Can We Produce Heparin/Heparan Sulfate Biomimetics Using “Mother-Nature” as the Gold Standard?
Abstract
:1. Introduction
2. Heparan Sulfate/Heparin Biosynthesis
3. Chemical Synthesis of HS
3.1. Oligosaccharide Synthesis
3.2. Backbone Modification
3.2.1. Cellulose and Starch
3.2.2. Alginate
3.2.3. Hyaluronan
3.2.4. K5 Polysaccharide
3.2.5. Chitosan
4. Enzymatic Synthesis of HS
4.1. UDP-Sugar Synthesis
4.2. Oligosaccharide Synthesis
5. Recombinant Expression of HS/Heparin Proteoglycans
5.1. Perlecan
5.2. Agrin
5.3. Syndecans
5.4. Glypicans
5.5. Serglycin
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cummings, R.D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 2009, 5, 1087–1104. [Google Scholar] [CrossRef] [PubMed]
- Caterson, B. Fell-Muir Lecture: Chondroitin sulphate glycosaminoglycans: Fun for some and confusion for others. Int. J. Exp. Pathol. 2012, 93, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Caterson, B.; Mahmoodian, F.; Sorrell, J.M.; Hardingham, T.E.; Bayliss, M.T.; Carney, S.L.; Ratcliffe, A.; Muir, H. Modulation of native chondroitin sulphate structure in tissue development and in disease. J. Cell Sci. 1990, 97, 411–417. [Google Scholar] [PubMed]
- Brickman, Y.G.; Ford, M.D.; Gallagher, J.T.; Nurcombe, V.; Bartlett, P.F.; Turnbull, J.E. Structural modification of fibroblast growth factor-binding heparan sulfate at a determinative stage of neural development. J. Biol. Chem. 1998, 273, 4350–4359. [Google Scholar] [CrossRef] [PubMed]
- Hacker, U.; Nybakken, K.; Perrimon, N. Heparan sulphate proteoglycans: The sweet side of development. Nat. Rev. Mol. Cell Biol. 2005, 6, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Whitelock, J.; Melrose, J. Heparan sulfate proteoglycans in healthy and diseased systems. Wiley Interdiscip. Rev. Syst. Biol. Med. 2011, 3, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Whitelock, J.M.; Melrose, J.; Iozzo, R.V. Diverse cell signaling events modulated by perlecan. Biochemistry 2008, 47, 11174–11183. [Google Scholar] [CrossRef] [PubMed]
- Kreuger, J.; Spillmann, D.; Li, J.; Lindahl, U. Interactions between heparan sulfate and proteins: The concept of specificity. J. Cell Biol. 2006, 174, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.K.; Viswanathan, K.; Ganguly, T.; Elankumaran, S.; Smith, S.; Pelzer, K.; Lansing, J.C.; Sriranganathan, N.; Zhao, G.; Galcheva-Gargova, Z.; et al. Contaminated Heparin Associated with Adverse Clinical Events and Activation of the Contact System. N. Engl. J. Med. 2008, 358, 2457–2467. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, M.; Beccati, D.; Shriver, Z.; Naggi, A.; Viswanathan, K.; Bisio, A.; Capila, I.; Lansing, J.C.; Guglieri, S.; Fraser, B.; et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat. Biotechnol. 2008, 26, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Lord, M.S.; Whitelock, J.M. Recombinant production of proteoglycans and their bioactive domains. FEBS J. 2013, 280, 2490–2510. [Google Scholar] [CrossRef] [PubMed]
- Höök, M.; Lindahl, U.; Hallén, A.; Bäckström, G. Biosynthesis of heparin. Studies on the microsomal sulfation process. J. Biol. Chem. 1975, 250, 6065–6071. [Google Scholar] [PubMed]
- Lidholt, K.; Kjellen, L.; Lindahl, U. Biosynthesis of heparin. Relationship between the polymerization and sulphation processes. Biochem. J. 1989, 261, 999–1007. [Google Scholar] [PubMed]
