, 33–41. [Google Scholar]
- Kamiryo, T.; Nishikawa, Y.; Mishina, M.; Terao, M.; Numa, S. Involvement of long-chain acyl coenzyme A for lipid synthesis in repression of acetyl-coenzyme A carboxylase in Candida lipolytica. Proc. Natl. Acad. Sci. USA 1979, 76, 4390–4394. [Google Scholar] [CrossRef]
- Nikawa, J.; Tanabe, T.; Ogiwara, H.; Shiba, T.; Numa, S. Inhibitory effects of long-chain acyl coenzyme A analogues on rat liver acetyl coenzyme A carboxylase. FEBS Lett. 1979, 102, 223–226. [Google Scholar] [CrossRef]
- Cramer, C.T.; Goetz, B.; Hopson, K.L.; Fici, G.J.; Ackermann, R.M.; Brown, S.C.; Bisgaier, C.L.; Rajeswaran, W.G.; Oniciu, D.C.; Pape, M.E. Effects of a novel dual lipid synthesis inhibitor and its potential utility in treating dyslipidemia and metabolic syndrome. J. Lipid. Res. 2004, 45, 1289–1301. [Google Scholar] [CrossRef]
- Cao, D.; Fan, S.T.; Chung, S.S. Identification and characterization of a novel human aldose reductase-like gene. J. Biol. Chem. 1998, 273, 11429–11435. [Google Scholar] [CrossRef]
- Zu, X; Yan, R.; Robbins, S.; Krishack, P.A.; Liao, D.F.; Cao, D. Reduced 293T cell susceptibility to acrolein due to aldose reductase-like-1 protein expression. Toxicol. Sci. 2007, 97, 562–568. [Google Scholar] [CrossRef]
- Yan, R.; Zu, X.; Ma, J. Aldo-keto reductase family 1 B10 gene silencing results in growth inhibition of colorectal cancer cells: Implication for cancer intervention. Int. J. Cancer 2007, 121, 2301–2306. [Google Scholar] [CrossRef]
- Ma, J.; Luo, D.X.; Huang, C.; Shen, Y.; Bu, Y.; Markwell, S.; Gao, J.; Liu, J.; Zu, X.; Cao, Z.; et al. AKR1B10 overexpression in breast cancer: association with tumor size, lymph node metastasis and patient survival and its potential as a novel serum marker. Int. J. Cancer 2012, 131, E862–E871. [Google Scholar] [CrossRef]
- Wang, C.; Yan, R.; Luo, D.; Watabe, K.; Liao, D.F.; Cao, D. Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. J. Biol. Chem. 2009, 284, 26742–26748. [Google Scholar] [CrossRef]
- Ma, J.; Yan, R.; Zu, X.; Cheng, J.M.; Rao, K.; Liao, DF.; Cao, D. Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-CoA carboxylase-alpha in breast cancer cells. J. Biol. Chem. 2008, 283, 3418–3423. [Google Scholar]
- Gerth, K.; Bedorf, N.; Irschik, H.; Hofle, G.; Reichenbach, H. The soraphens: A family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: fermentation, isolation, biological properties. J. Antibiot. (Tokyo) 1994, 47, 23–31. [Google Scholar]
- Gerth, K.; Pradella, S.; Perlova, O.; Beyer, S.; Muller, R. Myxobacteria: Proficient producers of novel natural products with various biological activities-Past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 2003, 106, 233–253. [Google Scholar]
- Trost, B.M.; Sieber, J.D.; Qian, W.; Dhawan, R.; Ball, Z.T. Asymmetric total synthesis of soraphen A: A flexible alkyne strategy. Angew. Chem. Int. Ed. Engl. 2009, 48, 5478–5481. [Google Scholar] [CrossRef]
- Jump, D.B.; Torres-Gonzalez, M.; Olson, L.K. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation. Biochem. Pharmacol. 2011, 81, 649–660. [Google Scholar]
