Pyrene-Fullerene C60 Dyads as Light-Harvesting Antennas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Pyrene-Fullerene C60 Dyads
2.2. Absorption Spectra of Pyrene-Donor Molecules and Pyrene-C60 Dyads
2.3. Steady-State Fluorescence of Pyrene-Donor Molecules and Pyrene-C60 Dyads
Compound | Relative Quantum Yield a | % Quenching |
---|---|---|
1-Pyrenbutanol | 1 (Donor) | ------- |
PyFC12 | 0.01 (Dyad) | 99% |
PyMPy | 1 (Donor) | ------- |
PyFPy | 0.01 (Dyad) | 99% |
Py2OH | 1 (Donor) | ------ |
Py2FC12 | 0.01 (Dyad) | 99% |
Py2NF | 0.04 (Dyad) | 96% |
3. Experimental
3.1. General
3.2. Synthesis of 3,5-Bis(4-(pyren-1-yl)butoxy) Benzaldehyde
3.3. Synthesis of Bis[4-pyrene-1-butoxy]malonyl Ester
3.4. General Procedure for DCC Esterification
3.4.1. Synthesis of [3,5-Bis(dodecyl)-benzyl]-[4-(pyren-1-yl)butoxy]malonyl Ester
3.4.2. Synthesis of [3,5-Bis(dodecyl)-benzyl]-[3,5-bis(4-(pyren-1-yl)butoxy)benzyl]malonyl Ester
3.5. General Procedure for Fullerene C60 Dyads by Bingel-Hirsch Reaction
3.5.1. Synthesis of [3,5-Bis(dodecyl)benzyl]-[4-(pyren-1-yl)butoxy]malonyl Ester-Fullerene C60
3.5.2. Synthesis of Bis[4-pyrene-1-butoxy]malonyl Ester-Fullerene C60
3.5.3. Synthesis of [3,5-Bis(dodecyl)-benzyl]-[3,5-bis(4-(pyren-1-yl)butoxy)-benzyl]malonyl Ester-Fullerene C60
3.5.4. Synthesis of Fulleropyrrolidine
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Dang, T.; Hirsch, L.; Wantz, G.; Wuest, J.D. Controlling the Morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 2013, 113, 3734–3765. [Google Scholar]
- Giacalone, F.; Martín, N. Fullerene polymers: Synthesis and properties. Chem. Rev. 2006, 106, 5136–5190. [Google Scholar]
- Kamat, P.V.; Turdy, K.; Baker, D.R.; Radich, J.G. Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 2010, 110, 6664–6688. [Google Scholar] [CrossRef]
- Backer, S.A.; Sivula, K.; Kavulak, D.F.; Fréchet, J.M.J. High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives. Chem. Mater. 2007, 19, 2927–2929. [Google Scholar] [CrossRef]
- Alley, N.J.; Liao, K.S.; Andreoli, E.; Dias, S.; Dillon, E.P.; Orbaek, A.W.; Barron, A.R.; Byrne, H.J.; Curran, S.A. Effect of carbon nanotube-fullerene hybrid additive on P3HT:PCBMbulk-heterojunction organic photovoltaics. Synth. Metal. 2012, 162, 95–101. [Google Scholar] [CrossRef]
- Ferguson, A.J.; Blackburn, J.L.; Kopidakis, N. Fullerenes and carbon nanotubes as acceptor materials in organic photovoltaics. Mater. Lett. 2013, 90, 115–125. [Google Scholar] [CrossRef]
- Guldi, D.M.; Prato, M. Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 2000, 33, 695–703. [Google Scholar] [CrossRef]
- Kuramochi, Y.; Sandanayaka, A.S.D.; Satake, A.; Araki, Y.; Ogawa, K.; Ito, O.; Kobuke, Y. Energy transfer followed by electron transfer in a porphyrin macrocycle and central acceptor ligand: A model for a photosynthetic composite of the light-harvesting complex and reaction center. Chem. Eur. J. 2009, 15, 2317–2327. [Google Scholar] [CrossRef]
- Bendikov, M.; Wudl, F.; Perepichka, D.F. Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics. Chem. Rev. 2004, 104, 4891–4946. [Google Scholar] [CrossRef]
- Pérez, E.; Martín, N. Curves ahead: Molecular receptors for fullerenes based on concave–convex complementarity. Chem. Soc. Rev. 2008, 37, 1512–1519. [Google Scholar] [CrossRef]
- Schuster, D.I.; Li, K.; Guldi, D.M.; Palkar, A.; Echegoyen, L.; Stanisky, C.; Cross, R.J.; Niemi, M.; Tkachenko, N.V.; Lemmetyinen, H. Azobenzene-Linked Porphyrin-Fullerene Dyads. J. Am. Chem. Soc. 2007, 129, 15973–15982. [Google Scholar] [CrossRef]
- Imahori, H.; Sakata, Y. Donor-Linked Fullerenes: Photoinduced Electron Transfer and Its Potential Application. Adv. Mater. 1997, 9, 537–546. [Google Scholar] [CrossRef]
- Araki, Y.; Ito, O. Factors controlling lifetimes of photoinduced charge-separated states of fullerene-donor molecular systems. J. Photochem. Photobiol. C 2008, 9, 93–110. [Google Scholar] [CrossRef]