- Whitelock, J.M.; Iozzo, R.V. Heparan Sulfate: A Complex Polymer Charged with Biological Activity. Chem. Rev. 2005, 105, 2745–2764. [Google Scholar] [CrossRef] [PubMed]
- Presto, J.; Thuveson, M.; Carlsson, P.; Busse, M.; Wilén, M.; Eriksson, I.; Kusche-Gullberg, M.; Kjellén, L. Heparan sulfate biosynthesis enzymes EXT1 and EXT2 affect NDST1 expression and heparan sulfate sulfation. Proc. Natl. Acad. Sci. USA 2008, 105, 4751–4756. [Google Scholar] [CrossRef] [PubMed]
- Kreuger, J.; Kjellén, L. Heparan Sulfate Biosynthesis: Regulation and Variability. J. Histochem. Cytochem. 2012, 60, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Knox, S.; Merry, C.; Stringer, S.; Melrose, J.; Whitelock, J. Not All Perlecans Are Created Equal: Interactions with fibroblast growth factor (FGF) 2 and FGF recptors. J. Biol. Chem. 2002, 277, 14657–14665. [Google Scholar] [PubMed]
- Pinhal, M.A.S.; Smith, B.; Olson, S.; Aikawa, J.; Kimata, K.; Esko, J.D. Enzyme interactions in heparan sulfate biosynthesis: Uronosyl 5-epimerase and 2-O-sulfotransferase interact in vivo. Proc. Natl. Acad. Sci. USA 2001, 98, 12984–12989. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Ke, J.; Gu, X.; Fang, J.; Wang, W.; Cong, Q.; Li, J.; Tan, J.; Brunzelle, J.S.; Zhang, C.; et al. Structural and functional study of d-glucuronyl C5-epimerase. J. Biol. Chem. 2015, 290, 4620–4630. [Google Scholar] [CrossRef] [PubMed]
- Jemth, P.; Smeds, E.; Do, A.-T.; Habuchi, H.; Kimata, K.; Lindahl, U.; Kusche-Gullberg, M. Oligosaccharide Library-based Assessment of Heparan Sulfate 6-O-Sulfotransferase Substrate Specificity. J. Biol. Chem. 2003, 278, 24371–24376. [Google Scholar] [CrossRef] [PubMed]
- Casu, B.; Oreste, P.; Torri, G.; Zoppetti, G.; Choay, J.; Lormeau, J.C.; Petitou, M.; Sinay, P. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Chemical and 13C nuclear-magnetic-resonance studies. Biochem. J. 1981, 197, 599–609. [Google Scholar] [PubMed]
- Lindahl, U.; Bäckström, G.; Thunberg, L.; Leder, I.G. Evidence for a 3-O-sulfated d-glucosamine residue in the antithrombin-binding sequence of heparin. Proc. Natl. Acad. Sci. USA 1980, 77, 6551–6555. [Google Scholar] [CrossRef] [PubMed]
- Thacker, B.E.; Xu, D.; Lawrence, R.; Esko, J.D. Heparan sulfate 3-O-sulfation: A rare modification in search of a function. Matrix Biol. 2014, 35, 60–72. [Google Scholar] [CrossRef] [PubMed]
- HajMohammadi, S.; Enjyoji, K.; Princivalle, M.; Christi, P.; Lech, M.; Beeler, D.; Rayburn, H.; Schwartz, J.J.; Barzegar, S.; de Agostini, A.I.; et al. Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis. J. Clin. Investig. 2003, 111, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Shworak, N.W.; Kobayashi, T.; Agostini, A.; Smits, N.C. Anticoagulant Heparan Sulfate: To Not Clot—Or Not? In Progress in Molecular Biology and Translational Science; Lijuan, Z., Ed.; Academic Press: London, UK, 2010; Volume 93, pp. 153–178. [Google Scholar]
- Boltje, T.J.; Buskas, T.; Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 2009, 1, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Zulueta, M.M.L.; Lin, S.-Y.; Hu, Y.-P.; Hung, S.-C. Synthetic heparin and heparan sulfate oligosaccharides and their protein interactions. Curr. Opin. Chem. Biol. 2013, 17, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Dulaney, S.B.; Huang, X. Strategies in synthesis of heparin/heparan sulfate oligosaccharides: 2000-present. Adv. Carbohydr. Chem. Biochem. 2012, 67, 95–136. [Google Scholar] [PubMed]
