Effects of Propylene Glycol Alginate and Sucrose Esters on the Physicochemical Properties of Modified Starch-Stabilized Beverage Emulsions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Creaming Index
Samples | Physicochemical properties | |||||
---|---|---|---|---|---|---|
Creaming Index at 10 °C (%) | Creaming Index at 25 °C (%) | Creaming Index at 55 °C (%) | Cloudiness (Ǻ) | Conductivity (mS/cm) | ||
MS6 | 100.0 ± 0.0 a | 100.0 ± 0.0 a | 86.0 ± 1.4 a | 0.091 ± 0.004 a | 0.0749 ± 0.0001 a,e | |
MS-PGA | 97.5 ± 3.5 a | 98.5 ± 2.1 a | 51.0 ± 1.4 b | 0.111 ± 0.001 a | 0.0837 ± 0.0002 b | |
MS-SL | 16.5 ± 2.1 b,d | 10.5 ± 0.7 b | 11.0 ± 1.4 c | 0.160 ± 0.013 b | 0.0719 ± 0.0000 c,d | |
MS-SS | 36.5 ± 2.1 c | 16.5 ± 2.1 c | 10.5 ± 0.7 c | 0.163 ± 0.001 b | 0.0742 ± 0.0000 a,d | |
MS1 | 23.5 ± 2.1 b | 20.5 ± 0.7 c | 20.5 ± 0.7 d | 0.160 ± 0.004 b | 0.0725 ± 0.0006 d | |
PGA1 | 99.5 ± 0.7 a | 41.5 ± 2.1 d | 14.5 ± 0.7 c | 0.309 ± 0.018 c | 0.0766 ± 0.0001 e | |
SL1 | 14.0 ± 1.4 d | 10.5 ± 0.7 b | 10.5 ± 0.7 c | 0.089 ± 0.013 a | 0.0695 ± 0.0001 f | |
SS1 | 36.0 ± 1.4 c | 31.0 ± 1.4 e | 21.5 ± 2.1 d | 0.110 ± 0.000 a | 0.0682 ± 0.0011 f | |
Samples | Physicochemical properties | |||||
Average Droplet Size, D[4,3] (µm) | Average Droplet Size, D[4,3] (µm) | |||||
MS6 | 0.245 ± 0.005 a | 0.299 ± 0.003 a | ||||
MS-PGA | 0.448 ± 0.016 a | 0.849 ± 0.061 b | ||||
MS-SL | 1.526 ± 0.004 b | 42.178 ± 0.130 c | ||||
MS-SS | 5.992 ± 0.045 c | 35.250 ± 0.040 d | ||||
MS1 | 8.476 ± 0.186 d | 8.535 ± 0.056 e | ||||
PGA1 | 2.179 ± 0.014 e | 2.527 ± 0.101 f | ||||
SL1 | 8.356 ± 0.059 d | 21.014 ± 0.204 g | ||||
SS1 | 1.815 ± 0.021 f | 10.671 ± 0.221 h |
2.2. Cloudiness
2.3. Average Droplet Size
2.4. Conductivity
3. Experimental
3.1. Materials
3.2. Preparations of Soursop Beverage Emulsions
Sample Name | Modified Starch (% w/w) | PGA (% w/w) | Sucrose Laurate (% w/w) | Sucrose Stearate (% w/w) | Soursop Oil (% w/w) | Vegetable Oil (% w/w) |
---|---|---|---|---|---|---|
MS6 * | 6.00 | − | − | − | 10.00 | 3.00 |
MS-PGA | 6.00 | 1.00 | − | − | 10.00 | 3.00 |
MS-SL | 6.00 | − | 1.00 | − | 10.00 | 3.00 |
MS-SS | 6.00 | − | − | 1.00 | 10.00 | 3.00 |
MS1 * | 1.00 | − | − | − | 10.00 | 3.00 |
PGA1 | − | 1.00 | − | − | 10.00 | 3.00 |
SL1 | − | − | 1.00 | − | 10.00 | 3.00 |
SS1 | − | − | − | 1.00 | 10.00 | 3.00 |
3.3. Creaming Index
3.4. Cloudiness
3.5. Average Droplet Size
3.6. Conductivity
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- MacLeod, A.J.; Pieris, N.M. Volatile flavor components of soursop (Annona muricata). J. Agric. Food Chem. 1981, 29, 488–490. [Google Scholar]
- Pareek, S.; Yahia, E.M.; Pareek, O.P.; Kaushik, R.A. Postharvest physiology and technology of Annona fruits. Food Res. Int. 2011, 44, 1741–1751. [Google Scholar]
- Shashirekha, M.N.; Baskaran, R.; Rao, L.J.; Vijayalakshmi, M.R.; Rajarathnam, S. Influence of processing conditions on flavour compounds of custard apple (Annona squamosa L.). LWT-Food Sci. Technol. 2008, 41, 236–243. [Google Scholar]
- McGorrin, R.J. Character-Impact Flavor Compounds. In Sensory Directed Flavor Analysis; Marsili, R., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 223–267. [Google Scholar]
- Umme, A.; Salmah, Y.; Jamilah, B.; Asbi, B.A. Microbial and enzymatic changes in natural soursop puree during storage. Food Chem. 1999, 65, 315–322. [Google Scholar]
