Microencapsulation of Purified Amylase Enzyme from Pitaya (Hylocereus polyrhizus) Peel in Arabic Gum-Chitosan using Freeze Drying
Abstract
:1. Introduction
2. Result and Discussion
2.1. Efficiency of Encapsulated Amylase
2.2. Effect of Enzyme Encapsulation on pH Stability
2.3. Effect of Enzyme Encapsulation on Temperature Stability
2.4. Storage Stability of Encapsulated Amylase
2.5. Effect of Surfactant and Oxidizing Agent on the Stability of Encapsulated Enzyme
2.6. Particle Size Distribution of the Encapsulated Amylase
2.7. Scanning Electron Microscope of Encapsulated Amylase
3. Experimental
3.1. Chemicals and Plant Material
3.2. Preparation of Crude Feedstock
3.3. Purification of Amylase
3.4. Microencapsulation Procedure
3.5. Amylase Activity Assay and Protein Determination
3.6. Efficiency of Encapsulated Enzyme
3.7. Storage Stability of Encapsulated Amylase
3.8. Effect of Encapsulation on Temperature Stability of Amylase
3.9. Effect of Encapsulation on pH Stability of Amylase
3.10. Effect of Encapsulation on Surfactant and Oxidizing Agent Stability of Amylase
3.11. Particle Size Distribution
3.12. Scanning Electron Microscope
3.13. Experimental Design and Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflictts of Interest
References
- Jenshinn, L.; Lin, Y.S.; Kuo, S.T.; Jiang, C.M.; Wu, M.C. Purification of soybean amylase by superparamagnetic particles. Food Chem. 2009, 117, 94–98. [Google Scholar] [CrossRef]
- Olga, L.T.R.; Fernandez-Lafuente, A.; Goulart, J.; Monti, R. Optimization of the immobilization of sweet potato amylase using glutaraldehyde-agarose support. Process Biochem. 2013, 48, 1054–1058. [Google Scholar] [CrossRef]
- Bai, Y.; Huanga, H.; Menga, K.; Shia, P.; Yang, P.; Luo, H.; Luo, C.; Feng, Y.; Zhang, W. Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem. 2012, 131, 1473–1478. [Google Scholar] [CrossRef]
- Pandey, A.; Nigam, P.; Soccol, C.R.; Sing, D.; Mohan, R. Advances in microbial amylases. Biotechnol. Appl. Biochem. 2000, 31, 135–152. [Google Scholar]
- Gian, C.T.; Ettore, N.; Adriana, B. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Boss, E.A.; Filho, R.M.; Toledo, E.C.V. Freeze drying process: Real time model and optimization. Chem. Eng. Process. 2004, 43, 1475–1485. [Google Scholar] [CrossRef]
- Yurchenko, I.A.; Alekseev, A.F.; Yurchenko, D.O.; Badica, P.; Gridasova, T.Y.; Morozov, V.V.; Nemirovsky, A.V.; Peklun, V.F. Intensification of synthesis and examination of technological parameters influence on the properties and structure of bi–(pb)–Sr–Cu–Ca–O ceramics. Physica C 2003, 384, 111–124. [Google Scholar] [CrossRef]
- Kawai, K.; Suzuki, T. Stabilizing effect of four types of disaccharide on the enzymatic activity of freeze-dried lactate dehydrogenase: Step by step evaluation from freezing to storage. Pharm. Res. 2007, 24, 1883–1889. [Google Scholar] [CrossRef]
- Arakawa, T.; Prestrelski, S.J.; Kenney, W.C.; Carpenter, J.F. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 2001, 46, 307–326. [Google Scholar] [CrossRef]
- Shiga, H.; Yoshii, H.; Nishiyama, T. Flavor encapsulation and release characteristics of spray-dried powder by the blended encapsulant of cyclodextrin and Gum Arabic. Dry. Technol. 2001, 19, 1385–1395. [Google Scholar] [CrossRef]
- Kaushik, V.; Roos, Y.H. Limonene encapsulation in freeze-drying of gum Arabic–sucrose–gelatin systems. LWT Food Sci. Technol. 2007, 40, 1381–1391. [Google Scholar] [CrossRef]
- Briones, A.V.; Sato, T. Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan–carrageenan. React. Funct. Polym. 2010, 70, 19–27. [Google Scholar] [CrossRef]
- DeGroot, A.R.; Neufeld, R.J. Encapsulation of urease in alginate beads and protection from α-chymotrypsin with chitosan membranes. Enzym. Microb. Technol. 2001, 29, 321–327. [Google Scholar] [CrossRef]
- Tiourina, O.P.; Sukhorukov, G.B. Multilayer alginate/protamine microsized capsules: Encapsulation of α-chymotrypsin and controlled release study. Int. J. Pharm. 2002, 242, 155–161. [Google Scholar] [CrossRef]
- Leonard, M.; Rastello de Boisseson, M.; Hubert, P.; Dalenon, F.; Dellacherie, E. Hydrophobically modiWed alginate hydrogels as protein carriers with specific controlled release properties. J. Control. Release 2004, 98, 395–405. [Google Scholar] [CrossRef]
