Compounds from Dryopteris Fragrans (L.) Schott with Cytotoxic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Compounds from D. fragrans
2.2. Chemical Structure Identification and Spectroscopic Data
No. | δC a | δH b (J in Hz) | No. | δC a | δH b (J in Hz) |
---|---|---|---|---|---|
1 | 9 | 116.1 (C) | |||
2 | 163.7 (C) | 10 | 143.5 (C) | ||
3 | 109.6 (CH) | 6.15 (1H, s) | 11 | 29.8 (CH) | 3.24 (1H, m) |
4 | 165.4 (C) | 12 | 22.3 (CH3) | 1.25 (3H, d, 6.8) | |
5 | 116.3 (CH) | 6.95 (1H, s) | 13 | 22.3 (CH3) | 1.25 (3H, d, 6.8) |
6 | 129.0 (C) | 14 | 16.3 (CH3) | 2.26 (3H, s) | |
7 | 150.4 (C) | 15 | 60.7 (OCH3) | 3.89 (3H, s) | |
8 | 139.1 (C) |
2.3. Effects of Compounds on Cytotoxic Activity
Compound No. | IC50 a ± SE (μM) | |||
---|---|---|---|---|
A549 | MCF7 | HepG2 | ||
1 | 6.56 ± 1.59 | 10.14 ± 1.85 | – b | |
2 | 3.82 ± 0.23 | 2.73 ± 0.86 | 10.15 ± 1.77 | |
3 | 5.25 ± 1.62 | 8.58 ± 1.34 | 4.76 ± 1.01 | |
4 | – | – | – | |
5 | 12.59 ± 2.74 | 10.58 ± 1.56 | – | |
6 | – | 24.14 ± 3.12 | – | |
7 | – | – | – | |
8 | 14.13 ± 3.72 | 17.81 ± 4.11 | 17.90 ± 5.21 | |
9 | 17.25 ± 3.79 | 16.45 ± 5.80 | 23.75 ± 4.57 | |
Pseudolaric acid B c | 2.81 ± 0.45 | 2.44 ± 0.33 | 1.50 ± 0.28 |
3. Experimental
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Characterization of Isolated Compounds
3.5. MTT Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflictts of Interest
References
- Hsiao, W.L.; Liu, L. The role of traditional Chinese herbal medicines in cancer therapy--from TCM theory to mechanistic insights. Planta Med. 2010, 76, 1118–1131. [Google Scholar] [CrossRef]
- Manegold, C. Docetaxel (Taxotere) as first-line therapy of advanced non-small cell lung cancer (NSCLC). Onkologie 2003, 26 (Suppl. 7), 26–32. [Google Scholar] [CrossRef]
- Nabholtz, J.M.; Gligorov, J. Docetaxel/trastuzumab combination therapy for the treatment of breast cancer. Expert Opin. Pharmacother. 2005, 6, 1555–1564. [Google Scholar] [CrossRef]
- Petrylak, D.P. Docetaxel (Taxotere) in hormone-refractory prostate cancer. Semin. Oncol. 2000, 27, 24–29. [Google Scholar]
- Wu, C.P.; Ohnuma, S.; Ambudkar, S.V. Discovering natural product modulators to overcome multidrug resistance in cancer chemotherapy. Curr. Pharm. Biotechnol. 2011, 12, 609–620. [Google Scholar] [CrossRef]
- Shen, Z.B.; Luo, W.Y.; Yan, Y.S.; Zhu, J.F. Studies on phloroglucinol derivatives of Dryopteris fragrans L. Zhong Yao Cai 2006, 29, 560–561. [Google Scholar]
- Lee, K.K.; Kim, J.H.; Cho, J.J.; Choi, J.D. Inhibitory effects of 150 plant extracts on elastase activity, and their anti-inflammatory effects. Int. J. Cosmet. Sci. 1999, 21, 71–82. [Google Scholar]
- Fan, H.Q.; Shen, Z.B.; Chen, Y.F.; Wu, J.Y.; Yang, C.Y.; Liang, W.N.; Tang, C.P. Study on antifungal susceptibility of different extract of Dryopteris fragrans. Zhong Yao Cai 2012, 35, 1981–1985. [Google Scholar]
- Huang, Y.H.; Zeng, W.M.; Li, G.Y.; Liu, G.Q.; Zhao, D.D.; Wang, J.; Zhang, Y.L. Characterization of a new sesquiterpene and antifungal activities of chemical constituents from Dryopteris fragrans (L.) Schott. Molecules 2013, 19, 507–513. [Google Scholar]