- Franco, M.R.B.; Janzantti, N.S. Aroma of minor tropical fruits. Flavour Frag. J. 2005, 20, 358–371. [Google Scholar]
- Gratão, A.C.A.; Silveira, V., Jr.; Telis-Romero, J. Laminar flow of soursop juice through concentric annuli: Friction factors and rheology. J. Food Eng. 2007, 78, 1343–1354. [Google Scholar]
- World Flavors and Fragrances: Industry Forecast for 2014 and 2019. The Freedonia Group, Inc.: Cleveland, OH, USA, 2010; p. 4.
- McClements, D.J. Food Emulsions–Principles, Practices and Techniques, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Given, P.S. Encapsulation of flavors in emulsions for beverages. Curr. Opin. Colloid Interface Sci. 2009, 14, 43–47. [Google Scholar]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release–A review. Int. J. Food Sci. Technol. 2006, 41, 1–21. [Google Scholar]
- Tan, C.T. Beverage Emulsions. In Food Emulsions, 4th ed.; Friberg, S.E., Larsson, K., Sjöblom, J., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2004; pp. 485–524. [Google Scholar]
- Bergenstahl, B.A.; Claesson, P.M. Surface Forces in Emulsions. In Food Emulsions, 3rd ed.; Friberg, S.E., Larsson, K., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1997; pp. 57–110. [Google Scholar]
- Mirhosseini, H.; Tan, C.P. Response surface methodology and multivariate analysis of equilibrium headspace concentration of orange beverage emulsion as function of emulsion composition and structure. Food Chem. 2009, 115, 324–333. [Google Scholar]
- Mirhosseini, H.; Tan, C.P.; Hamid, N.S.A.; Yusof, S.; Boo, H.C. Characterization of the influence of main emulsion components on the physicochemical properties of orange beverage emulsion using response surface methodology. Food Hydrocoll. 2009, 23, 271–280. [Google Scholar]
- Sweedman, M.C.; Tizzotti, M.J.; Schäfer, C.; Gilbert, R.G. Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydr. Polym. 2013, 92, 905–920. [Google Scholar]
- Yadav, M.P.; Johnston, D.B.; Hotchkiss, A.T., Jr.; Hicks, K.B. Corn fiber gum: A potential gum arabic replacer for beverage flavor emulsification. Food Hydrocolloids 2007, 21, 1022–1030. [Google Scholar]
- Mirhosseini, H.; Amid, B.T.; Cheong, K.W. Effect of different drying methods on chemical and molecular structure of heteropolysaccharide-protein gum from durian seed. Food Hydrocolloids 2013, 31, 210–219. [Google Scholar]
- Taherian, A.R.; Britten, M.; Sabik, H.; Fustier, P. Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion. Food Hydrocolloids 2011, 25, 868–878. [Google Scholar]
- Hambleton, A.; Debeaufort, F.; Bonnotte, A.; Voilley, A. Influence of alginate emulsion-based films structure on its barrier properties and on the protection of microencapsulated aroma compound. Food Hydrocolloids 2009, 23, 2116–2124. [Google Scholar]
- Achouri, A.; Zamani, Y.; Boye, J.I. Stability and physical properties of emulsions prepared with and without soy protein. J. Food Res. 2012, 1, 254–267. [Google Scholar]
- Dunlap, C.A.; Côté, G.L. β-lactoglobulin-dextran conjugate: Effect of polysaccharide size on emulsion stability. J. Agric. Food Chem. 2005, 53, 419–423. [Google Scholar]
- O’Regan, J.; Mulvihill, D.M. Preparation, characterisation and selected functional properties of sodium caseinate-maltodextrin conjugates. Food Chem. 2009, 115, 1257–1267. [Google Scholar]