- Sharma, A.; Kumari, M.; Jagannadham, M.V. Benghalensin, a highly stable serine protease from the latex of medicinal plant ficus benghalensis. J. Agric. Food Chem. 2009, 57, 1120–1129. [Google Scholar]
- Alemzadeh, I.; Nejati, S. Phenols removal by immobilized horseradish peroxidase. J. Hazard. Mater. 2009, 166, 1082–1086. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, D. Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem. Eng. 2001, 9, 33–40. [Google Scholar] [CrossRef]
- Rezaei, K.; Jenab, E.; Temelli, F. Effects of water on enzyme performance with an emphasis on the reactions in supercritical fluids. Crit. Rev. Biotechnol. 2007, 27, 183–195. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Pandit, N.; Badgujar, M.; Bhaskar, C.; Rao, M. Encapsulation of endoglucanase using a biopolymer Gum Arabic for its controlled release. Bioresour. Technol. 2007, 98, 362–372. [Google Scholar]
- Li, J.; Jiang, Z.; Wu, H.; Long, L.; Jiang, Y.; Zhang, L. Improving the recycling and storage stability of enzyme by encapsulation in mesoporous CaCO3-alginate composite gel. Compos. Sci. Technol. 2009, 69, 539–544. [Google Scholar] [CrossRef]
- Swarnalatha, V.; Esther, R.A.; Dhamodharan, R. Immobilization of α-amylase on gum acacia stabilized magnetitenanoparticles, an easily recoverable and reusable support. J. Mol. Catal. B Enzym. 2013, 96, 6–13. [Google Scholar] [CrossRef]
- Savchenko, A.; Vieille, C.; Kang, S.; Zeikus, J.G. Pyrococcus furiosus alpha-amylase is stabilized by calcium and zinc. Biochemistry 2002, 41, 6193–6201. [Google Scholar] [CrossRef]
- Gupta, R.; Beg, Q.K.; Larenz, P. Bacterial alkaline proteases: Molecular porchesand industrial applications. Appl. Microbiol. Biotechnol. 2002, 9, 15–32. [Google Scholar]
- Gassara-Chatti, F.; Brar, S.K.; Ajila, C.M.; Verma, M.; Tyagi, R.D.; Valero, J.R. Encapsulation of ligninolytic enzymes and its application in clarification of juice. Food Chem. 2013, 15, 18–24. [Google Scholar]
- Ajila, C.M.; Bhat, S.G.; Prasada Rao, U.J.S. Valuable components of raw and ripe peels from two indian mango varieties. Food Chem. 2007, 102, 1006–1011. [Google Scholar] [CrossRef]
- Anwar, A.; Qader, S.A.; Raiz, A.; Iqbal, S.; Azhar, A. Calcium Alginate: A Support Material for Immobilization of Proteases from Newly Isolated Strain of Bacillus subtilis. World Appl. Sci. 2009, 7, 1281–1286. [Google Scholar]
- Kammoun, R.; Naili, B.; Bejar, S. Application of a statistical design to the optimization of parameters and culture medium for alpha-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresour. Technol. 2008, 99, 5602–5609. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Derde, L.J.; Gomand, S.V.; Courtin, C.M.; Delcour, J.A. Characterisation of three starch degrading enzymes: Thermostable β-amylase, maltotetraogenic and maltogenic α-amylases. Food Chem. 2012, 135, 713–721. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Rezessy-Szabo, J.M.; Claeyssens, M.; Stals, I.; Hoschke, A. Purification and characterization of amylolytic enzymes from thermophilic fungus Thermomyces lanuginosus strain ATCC 34626. Enzym. Microb. Technol. 2002, 31, 345–355. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Zinjarde, S.; Bhargava, S.; Rajamohanan, P.R.; Kumar, A.R. Discovering bisdemethoxycurcumin from Curcuma longa rhizome as a potent small molecule inhibitor of human pancreatic α-amylase, a target for type-2 diabetes. Food Chem. 2012, 135, 2638–2642. [Google Scholar] [CrossRef]
- Sample Availability: Samples of pitaya (Hylocereus polyrhizus) peel are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Amid, M.; Manap, Y.; Zohdi, N.K. Microencapsulation of Purified Amylase Enzyme from Pitaya (Hylocereus polyrhizus) Peel in Arabic Gum-Chitosan using Freeze Drying. Molecules 2014, 19, 3731-3743. https://doi.org/10.3390/molecules19033731
Amid M, Manap Y, Zohdi NK. Microencapsulation of Purified Amylase Enzyme from Pitaya (Hylocereus polyrhizus) Peel in Arabic Gum-Chitosan using Freeze Drying. Molecules. 2014; 19(3):3731-3743. https://doi.org/10.3390/molecules19033731
Chicago/Turabian StyleAmid, Mehrnoush, Yazid Manap, and Nor Khanani Zohdi. 2014. "Microencapsulation of Purified Amylase Enzyme from Pitaya (Hylocereus polyrhizus) Peel in Arabic Gum-Chitosan using Freeze Drying" Molecules 19, no. 3: 3731-3743. https://doi.org/10.3390/molecules19033731