- Orgueira, H.A.; Bartolozzi, A.; Schell, P.; Litjens, R.E.J.N.; Palmacci, E.R.; Seeberger, P.H. Modular Synthesis of Heparin Oligosaccharides. Chem. Eur. J. 2003, 9, 140–169. [Google Scholar] [CrossRef] [PubMed]
- Zulueta, M.M.L.; Lin, S.-Y.; Lin, Y.-T.; Huang, C.-J.; Wang, C.-C.; Ku, C.-C.; Shi, Z.; Chyan, C.-L.; Irene, D.; Lim, L.-H.; et al. α-Glycosylation by d-Glucosamine-Derived Donors: Synthesis of Heparosan and Heparin Analogues That Interact with Mycobacterial Heparin-Binding Hemagglutinin. J. Am. Chem. Soc. 2012, 134, 8988–8995. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, A.; Venot, A.; Boons, G.-J. New Set of Orthogonal Protecting Groups for the Modular Synthesis of Heparan Sulfate Fragments. Org. Lett. 2003, 5, 4975–4978. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Boons, G.-J. A new set of orthogonal-protecting groups for oligosaccharide synthesis on a polymeric support. Tetrahedron Asymmetry 2000, 11, 199–205. [Google Scholar] [CrossRef]
- Hu, Y.-P.; Lin, S.-Y.; Huang, C.-Y.; Zulueta, M.M.L.; Liu, J.-Y.; Chang, W.; Hung, S.-C. Synthesis of 3-O-sulfonated heparan sulfate octasaccharides that inhibit the herpes simplex virus type 1 host–cell interaction. Nat. Chem. 2011, 3, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; El Hadri, A.; Richard, S.; Denis, F.; Holte, K.; Duffner, J.; Yu, F.; Galcheva-Gargova, Z.; Capila, I.; Schultes, B.; et al. Synthesis and Biological Evaluation of a Unique Heparin Mimetic Hexasaccharide for Structure–Activity Relationship Studies. J. Med. Chem. 2014, 57, 4511–4520. [Google Scholar] [CrossRef] [PubMed]
- Dhamale, O.P.; Zong, C.; Al-Mafraji, K.; Boons, G.-J. New glucuronic acid donors for the modular synthesis of heparan sulfate oligosaccharides. Org. Biomol. Chem. 2014, 12, 2087–2098. [Google Scholar] [CrossRef] [PubMed]
- Dilhas, A.; Lucas, R.; Loureiro-Morais, L.; Hersant, Y.; Bonnaffé, D. Mixture Synthesis and “Charge Tagging” Based Demixing: An Efficient Strategy for the Preparation of Heparan Sulfate Libraries. J. Comb. Chem. 2008, 10, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Polat, T.; Wong, C.-H. Anomeric Reactivity-Based One-Pot Synthesis of Heparin-Like Oligosaccharides. J. Am. Chem. Soc. 2007, 129, 12795–12800. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, Y.; Yang, B.; Tiruchinapally, G.; Sun, B.; Liu, R.; Dulaney, S.; Liu, J.; Huang, X. Preactivation-Based, One-Pot Combinatorial Synthesis of Heparin-like Hexasaccharides for the Analysis of Heparin–Protein Interactions. Chem. Eur. J. 2010, 16, 8365–8375. [Google Scholar] [CrossRef] [PubMed]
- Zong, C.; Venot, A.; Dhamale, O.; Boons, G.-J. Fluorous Supported Modular Synthesis of Heparan Sulfate Oligosaccharides. Org. Lett. 2013, 15, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, R.; de Paz, J.-L.; Martin-Lomas, M. Synthesis of heparin-like oligosaccharides on a soluble polymer support. Chem. Commun. 2003, 2486–2487. [Google Scholar] [CrossRef]
- Ojeda, R.; Terentí, O.; de Paz, J.-L.; Martín-Lomas, M. Synthesis of heparin-like oligosaccharides on polymer supports. Glycoconj. J. 2004, 21, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Guedes, N.; Czechura, P.; Echeverria, B.; Ruiz, A.; Michelena, O.; Martin-Lomas, M.; Reichardt, N.-C. Toward the Solid-Phase Synthesis of Heparan Sulfate Oligosaccharides: Evaluation of Iduronic Acid and Idose Building Blocks. J. Org. Chem. 2013, 78, 6911–6934. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Lian, G.; Zhou, Y. Synthesis of Fondaparinux: Modular synthesis investigation for heparin synthesis. Carbohydr. Res. 2013, 371, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Lubineau, A.; Lortat-Jacob, H.; Gavard, O.; Sarrazin, S.; Bonnaffé, D. Synthesis of Tailor-Made Glycoconjugate Mimetics of Heparan Sulfate That Bind IFN-γ in the Nanomolar Range. Chem. Eur. J. 2004, 10, 4265–4282. [Google Scholar] [CrossRef] [PubMed]