- Ito, H.; Muranaka, T.; Mori, K.; Jin, Z.X.; Tokuda, H.; Nishino, H.; Yoshida, T. Ichthyotoxic phloroglucinol derivatives from Dryopteris fragrans and their anti-tumor promoting activity. Chem. Pharm. Bull. (Tokyo) 2000, 48, 1190–1195. [Google Scholar] [CrossRef]
- Kuang, H.; Zhang, Y.; Li, G.; Zeng, W.; Wang, H.; Song, Q. A new phenolic glycoside from the aerial parts of Dryopteris fragrans. Fitoterapia 2008, 79, 319–320. [Google Scholar] [CrossRef]
- Shen, Z.B.; Luo, W.Y.; Yan, Y.S.; Zhu, J.F. Study on terpene of Dryopteris fragrans L. Zhong Yao Cai 2006, 29, 334–335. [Google Scholar]
- Kuang, H.; Sun, C.; Zhang, Y.; Chen, D.; Yang, B.; Xia, Y. Three drimane sesquiterpene glucoside from the aerial parts of Dryopteris fragrans (L.) schot. Fitoterapia 2009, 80, 134–137. [Google Scholar] [CrossRef]
- Li, B.; Zhu, J.F.; Zou, Z.J.; Yin, Y.Q.; Shen, Z.B. Studies on the chemical constituents of Dryopteris fragrans. Zhong Yao Cai 2009, 32, 1232–1233. [Google Scholar]
- Li, X.J.; Fu, Y.J.; Luo, M.; Wang, W.; Zhang, L.; Zhao, C.J.; Zu, Y.G. Preparative separation of dryofragin and aspidin BB from Dryopteris fragrans extracts by macroporous resin column chromatography. J. Pharm. Biomed. Anal. 2012, 61, 199–206. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Fontaine, J.; Malonne, H.; Claeys, M.; Luhmer, M.; Duez, P. A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry 2005, 66, 1186–1191. [Google Scholar] [CrossRef]
- Forde, P.M.; Ettinger, D.S. Targeted therapy for non-small-cell lung cancer: Past, present and future. Expert Rev. Anticancer Ther. 2013, 13, 745–758. [Google Scholar] [CrossRef]
- Mohamed, A.; Krajewski, K.; Cakar, B.; Ma, C.X. Targeted therapy for breast cancer. Am. J. Pathol. 2013, 183, 1096–1012. [Google Scholar] [CrossRef]
- Kudo, M. Targeted therapy for liver cancer: Updated review in 2012. Curr. Cancer Drug Targets 2012, 12, 1062–1072. [Google Scholar]
- Zhao, D.; Lin, F.; Wu, X.; Zhao, Q.; Zhao, B.; Lin, P.; Zhang, Y.; Yu, X. Pseudolaric acid B induces apoptosis via proteasome-mediated Bcl-2 degradation in hormone-refractory prostate cancer DU145 cells. Toxicol. In Vitro 2012, 26, 595–602. [Google Scholar] [CrossRef]
- Devignat, R. Calculation of Reed and Muench’s 50 percent point in survival time measured in a recording cage. Ann. Inst. Pasteur. (Paris) 1952, 83, 372–380. [Google Scholar]
- Srijayanta, S.; Raman, A.; Goodwin, B.L. A Comparative Study of the Constituents of Aesculus hippocastanum and Aesculus indica. J. Med. Food. 1999, 2, 45–50. [Google Scholar]
- Alberto, J.; Fabiola, J.; Maria, D.C. New approach for the construction of the coumarin frame and application in the total synthesis of natural products. Helv. Chim. Acta 2011, 94, 185–198. [Google Scholar] [CrossRef]
- Zuo, L.; Wang, H.Q.; Chen, R.Y. Chemical constituents in roots of Dryopteris championii. Zhong Cao Yao 2005, 36, 177–179. [Google Scholar]