- Hahn, U.; Nierengarten, J.F.; Vögtle, F.; Listorti, A.; Monti, F.; Armaroli, N. Fullerene-rich dendrimers: Divergent synthesis and photophysical properties. New J. Chem. 2009, 33, 337–344. [Google Scholar] [CrossRef]
- Grate, J.W.; Abraham, M.H.; Du, C.M.; McGill, R.A.; Shuely, W.J. Examination of vapor sorption by fullerene, fullerene-coated surface acoustic wave sensors, graphite, and low-polarity polymers using linear solvation energy relationships. Langmuir 1995, 11, 2125–2130. [Google Scholar] [CrossRef]
- Zhou, Z.; Lenk, R.P.; Dellinger, A.; Wilson, S.R.; Sadler, R.; Kepley, C.L. Liposomal formulation of amphiphilic fullerene antioxidants. Bioconjugate Chem. 2010, 21, 1656–1661. [Google Scholar] [CrossRef]
- Jensen, A.W.; Daniels, C. Fullerene-coated beads as reusable catalysts. J. Org. Chem. 2003, 68, 207–210. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, J. C60-Bodipy dyad triplet photosensitizers as organic photocatalysts for photocatalytic tandem oxidation/[3+2] cycloaddition reactions to prepare pyrrolo[2,1-a]isoquinoline. Chem. Commun. 2013, 49, 3751–3753. [Google Scholar] [CrossRef]
- Yang, P.; Wu, W.; Zhao, J.; Huang, D.; Yi, X. Using C60-bodipy dyads that show strong absorption of visible light and longlived triplet excited states as organic triplet photosensitizers for triplet-triplet annihilation upconversion. J. Mater. Chem. 2012, 22, 20273–20283. [Google Scholar] [CrossRef]
- Guo, S.; Sun, J.; Ma, L.; You, W.; Yang, P.; Zhao, J. Visible light-harvesting naphthalenediimide (NDI)-C60 dyads as heavy-atom-free organic triplet photosensitizers for triplet triplet annihilation based upconversion. Dye. Pigment. 2013, 96, 449–458. [Google Scholar] [CrossRef]
- Huang, D.; Zhao, J.; Wu, W.; Yi, X.; Yang, P.; Ma, J. Visible-light-harvesting triphenylamine ethynyl C60-BODIPY dyads as heavy-atom-free organic triplet photosensitizers for triplet-triplet annihilation upconversion. Asian J. Org. Chem. 2012, 1, 264–273. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, J.; Sun, J.; Guo, S. Light-harvesting fullerene dyads as organic triplet photosensitizers for triplet-triplet annihilation upconversions. J. Org. Chem. 2012, 77, 5305–5312. [Google Scholar]
- Koehler, M.; Stark, W.J. Organic synthesis on graphene. Acc. Chem. Res. 2013, 46, 2297–2306. [Google Scholar] [CrossRef]
- Niyogi, S.; Hamon, M.A.; Hu, H.; Zhao, B.; Bhowmik, P.; Sen, R.; Itkis, M.E.; Haddon, R.C. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1105–1113. [Google Scholar]
- Martin, R.B.; Fu, K.; Sun, Y.-P. Efficient intramolecular excited-state energy transfer in pyrenes-fullerene macromolecule. Chem. Phys. Lett. 2003, 375, 619–624. [Google Scholar] [CrossRef]
- Sluch, M.I.; Samuel, I.D.W.; Petty, M.C. Quenching of pyrene fluorescence by fullerene C60 in Langmuir-Blodgett films. Chem. Phys. Lett. 1997, 280, 315–320. [Google Scholar] [CrossRef]
- Fujii, S.; Morita, T.; Kimura, S. Photoinduced electron transfer in thin layers composed of fullerene-cyclic peptide conjugate and pyrene derivative. Langmuir 2008, 24, 5608–5614. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, Y.; Li, Y.; Ye, J.P.; Li, Y.; Xu, X.; Li, X.; Liu, H.; Huang, C.; Cui, S.; et al. Self-assembly and optical properties of hydrogen bonded nanostructures containing C60 and pyrene. Carbon 2006, 44, 2785–2792. [Google Scholar] [CrossRef]
- Li, H.; Kitaygorodskiy, A.; Carino, R.A.; Sun, Y.P. Simple modification in hexakis-addition for efficient synthesis of C60-centered dendritic molecules bearing multiple aromatic chromophores. Org. Lett. 2005, 7, 85–861. [Google Scholar]
- Guldi, D.M.; Menna, E.; Maggini, M.; Marcaccio, M.; Paolucci, D.; Paolucci, E.; Campidelli, S.; Prato, M.; Rahman, G.M.A.; Schergna, S. Supramolecular hybrids of [60]Fullerene and single-wall carbon nanotubes. Chem. Eur. J. 2006, 12, 3975–3983. [Google Scholar] [CrossRef]