- Arungundram, S.; Al-Mafraji, K.; Asong, J.; Leach, F.E.; Amster, I.J.; Venot, A.; Turnbull, J.E.; Boons, G.-J. Modular Synthesis of Heparan Sulfate Oligosaccharides for Structure-Activity Relationship Studies. J. Am. Chem. Soc. 2009, 131, 17394–17405. [Google Scholar] [CrossRef] [PubMed]
- Schwörer, R.; Zubkova, O.V.; Turnbull, J.E.; Tyler, P.C. Synthesis of a Targeted Library of Heparan Sulfate Hexa- to Dodecasaccharides as Inhibitors of β-Secretase: Potential Therapeutics for Alzheimer’s Disease. Chem. Eur. J. 2013, 19, 6817–6823. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.L.; Hansen, S.U.; Baráth, M.; Rushton, G.; Gardiner, J.M.; Avizienyte, E.; Jayson, G.C. Synthetic Heparan Sulfate Oligosaccharides Inhibit Endothelial Cell Functions Essential for Angiogenesis. PLoS One 2010, 5, e11644. [Google Scholar] [CrossRef] [PubMed]
- Baleux, F.; Loureiro-Morais, L.; Hersant, Y.; Clayette, P.; Arenzana-Seisdedos, F.; Bonnaffe, D.; Lortat-Jacob, H. A synthetic CD4-heparan sulfate glycoconjugate inhibits CCR5 and CXCR4 HIV-1 attachment and entry. Nat. Chem. Biol. 2009, 5, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.J.; Hansen, S.U.; Avizienyte, E.; Rushton, G.; Cole, C.; Jayson, G.C.; Gardiner, J.M. Efficient chemical synthesis of heparin-like octa-, deca- and dodecasaccharides and inhibition of FGF2- and VEGF165-mediated endothelial cell functions. Chem. Sci. 2013, 4, 3218–3222. [Google Scholar] [CrossRef]
- Hu, Y.-P.; Zhong, Y.-Q.; Chen, Z.-G.; Chen, C.-Y.; Shi, Z.; Zulueta, M.M.L.; Ku, C.-C.; Lee, P.-Y.; Wang, C.-C.; Hung, S.-C. Divergent Synthesis of 48 Heparan Sulfate-Based Disaccharides and Probing the Specific Sugar–Fibroblast Growth Factor-1 Interaction. J. Am. Chem. Soc. 2012, 134, 20722–20727. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, K.; Tohira, Y.; Inoue, Y.; Tanoura, N. Reaction between carbohydrates and sulfuric acid: Part I. Depolymerization and sulfation of polysaccharides by sulfuric acid. Carbohydr. Res. 1971, 18, 95–102. [Google Scholar] [CrossRef]
- Vikhoreva, G.; Bannikova, G.; Stolbushkina, P.; Panov, A.; Drozd, N.; Makarov, V.; Varlamov, V.; Gal’braikh, L. Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohydr. Polym. 2005, 62, 327–332. [Google Scholar] [CrossRef]
- Holme, K.R.; Perlin, A.S. Chitosan N-sulfate. A water-soluble polyelectrolyte. Carbohydr. Res. 1997, 302, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Liu, M.; Liang, R.; Bi, Y. Synthesis and Optimization of the Reaction Conditions of Starch Sulfates in Aqueous Solution. Starch 2007, 59, 91–98. [Google Scholar] [CrossRef]
- Xing, R.; Liu, S.; Yu, H.; Guo, Z.; Li, Z.; Li, P. Preparation of high-molecular weight and high-sulfate content chitosans and their potential antioxidant activity in vitro. Carbohydr. Polym. 2005, 61, 148–154. [Google Scholar] [CrossRef]
- Peschel, D.; Zhang, K.; Fischer, S.; Groth, T. Modulation of osteogenic activity of BMP-2 by cellulose and chitosan derivatives. Acta Biomater. 2012, 8, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Groth, T.; Wagenknecht, W. Anticoagulant potential of regioselective derivatized cellulose. Biomaterials 2001, 22, 2719–2729. [Google Scholar] [CrossRef] [PubMed]