- Schreurs, M.; van Dijk, T.H.; Gerding, A; Havinga, R.; Reijngoud, D.J.; Kuipers, F. Soraphen, an inhibitor of the acetyl-CoA carboxylase system, improves peripheral insulin sensitivity in mice fed a high-fat diet. Diabetes Obes. Metable. 2009, 11, 987–991. [Google Scholar]
- Shen, Y.; Volrath, S.L.; Weatherly, S.C.; Elich, T.D.; Tong, L. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product. Mol. Cell. 2004, 16, 881–891. [Google Scholar] [CrossRef]
- Wan, H.; Sjolinder, M; Schairer, H.U; Leclerque, A. A new dominant selection marker for transformation of Pichia pastoris to soraphen A resistance. J. Microbiol. Methods 2004, 57, 33–39. [Google Scholar]
- Weatherly, S.C; Volrath, S.L.; Elich, T.D. Expression and characterization of recombinant fungal acetyl-CoA carboxylase and isolation of a soraphen-binding domain. Biochem. J. 2004, 380, 105–110. [Google Scholar]
- Kemp, B.E.; Stapleton, D.; Campbell, D.J.; Chen, Z.P.; Murthy, S.; Walter, M.; Gupta, A.; Adams, J.J.; Katsis, F.; van Denderen, B.; et al. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 2003, 31, 162–168. [Google Scholar]
- Viollet, B.; Andreelli, F.; Jorgensen, S.B.; Perrin, C.; Flamez, D.; Mu, J.; Wojtaszewski, J.F.; Schuit, F.C.; Birnbaum, M.; Richter, E.; et al. Physiological role of AMP-activated protein kinase (AMPK): Insights from knockout mouse models. Biochem. Soc. Trans. 2003, 31, 216–219. [Google Scholar]
- McCune, S.A.; Harris, R.A. Mechanism responsible for 5-(tetradecyloxy)-2-furoic acid inhibition of hepatic lipogenesis. J. Biol. Chem. 1979, 254, 10095–10101. [Google Scholar]
- Parker, R.A.; Kariya, T.; Grisar, J.M. 5-(Tetradecyloxy)-2-furancarboxylic acid and related hypolipidemic fatty acid-like alkyloxyarylcarboxylic acids. J. Med. Chem. 1977, 20, 781–791. [Google Scholar] [CrossRef]
- Arbeeny, C.M.; Meyers, D.S.; Bergquist, K.E.; Gregg, R.E. Inhibition of fatty acid synthesis decreases very low density lipoprotein secretion in the hamster. J. Lipid. Res. 1992, 33, 843–851. [Google Scholar]
- Fukuda, N.; Ontko, J.A. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver. J. Lipid. Res. 1984, 25, 831–842. [Google Scholar]
- Kempen, H.J.; Imbach, A.P.; Giller, T.; Neumann, W.J.; Hennes, U.; Nakada, N. Secretion of apolipoproteins A-I and B by HepG2 cells: regulation by substrates and metabolic inhibitors. J.Lipid. Res. 1995, 36, 1796–1806. [Google Scholar]
- Triscari, J.; Sullivan, A.C. Anti-obesity activity of a novel lipid synthesis inhibitor. Int. J. Obes. 1984, 8, 227–239. [Google Scholar]
- Halvorson, D.L.; McCune, S.A. Inhibition of fatty acid synthesis in isolated adipocytes by 5-(tetradecyloxy)-2-furoic acid. Lipids 1984, 19, 851–856. [Google Scholar] [CrossRef]
- Sola, M.M.; Oliver, F.J.; Salto, R.; Gutierrez, M.; Vargas, A. Citrate inhibition of rat-kidney cortex phosphofructokinase. Mol. Cell Biochem. 1994, 135, 123–128. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Sun, M.; Luo, D.; Liao, D.F.; Cao, D. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem. Biophys. Res. Commun. 2009, 385, 302–306. [Google Scholar]