- Shachman, M. The Soft Drinks Companion: A Technical Handbook for the Beverage Industry; CRC Press: Boca Raton, FL, USA, 2005; pp. 46–58. [Google Scholar]
- Caldwell, C.G.; Wurzburg, O.B. Polysaccharide Derivatives of Substituted Dicarboxylic Acids. U.S. Patent 2-661-349, 1953. [Google Scholar]
- JECFA (Joint FAO/WHO Expert Committee on Food Addictives). Modified Starches. In Proceedings of the Compendium of Food Addictive Specifications (Addendum 9): 57th JECFA Session, No. 52. FAO Food and Nutrition, Rome, Italy, 5‒14 June 2001; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Liu, Z.; Li, Y.; Cui, F.; Ping, L.; Song, J.; Ravee, Y.; Jin, L.; Xue, Y.; Xu, J.; Li, G.; et al. Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. J. Agric. Food Chem. 2008, 56, 11499–11506. [Google Scholar]
- Singh, J.; Kaur, L.; McCarthy, O.J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review. Food Hydrocoll. 2007, 21, 1–22. [Google Scholar]
- Trubiano, P.C. The Role of Specialty Food Starches in Flavor Emulsion. In Flavor Technology: Physical Chemistry, Modification and Process; Ho, C.T., Tan C.T., Tan, Tong, C.H., Eds.; American Chemical Society: Washington, DC, USA, 1995; pp. 199–209. [Google Scholar]
- Prochaska, K.; Kędziora, P.; le Thanh, J.; Lewandowicz, G. Surface activity of commercial food grade modified starches. Colloids Surf. B Biointerfaces 2007, 60, 187–194. [Google Scholar]
- Nilsson, L.; Bergenståhl, B. Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. J. Colloid Interface Sci. 2007, 308, 508–513. [Google Scholar]
- Ray, A.K.; Johnson, J.K.; Sullivan, R.J. Refractive index of the dispersed phase in oil-in-water emulsions: Its dependence on droplet size and aging. J. Food Sci. 1983, 48, 513–516. [Google Scholar]
- Draget, K.I. Alginates. In Handbook of Hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing Limited: England, UK, 2000; pp. 379–395. [Google Scholar]
- Fabra, M.J.; Talens, P.; Chiralt, A. Effect of alginate and λ carrageenan on tensile properties and water vapor permeability of sodium caseinate-lipid based films. Carbohydr. Polym. 2008, 74, 419–426. [Google Scholar]
- Li, Y.; Zhang, S.; Yang, J.; Wang, Q. Relationship of solubility parameters to interfacial properties of sucrose esters. Colloids Surf. A Physicochem. Eng. Aspect 2004, 248, 127–133. [Google Scholar]
- Huck-Iriart, C.; Candal, R.J.; Herrera, M.L. Effects of addition of a palmitic sucrose ester on low-trans-fat blends crystallization in bulk and in oil-in-water emulsions. Food Biophys. 2009, 4, 158–166. [Google Scholar]
- Nelen, B.A.P.; Cooper, J.M. Sucrose Esters. In Emulsifiers in Food Technology; Whitehurst, R.J., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2004; pp. 131–161. [Google Scholar]
- Garti, N.; Clement, V.; Leser, M.; Aserin, A.; Fanun, M. Sucrose ester microemulsions. J. Mol. Liq. 1999, 80, 253–296. [Google Scholar]
- Rao, J.J.; McClements, D.J. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate and lemon oil. Food Hydrocolloids 2011, 25, 1413–1423. [Google Scholar]
- Zhao, Q.; Liu, D.; Long, Z.; Yang, B.; Fang, M.; Kuang, W.; Zhao, M. Effect of sucrose ester concentration on the interfacial characteristics and physical properties of sodium caseinate-stabilized oil-in-water emulsions. Food Chem. 2014, 151, 506–513. [Google Scholar]