- Peschel, D.; Zhang, K.; Aggarwal, N.; Brendler, E.; Fischer, S.; Groth, T. Synthesis of novel celluloses derivatives and investigation of their mitogenic activity in the presence and absence of FGF2. Acta Biomater. 2010, 6, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Gong, Y.; Cao, M.; Gao, S.; Sun, Y.; Chen, L.; Zheng, H.; Xie, W. Synthesis, characterization, and anticoagulant activity of carboxymethyl starch sulfates. J. Appl. Polym. Sci. 2013, 127, 4865–4872. [Google Scholar] [CrossRef]
- Fan, L.; Peng, M.; Wu, P.; Zhou, X.; Wu, H.; Wang, T.; Xie, W.; Liu, S.; Liu, X. Sulfation of Hydroxyethyl Cellulose by N(SO3Na)3 and the Anticoagulant Activity of Sulfated Hydroxyethyl Cellulose. J. Carbohydr. Chem. 2014, 33, 171–184. [Google Scholar] [CrossRef]
- Fan, L.; Zhou, X.; Wu, P.; Xie, W.; Zheng, H.; Tan, W.; Liu, S.; Li, Q. Preparation of carboxymethyl cellulose sulfates and its application as anticoagulant and wound dressing. Int. J. Biol. Macromol. 2014, 66, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Ronghua, H.; Yumin, D.; Jianhong, Y. Preparation and in vitro anticoagulant activities of alginate sulfate and its quaterized derivatives. Carbohydr. Polym. 2003, 52, 19–24. [Google Scholar] [CrossRef]
- Freeman, I.; Kedem, A.; Cohen, S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 2008, 29, 3260–3268. [Google Scholar] [CrossRef] [PubMed]
- Freeman, I.; Cohen, S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 2009, 30, 2122–2131. [Google Scholar] [CrossRef] [PubMed]
- Ruvinov, E.; Leor, J.; Cohen, S. The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. Biomaterials 2010, 31, 4573–4582. [Google Scholar] [CrossRef] [PubMed]
- Re’em, T.; Kaminer-Israeli, Y.; Ruvinov, E.; Cohen, S. Chondrogenesis of hMSC in affinity-bound TGF-beta scaffolds. Biomaterials 2012, 33, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Mhanna, R.; Kashyap, A.; Palazzolo, G.; Vallmajo-Martin, Q.; Becher, J.; Möller, S.; Schnabelrauch, M.; Zenobi-Wong, M. Chondrocyte Culture in Three Dimensional Alginate Sulfate Hydrogels Promotes Proliferation While Maintaining Expression of Chondrogenic Markers. Tissue Eng. Part A 2013, 20, 1454–1464. [Google Scholar] [CrossRef]
- Arlov, Ø.; Aachmann, F.L.; Sundan, A.; Espevik, T.; Skjåk-Bræk, G. Heparin-Like Properties of Sulfated Alginates with Defined Sequences and Sulfation Degrees. Biomacromolecules 2014, 15, 2744–2750. [Google Scholar] [PubMed]
- Toida, T.; Maruyama, T.; Ogita, Y.; Suzuki, A.; Toyoda, H.; Imanari, T.; Linhardt, R.J. Preparation and anticoagulant activity of fully O-sulphonated glycosaminoglycans. Int. J. Biol. Macromol. 1999, 26, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Hintze, V.; Moeller, S.; Schnabelrauch, M.; Bierbaum, S.; Viola, M.; Worch, H.; Scharnweber, D. Modifications of Hyaluronan Influence the Interaction with Human Bone Morphogenetic Protein-4 (hBMP-4). Biomacromolecules 2009, 10, 3290–3297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vann, W.F.; Schmidt, M.A.; Jann, B.; Jann, K. The Structure of the Capsular Polysaccharide (K5 Antigenn) of Urinary-Tract-Infective Escherichia coli 010:K5:H4. Eur. J. Biochem. 