- Hess, D.; Chisholm, J.W.; Igal, R.A. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One 2010, 5, e11394. [Google Scholar]
- Beckers, A.; Organe, S.; Timmermans, L.; Scheys, K.; Peeters, A.; Brusselmans, K.; Verhoeven, G.; Swinnen, J.V. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 2007, 67, 8180–8187. [Google Scholar]
- Sugimoto, Y.; Naniwa, Y.; Nakamura, T.; Kato, H.; Yamamoto, M.; Tanabe, H.; Inoue, K.; Imaizumi, A. A novel acetyl-CoA carboxylase inhibitor reduces de novo fatty acid synthesis in HepG2 cells and rat primary hepatocytes. Arch. Biochem. Biophys. 2007, 468, 44–48. [Google Scholar] [CrossRef]
- Frenkel, B.; Bishara-Shieban, J.; Bar-Tana, J. The effect of beta,beta'-tetramethylhexadecanedioic acid (MEDICA 16) on plasma very-low-density lipoprotein metabolism in rats: role of apolipoprotein C-III. Biochem. J. 1994, 298, 409–414. [Google Scholar]
- Bar-Tana, J.; Rose-Kahn, G; Srebnik, M. Inhibition of lipid synthesis by beta beta'-tetramethyl-substituted, C14-C22, alpha, omega-dicarboxylic acids in the rat in vivo. J. Biol. Chem. 1985, 260, 8404–8410. [Google Scholar]
- Russell, J.C.; Shillabeer, G.; Bar-Tana, J.; Lau, D.C.; Richardson, M.; Wenzel, L.M.; Graham, S.E.; Dolphin, P.J. Development of insulin resistance in the JCR:LA-cp rat: Role of triacylglycerols and effects of MEDICA 16. Diabetes 1998, 47, 770–778. [Google Scholar] [CrossRef]
- Mayorek, N.; Kalderon, B.; Itach, E.; Bar-Tana, J. Sensitization to insulin induced by beta,beta'-methyl-substituted hexadecanedioic acid (MEDICA 16) in obese Zucker rats in vivo. Diabetes 1997, 46, 1958–1964. [Google Scholar]
- Hermesh, O.; Kalderon, B; Bar-Tana, J. Mitochondria uncoupling by a long chain fatty acyl analogue. J. Biol. Chem. 1998, 273, 3937–3942. [Google Scholar] [CrossRef]
- Levert, K.L.; Waldrop, G.L.; Stephens, J.M. A biotin analog inhibits acetyl-CoA carboxylase activity and adipogenesis. J. Biol. Chem. 2002, 277, 16347–16350. [Google Scholar]
- Ohno, T.; Yano, S.; Yamada, H.; Shirasaka, T.; Yamamoto, A.; Kobayashi, K.; Ogawa, K. Synthesis of the optical isomers of 4-[1-(4-tert-butylphenyl)-2-oxo- pyrrolidine-4-yl]methyloxybenzoic acid (S-2) and their biological evaluation as antilipidemic agent. Chem. Pharm. Bull. (Tokyo). 1999, 47, 1549–1554. [Google Scholar]
- Ohmori, K.; Yamada, H.; Yasuda, A.; Yamamoto, A.; Matsuura, N.; Kiniwa, M. Anti-hyperlipidemic action of a newly synthesized benzoic acid derivative, S-2E. Eur. J. Pharmacol. 2003, 471, 69–76. [Google Scholar] [CrossRef]
- Ohmori, K.; Yamada, H.; Yasuda, A.; Yamamoto, A.; Matsuura, N.; Kiniwa, M. Effects of a novel antihyperlipidemic agent, S-2E, on the blood lipid abnormalities in homozygous WHHL rabbits. Metabolism 2004, 53, 680–685. [Google Scholar] [CrossRef]
- Gargazanli, G.L.; Frost, J.; George, P. 5-Naphthalen-1-YL-1,3Dioxane derivatives preparation and therapeutic application. WO9855474 A1, 1998. [Google Scholar]