- Li, C.; Fu, X.; Luo, F.; Huang, Q. Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocolloids 2013, 32, 79–86. [Google Scholar]
- Chanamai, R.; McClements, D.J. Comparison of gum Arabic, modified starch and whey protein isolate as emulsifiers: Influence of pH, CaCl2 and temperature. J. Food Sci. 2002, 67, 120–125. [Google Scholar]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids 2003, 17, 25–39. [Google Scholar]
- De Kruif, C.G.; Weinbreck, F.; de Vries, R. Complex coacervation of proteins and anionic polysaccharide. Curr. Opin. Colloid Interface Sci. 2004, 204, 340–349. [Google Scholar]
- Taherian, A.R.; Fustier, P.; Ramaswamy, H.S. Effects of added weighting agent and xanthan gum on stability and rheological properties of beverage cloud emulsions formulated using modified starch. J. Food Process Eng. 2007, 30, 204–224. [Google Scholar]
- Alimi, M.; Mizani, M.; Naderi, G.; Shokoohi, S. Effect of inulin formulation on the microstructure and viscoelastic properties of low-fat mayonnaise containing modified starch. J. Appl. Polym. Sci. 2013, 130, 801–809. [Google Scholar]
- Klein, M.; Aserin, A.; Svitov, I.; Garti, N. Enhanced stabilization of cloudy emulsions with gum Arabic and whey protein isolate. Colloids Surf. B Biointerfaces 2010, 77, 75–81. [Google Scholar]
- Salminen, H.; Weiss, J. Electrostatic adsorption and stability of whey protein-pectin complexes on emulsion interfaces. Food Hydrocolloids 2014, 35, 410–419. [Google Scholar]
- Rodríguez Patino, J.M.; Cejudo Fernández, M.; Carrera Sánchez, C.; Rodríguez Niño, M.R. Structural and shear characteristics of adsorbed sodium caseinate and monoglyceride mixed monolayers at air-water interface. J. Colloid Interface Sci. 2007, 313, 141–151. [Google Scholar]
- Choi, S.J.; Decker, E.A.; Henson, L.; Popplewell, L.M.; Xiao, H.; McClements, D.J. Formulation and properties of model beverage emulsions stabilized by sucrose monopalmitate: Influence of pH and lyso-lecithin addition. Food Res. Int. 2011, 44, 3006–3012. [Google Scholar]
- Ariyaprakai, S.; Limpachoti, T.; Pradipasena, P. Interfacial and emulsifying properties of sucrose ester in coconut milk emulsions in comparison with Tween. Food Hydrocolloids 2013, 30, 358–367. [Google Scholar]
- Paraskevopoulou, A.; Boskou, D.; Kiosseoglou, V. Stabilization of olive oil–lemon juice emulsion with polysaccharides. Food Chem. 2005, 90, 627–634. [Google Scholar]
- Dickinson, E.; Galazka, V.B. Emulsion stabilization by ionic and covalent complexes of β-lactoglobulin with polysaccharides. Food Hydrocolloids 1991, 5, 281–296. [Google Scholar]
- Huang, X.; Kakuda, Y.; Cui, W. Hydrocolloids in emulsions: Particle size distribution and interfacial activity. Food Hydrocolloids 2001, 15, 533–542. [Google Scholar]
- Paraskevopoulou, D.; Boskou, D.; Paraskevopoulou, A. Oxidative stability of olive oil-lemon juice salad dressings stabilized with polysaccharides. Food Chem. 2007, 101, 1197–1204. [Google Scholar]
- Leong, W.F.; Che Man, Y.B.; Lai, O.M.; Long, K.; Nakajima, M.; Tan, C.P. Effect of sucrose fatty acid esters on the particle characteristics and flow properties of phytosterol nanodispersions. J. Food Eng. 2011, 104, 63–69. [Google Scholar]
- Zhang, H.; Feng, F.; Li, J.; Zhan, X.; Wei, H.; Li, H.; Wang, H.; Zheng, X. Formulation of food-grade microemulsions with glycerol monolaurate: Effects of short-chain alcohols, polyols, salts and nonionic surfactants. Eur. Food Res. Technol. 2008, 226, 613–619. [Google Scholar]