1981, 116, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Casu, B.; Grazioli, G.; Razi, N.; Guerrini, M.; Naggi, A.; Torri, G.; Oreste, P.; Tursi, F.; Zoppetti, G.; Lindahl, U. Heparin-like compounds prepared by chemical modification of capsular polysaccharide from E. coli K5. Carbohydr. Res. 1994, 263, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Leali, D.; Belleri, M.; Urbinati, C.; Coltrini, D.; Oreste, P.; Zoppetti, G.; Ribatti, D.; Rusnati, M.; Presta, M. Fibroblast Growth Factor-2 Antagonist Activity and Angiostatic Capacity of Sulfated Escherichia coli K5 Polysaccharide Derivatives. J. Biol. Chem. 2001, 276, 37900–37908. [Google Scholar] [PubMed]
- Urbinati, C.; Bugatti, A.; Oreste, P.; Zoppetti, G.; Waltenberger, J.; Mitola, S.; Ribatti, D.; Presta, M.; Rusnati, M. Chemically sulfated Escherichia coli K5 polysaccharide derivatives as extracellular HIV-1 Tat protein antagonists. FEBS Lett. 2004, 568, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindahl, U.; Li, J.; Kusche-Gullberg, M.; Salmivirta, M.; Alaranta, S.; Veromaa, T.; Emeis, J.; Roberts, I.; Taylor, C.; Oreste, P.; et al. Generation of “Neoheparin” from E. coli K5 Capsular Polysaccharide. J. Med. Chem. 2005, 48, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Qian, J.; Wang, J.; Yao, W.; Liu, C.; Chen, J.; Cao, X. Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo. Biomaterials 2009, 30, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wang, J.; Hou, J.; Xing, W.; Liu, C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials 2014, 35, 684–698. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Werkmeister, J.A.; Wang, J.; Glattauer, V.; McLean, K.M.; Liu, C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials 2014, 35, 2730–2742. [Google Scholar] [CrossRef] [PubMed]
- Lord, M.; Tsoi, B.M.; Farrugia, B.L.; Ting, S.R.S.; Baker, S.; Wiesmann, W.P.; Whitelock, J. Synthesis and characterization of water soluble biomimetic chitosans for bone and cartilage tissue regeneration. J. Mater. Chem. B 2014, 2, 6517–6526. [Google Scholar] [CrossRef]
- Ding, K.; Wang, Y.; Wang, H.; Yuan, L.; Tan, M.; Shi, X.; Lyu, Z.; Liu, Y.; Chen, H. 6-O-Sulfated Chitosan Promoting the Neural Differentiation of Mouse Embryonic Stem Cells. ACS Appl. Mater. Interfaces 2014, 6, 20043–20050. [Google Scholar] [CrossRef] [PubMed]
- Chappell, E.P.; Liu, J. Use of biosynthetic enzymes in heparin and heparan sulfate synthesis. Bioorganic Med. Chem. 2013, 21, 4786–4792. [Google Scholar] [CrossRef]
- DeAngelis, P.L.; Liu, J.; Linhardt, R.J. Chemoenzymatic synthesis of glycosaminoglycans: Re-creating, re-modeling and re-designing nature’s longest or most complex carbohydrate chains. Glycobiology 2013, 23, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, D.M.; Liu, J.; Linhardt, R.J. Chemoenzymatic synthesis of heparins. In Glycoscience: Biology and Medicine; Taniguchi, N., Endo, T., Hart, G.W., Seeberger, P.H., Wong, C.-H., Eds.; Springer: Tokyo, Japan, 2015; pp. 419–426. [Google Scholar]
- Sheng, J.; Xu, Y.; Dulaney, S.B.; Huang, X.; Liu, J. Uncovering Biphasic Catalytic Mode of C5-epimerase in Heparan Sulfate Biosynthesis. J. Biol. Chem. 2012, 287, 20996–21002. [Google Scholar] [CrossRef] [PubMed]