- Zoller, G.; Schmoll, D.; Mueller, M.; Haschke, G.; Focken, I. Heterocyclic compounds, processes for their preparation, medicaments comprising these compounds, and the use thereof. WO2010003624 A2, 2010. [Google Scholar]
- Swinnen, J.V.; Heemers, H.; van de Sande, T.; de Schrijver, E.; Brusselmans, K.; Heyns, W.; Verhoeven, G. Androgens, lipogenesis and prostate cancer. J. Steroid. Biochem. Mol. Biol. 2004, 92, 273–279. [Google Scholar] [CrossRef]
- Rouquette-Jazdanian, A.K.; Pelassy, C.; Breittmayer, J.P; Cousin, J.L; Aussel, C. Metabolic labelling of membrane microdomains/rafts in Jurkat cells indicates the presence of glycerophospholipids implicated in signal transduction by the CD3 T-cell receptor. Biochem. J. 2002, 363, 645–655. [Google Scholar]
- Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef]
- Manes, S.; Mira, E.; Gomez-Mouton, C.; Lacalle, R.A.; Keller, P.; Labrador, J.P.; Martinez-A, C. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J. 1999, 18, 6211–6220. [Google Scholar] [CrossRef]
- Medes, G.; Thomas, A.; Weinhouse, S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 1953, 13, 27–29. [Google Scholar]
- Ookhtens, M.; Kannan, R.; Lyon, I.; Baker, N. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am. J. Physiol. 1984, 247, R146–R153. [Google Scholar]
- Sabine, J.R.; Abraham, S.; Chaikoff, I.L. Control of lipid metabolism in hepatomas: Insensitivity of rate of fatty acid and cholesterol synthesis by mouse hepatoma BW7756 to fasting and to feedback control. Cancer Res. 1967, 27, 793–799. [Google Scholar]
- Swinnen, J.V.; Brusselmans, K.; Verhoeven, G. Increased lipogenesis in cancer cells: New players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 358–365. [Google Scholar] [CrossRef]
- Milgraum, L.Z.; Witters, L.A.; Pasternack, G.R.; Kuhajda, F.P. Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma. Clin. Cancer Res. 1997, 3, 2115–2120. [Google Scholar]
- Yahagi, N.; Shimano, H.; Hasegawa, K.; Ohashi, K.; Matsuzaka, T.; Najima, Y.; Sekiya, M.; Tomita, S.; Okazaki, H.; Tamura, Y.; et al. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma. Eur. J. Cancer 2005, 41, 1316–1322. [Google Scholar] [CrossRef]
- Moncur, J.T.; Park, J.P.; Memoli, V.A.; Mohandas, T.K.; Kinlaw, W.B. The "Spot 14" gene resides on the telomeric end of the 11q13 amplicon and is expressed in lipogenic breast cancers: Implications for control of tumor metabolism. Proc. Natl. Acad. Sci. USA 1998, 95, 6989–6994. [Google Scholar]
- Swinnen, J.V.; Vanderhoydonc, F.; Elgamal, A.A.; Eelen, M.; Vercaeren, I.; Joniau, S.; Van Poppel, H.; Baert, L.; Goossens, K.; Heyns, W.; et al. Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int. J. Cancer 2000, 88, 176–179. [Google Scholar] [CrossRef]
- Claus, E.B.; Stowe, M.; Carter, D.; Holford, T. The risk of a contralateral breast cancer among women diagnosed with ductal and lobular breast carcinoma in situ: Data from the Connecticut Tumor Registry. Breast 2003, 12, 451–456. [Google Scholar] [CrossRef]