- Martin, R.B.; Fu, K.; Li, H.; Cole, D.; Sun, Y.P. Interesting fluorescence properties of C60-centered dendritic adduct with twelve symmetrically attached pyrenes. Chem. Commun. 2003, 2003, 2368–2369. [Google Scholar]
- Winnik, F.M. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem. Rev. 1993, 93, 587–614. [Google Scholar] [CrossRef]
- Duhamel, J. Polymer chain dynamics in solution probed with a fluorescence blob model. Acc. Chem. Res. 2006, 39, 953–960. [Google Scholar] [CrossRef]
- Duhamel, J. Molecular Interfacial Phenomena of Polymers and Biopolymers; Chen, P., Ed.; Woodhead Publishing Company: Waterloo, ON, Canada, 2005; pp. 214–248. [Google Scholar]
- Duhamel, J. Internal dynamics of dendritic molecules probed by pyrene excimer formation. Polymers 2012, 4, 211–239. [Google Scholar] [CrossRef]
- Duhamel, J. New insights in the study of pyrene excimer fluorescence to characterize macromolecules and their supramolecular assemblies in solution. Langmuir 2012, 28, 6527–6538. [Google Scholar] [CrossRef]
- Figueira-Duarte, T.M.; Müllen, K. Pyrene-based materials for organic electronics. Chem. Rev. 2011, 111, 7260–7314. [Google Scholar] [CrossRef]
- Illescas, J.; Caicedo, C.; Zaragoza-Galán, G.; Ramírez-Fuentes, Y.S.; Gelover-Santiago, A.; Rivera, E. Synthesis, characterization, optical and photophysical properties of novel well defined Di(1-ethynylpyrenes)s. Synthet. Metal. 2011, 161, 775–782. [Google Scholar] [CrossRef]
- Rivera, E.; Belletete, M.; Zhu, X.X.; Durocher, G.; Giasson, R. Novel polyacetylenes containing pendant 1-pyrenyl groups: Synthesis, characterization, and thermal and optical properties. Polymer 2002, 43, 5059–5068. [Google Scholar] [CrossRef]
- Rivera, E.; Aguilar-Martínez, M.; Terán, G.; Flores, R.F.; Bautista-Martínez, J.A. Thermal, optical and electrochemical properties of trans and the cis-poly(1-ethynylpyrene). Polymer 2005, 46, 4789–4798. [Google Scholar] [CrossRef]
- Zaragoza-Galán, G.; Fowler, M.A.; Duhamel, J.; Rein, R.; Solladié, N.; Rivera, E. Synthesis and characterization of novel pyrene-dendronized porphyrins exhibiting efficient fluorescence resonance energy transfer: Optical and photophysical properties. Langmuir 2012, 28, 11195–11205. [Google Scholar] [CrossRef]
- Felder, D.; Gutiérrez-Nava, M.; Carreón, M.P.; Eckert, J.F.; Luccisano, M.; Schall, C.; Masson, P.; Gallani, J.L.; Heinrich, B.; Gillonand, D.; et al. Synthesis of amphiphilic fullerene derivatives and their incorporation in langmuir and langmuir-blodgett films. Helv. Chim. Acta 2002, 85, 288–319. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Sample Availability: Not available.
© 2013 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zaragoza-Galán, G.; Ortíz-Palacios, J.; Valderrama, B.X.; Camacho-Dávila, A.A.; Chávez-Flores, D.; Ramos-Sánchez, V.H.; Rivera, E. Pyrene-Fullerene C60 Dyads as Light-Harvesting Antennas. Molecules 2014, 19, 352-366. https://doi.org/10.3390/molecules19010352
Zaragoza-Galán G, Ortíz-Palacios J, Valderrama BX, Camacho-Dávila AA, Chávez-Flores D, Ramos-Sánchez VH, Rivera E. Pyrene-Fullerene C60 Dyads as Light-Harvesting Antennas. Molecules. 2014; 19(1):352-366. https://doi.org/10.3390/molecules19010352
Chicago/Turabian StyleZaragoza-Galán, Gerardo, Jesús Ortíz-Palacios, Bianca X. Valderrama, Alejandro A. Camacho-Dávila, David Chávez-Flores, Víctor H. Ramos-Sánchez, and Ernesto Rivera. 2014. "Pyrene-Fullerene C60 Dyads as Light-Harvesting Antennas" Molecules 19, no. 1: 352-366. https://doi.org/10.3390/molecules19010352
APA StyleZaragoza-Galán, G., Ortíz-Palacios, J., Valderrama, B. X., Camacho-Dávila, A. A., Chávez-Flores, D., Ramos-Sánchez, V. H., & Rivera, E. (2014). Pyrene-Fullerene C60 Dyads as Light-Harvesting Antennas. Molecules, 19(1), 352-366. https://doi.org/10.3390/molecules19010352