- Lobo-Echeverri, T.; Rivero-Cruz, J.F.; Su, B.N.; Chai, H.B.; Cordell, G.A.; Pezzuto, J.M.; Swanson, S.M.; Soejarto, D.D.; Kinghorn, A.D. Constituents of the leaves and twigs of Calyptranthes pallens collected from an experimental plot in Southern Florida. J. Nat. Prod. 2005, 68, 577–580. [Google Scholar] [CrossRef]
- Tangyuenyongwatana, P.; Gritsanapan, W. A study on artifacts formation in the Thai traditional medicine Prasaplai. Planta Med. 2008, 74, 1403–1405. [Google Scholar] [CrossRef]
- Han, A.R.; Kim, M.S.; Jeong, Y.H.; Lee, S.K.; Seo, E.K. Cyclooxygenase-2 inhibitory phenylbutenoids from the rhizomes of Zingiber cassumunar. Chem. Pharm. Bull. 2005, 53, 1466–1468. [Google Scholar] [CrossRef]
- Masanori, K.; Seigo, F.; Kunitoshi, Y.; Shinsaku, N.; Thaweephol, D.; Kunihede, M.; Masatioshi, N.; Shuuji, H. Phenylbutenoid dimers from the rhizomes of Zingiber Cassumunar. Chem. Pharm. Bull. 1980, 53, 2948–2959. [Google Scholar]
- Akiko, J.; Toshiya, M.; Nobuji, N. Phenylbutenoid dimers from the rhizomes of Zingiber Cassumunar. Phytochemistry 1993, 32, 357–363. [Google Scholar] [CrossRef]
- Lacikova, L.; Jancova, M.; Muselik, J.; Masterova, I.; Grancai, D.; Fickova, M. Antiproliferative, cytotoxic, antioxidant activity and polyphenols contents in leaves of four Staphylea L. species. Molecules 2009, 14, 3259–3267. [Google Scholar] [CrossRef]
- Pan, S.L.; Huang, Y.W.; Guh, J.H.; Chang, Y.L.; Peng, C.Y.; Teng, C.M. Esculetin inhibits Ras-mediated cell proliferation and attenuates vascular restenosis following angioplasty in rats. Biochem. Pharmacol. 2003, 65, 1897–1905. [Google Scholar] [CrossRef]
- Piao, G.C.; Li, Y.X.; Yuan, H.D.; Jin, G.Z. Cytotoxic fraction from Artemisia sacrorum Ledeb. against three human cancer cell lines and separation and identification of its compounds. Nat. Prod. Res. 2012, 26, 1483–1491. [Google Scholar] [CrossRef]
- Kapadia, G.J.; Tokuda, H.; Konoshima, T.; Takasaki, M.; Takayasu, J.; Nishino, H. Anti-tumor promoting activity of Dryopteris phlorophenone derivatives. Cancer. Lett. 1996, 105, 161–165. [Google Scholar] [CrossRef]
- Wu, L.S.; Hu, C.L.; Han, T.; Zheng, C.J.; Ma, X.Q.; Rahman, K.; Qin, L.P. Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from Taxus chinensis var. mairei. Appl. Microbiol. Biotechnol. 2013, 97, 305–315. [Google Scholar]
- Sample Availability: Samples of the compounds 1–9 are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhao, D.-D.; Zhao, Q.-S.; Liu, L.; Chen, Z.-Q.; Zeng, W.-M.; Lei, H.; Zhang, Y.-L. Compounds from Dryopteris Fragrans (L.) Schott with Cytotoxic Activity. Molecules 2014, 19, 3345-3355. https://doi.org/10.3390/molecules19033345
Zhao D-D, Zhao Q-S, Liu L, Chen Z-Q, Zeng W-M, Lei H, Zhang Y-L. Compounds from Dryopteris Fragrans (L.) Schott with Cytotoxic Activity. Molecules. 2014; 19(3):3345-3355. https://doi.org/10.3390/molecules19033345
Chicago/Turabian StyleZhao, Dan-Dan, Qin-Shi Zhao, Li Liu, Zhong-Qin Chen, Wei-Min Zeng, Hong Lei, and Yan-Long Zhang. 2014. "Compounds from Dryopteris Fragrans (L.) Schott with Cytotoxic Activity" Molecules 19, no. 3: 3345-3355. https://doi.org/10.3390/molecules19033345