- Pizer, E.S.; Pflug, B.R.; Bova, G.S.; Han, W.F.; Udan, M.S.; Nelson, J.B. Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression. Prostate 2001, 47, 102–110. [Google Scholar]
- Savage, D.B.; Choi, C.S.; Samuel, V.T.; Liu, Z.X.; Zhang, D.; Wang, A.; Zhang, X.M.; Cline, G.W.; Yu, X.X.; Geisler, J.G.; et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J. Clin. Invest. 2006, 116, 817–824. [Google Scholar] [CrossRef]
- Chajes, V.; Cambot, M.; Moreau, K.; Lenoir, G.M.; Joulin, V. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 2006, 66, 5287–5294. [Google Scholar] [CrossRef]
- Brusselmans, K.; De Schrijver, E.; Verhoeven, G.; Swinnen, J.V. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 2005, 65, 6719–6725. [Google Scholar]
- Sinilnikova, O.M.; Ginolhac, S.M.; Magnard, C.; Leone, M.; Anczukow, O.; Hughes, D.; Moreau, K.; Thompson, D.; Coutanson, C.; Hall, J.; et al. Acetyl-CoA carboxylase alpha gene and breast cancer susceptibility. Carcinogenesis 2004, 25, 2417–2424. [Google Scholar] [CrossRef]
- Samudio, I.; Harmancey, R.; Fiegl, M.; Kantarjian, H.; Konopleva, M.; Korchin, B.; Kaluarachchi, K.; Bornmann, W.; Duvvuri, S.; Taegtmeyer, H.; et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Invest. 2010, 120, 142–156. [Google Scholar] [CrossRef]
- Andela, V.B.; Altuwaijri, S.; Wood, J.; Rosier, R.N. Inhibition of beta-oxidative respiration is a therapeutic window associated with the cancer chemo-preventive activity of PPARgamma agonists. FEBS Lett. 2005, 579, 1765–1769. [Google Scholar] [CrossRef]
- Zhou, W.; Tu, Y.; Simpson, P.J.; Kuhajda, F.P. Malonyl-CoA decarboxylase inhibition is selectively cytotoxic to human breast cancer cells. Oncogene 2009, 28, 2979–2987. [Google Scholar] [CrossRef]
- Ruderman, N.; Prentki, M. AMP kinase and malonyl-CoA: Targets for therapy of the metabolic syndrome. Nat. Rev. Drug Discov. 2004, 3, 340–351. [Google Scholar] [CrossRef]
- Koistinen, H.A.; Galuska, D.; Chibalin, A.V.; Yang, J.; Zierath, JR; Holman, G.D.; Wallberg-Henriksson, H. 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes 2003, 52, 1066–1072. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zu, X.; Zhong, J.; Luo, D.; Tan, J.; Zhang, Q.; Wu, Y.; Liu, J.; Cao, R.; Wen, G.; Cao, D. Chemical Genetics of Acetyl-CoA Carboxylases. Molecules 2013, 18, 1704-1719. https://doi.org/10.3390/molecules18021704
Zu X, Zhong J, Luo D, Tan J, Zhang Q, Wu Y, Liu J, Cao R, Wen G, Cao D. Chemical Genetics of Acetyl-CoA Carboxylases. Molecules. 2013; 18(2):1704-1719. https://doi.org/10.3390/molecules18021704
Chicago/Turabian StyleZu, Xuyu, Jing Zhong, Dixian Luo, Jingjing Tan, Qinghai Zhang, Ying Wu, Jianghua Liu, Renxian Cao, Gebo Wen, and Deliang Cao. 2013. "Chemical Genetics of Acetyl-CoA Carboxylases" Molecules 18, no. 2: 1704-1719. https://doi.org/10.3390/molecules18021704
APA StyleZu, X., Zhong, J., Luo, D., Tan, J., Zhang, Q., Wu, Y., Liu, J., Cao, R., Wen, G., & Cao, D. (2013). Chemical Genetics of Acetyl-CoA Carboxylases. Molecules, 18(2), 1704-1719. https://doi.org/10.3390/molecules18021704