- Noritomi, H.; Kowata, H.; Kojima, N.; Kato, S.; Nagahama, K. Application of sucrose fatty acid ester to reverse micellar extraction of lysozyme. Colloid Polym. Sci. 2006, 284, 677–682. [Google Scholar]
- Kanicky, J.R.; Shah, D.O. Effect of degree, type and position of unsaturation on the pKa of long-chain fatty acids. J. Colloid Interface Sci. 2002, 256, 201–207. [Google Scholar]
- Kanicky, J.R.; Poniatowski, A.F.; Mehta, N.R.; Shah, D.O. Cooperativity among molecules at interfaces in relation to various technological processes: Effect of chain length on the pKa of fatty acid salt solutions. Langmuir 2000, 16, 172–177. [Google Scholar]
- Mirhosseini, H.; Tan, C.P.; Aghlara, A.; Hamid, N.S.A.; Yusof, S.; Boo, H.C. Influence of pectin and CMC on physical stability, turbidity loss rate, cloudiness and flavor release of orange beverage emulsion during storage. Carbohydr. Polym. 2008, 73, 83–91. [Google Scholar] [Green Version]
- Das, K.P.; Kinsella, J.E. Effect of heat denaturation on the adsorption of β-lactoglobulin at the oil/water interface and on coalescence stability of emulsions. J. Colloid Interface Sci. 1990, 139, 551–560. [Google Scholar]
- Nilsson, L.; Bergenståhl, B. Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification. Langmuir 2006, 22, 8770–8776. [Google Scholar]
- Taherian, A.R.; Fustier, P.; Ramaswamy, H.S. Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsion. J. Food Eng. 2006, 77, 687–696. [Google Scholar]
- Garti, N.; serin, A; Azaria, D. A clouding agent based on modified soy protein. Int. J. Food Sci. Tech. 1991, 26, 259–270. [Google Scholar]
- Charoen, R.; Jangchud, A.; Jangchud, K.; Harnsilawat, T.; Naivikul, O.; McClements, D.J. Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: Whey protein, gum Arabic and modified starch. J. Food Sci. 2011, 76, E165–E172. [Google Scholar]
- Sample Availability: Samples of the soursop flavor oil is available from the authors.
© 2014 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cheong, K.W.; Mirhosseini, H.; Hamid, N.S.A.; Osman, A.; Basri, M.; Tan, C.P. Effects of Propylene Glycol Alginate and Sucrose Esters on the Physicochemical Properties of Modified Starch-Stabilized Beverage Emulsions. Molecules 2014, 19, 8691-8706. https://doi.org/10.3390/molecules19068691
Cheong KW, Mirhosseini H, Hamid NSA, Osman A, Basri M, Tan CP. Effects of Propylene Glycol Alginate and Sucrose Esters on the Physicochemical Properties of Modified Starch-Stabilized Beverage Emulsions. Molecules. 2014; 19(6):8691-8706. https://doi.org/10.3390/molecules19068691
Chicago/Turabian StyleCheong, Kok Whye, Hamed Mirhosseini, Nazimah Sheikh Abdul Hamid, Azizah Osman, Mahiran Basri, and Chin Ping Tan. 2014. "Effects of Propylene Glycol Alginate and Sucrose Esters on the Physicochemical Properties of Modified Starch-Stabilized Beverage Emulsions" Molecules 19, no. 6: 8691-8706. https://doi.org/10.3390/molecules19068691
APA StyleCheong, K. W., Mirhosseini, H., Hamid, N. S. A., Osman, A., Basri, M., & Tan, C. P. (2014). Effects of Propylene Glycol Alginate and Sucrose Esters on the Physicochemical Properties of Modified Starch-Stabilized Beverage Emulsions. Molecules, 19(6), 8691-8706. https://doi.org/10.3390/molecules19068691