- Esko, J.D.; Selleck, S.B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 2002, 71, 435–471. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.; Frick, A.; Liu, J. Design of biologically active heparan sulfate and heparin using an enzyme-based approach. Nat. Prod. Rep. 2009, 26, 610–627. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Xu, Y.; Chen, M.; Weïwer, M.; Zhou, X.; Bridges, A.S.; DeAngelis, P.L.; Zhang, Q.; Linhardt, R.J.; Liu, J. Chemoenzymatic Design of Heparan Sulfate Oligosaccharides. J. Biol. Chem. 2010, 285, 34240–34249. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Dickinson, D.M.; Li, L.; Masuko, S.; Suflita, M.; Schultz, V.; Nelson, S.D.; Bhaskar, U.; Liu, J.; Linhardt, R.J. Fluorous-Assisted Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides. Org. Lett. 2014, 16, 2240–2243. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Li, L.; Harvey, C.; Liu, J.; Linhardt, R.J. Toward the chemoenzymatic synthesis of heparan sulfate oligosaccharides: Oxidative cleavage of p-nitrophenyl group with ceric ammonium salts. Tetrahedron Lett. 2013, 54, 4471–4474. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Y.; Yu, H.; Sugiarto, G.; Thon, V.; Hwang, J.; Ding, L.; Hie, L.; Chen, X. Tailored Design and Synthesis of Heparan Sulfate Oligosaccharide Analogues Using Sequential One-Pot Multienzyme Systems. Angew. Chem. Int. Ed. Engl. 2013, 52, 11852–11856. [Google Scholar] [CrossRef] [PubMed]
- Weïwer, M.; Sherwood, T.; Green, D.E.; Chen, M.; DeAngelis, P.L.; Liu, J.; Linhardt, R.J. Synthesis of Uridine 5′-diphosphoiduronic Acid: A Potential Substrate for the Chemoenzymatic Synthesis of Heparin. J. Org. Chem. 2008, 73, 7631–7637. [Google Scholar] [CrossRef] [PubMed]
- Masuko, S.; Bera, S.; Green, D.E.; Weïwer, M.; Liu, J.; DeAngelis, P.L.; Linhardt, R.J. Chemoenzymatic Synthesis of Uridine Diphosphate-GlcNAc and Uridine Diphosphate-GalNAc Analogs for the Preparation of Unnatural Glycosaminoglycans. J. Org. Chem. 2012, 77, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Otto, N.J.; Green, D.E.; Masuko, S.; Mayer, A.; Tanner, M.E.; Linhardt, R.J.; DeAngelis, P.L. Structure/Function Analysis of Pasteurella multocida Heparosan Synthases: Toward defining enzyme specificity and engineering novel catalysts. J. Biol. Chem. 2012, 287, 7203–7212. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Pempe, E.H.; Liu, J. Chemoenzymatic Synthesis of Heparin Oligosaccharides with both Anti-factor Xa and Anti-factor IIa Activities. J. Biol. Chem. 2012, 287, 29054–29061. [Google Scholar] [CrossRef] [PubMed]
- Chandarajoti, K.; Xu, Y.; Sparkenbaugh, E.; Key, N.S.; Pawlinski, R.; Liu, J. De novo synthesis of a narrow size distribution low-molecular-weight heparin. Glycobiology 2014, 24, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Masuko, S.; Takieddin, M.; Xu, H.; Liu, R.; Jing, J.; Mousa, S.A.; Linhardt, R.J.; Liu, J. Chemoenzymatic Synthesis of Homogeneous Ultralow Molecular Weight Heparins. Science 2011, 334, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.-H.; Xu, Y.; Keire, D.A.; Liu, J. Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides. Glycobiology 2014, 24, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cai, C.; Chandarajoti, K.; Hsieh, P.-H.; Li, L.; Pham, T.Q.; Sparkenbaugh, E.M.; Sheng, J.; Key, N.S.; Pawlinski, R.; et al. Homogeneous low-molecular-weight heparins with reversible anticoagulant activity. Nat. Chem. Biol. 2014, 10, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Z.; Liu, R.; Bridges, A.S.; Huang, X.; Liu, J. Directing the biological activities of heparan sulfate oligosaccharides using a chemoenzymatic approach. Glycobiology 2012, 22, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Sterner, E.; Masuko, S.; Li, G.; Li, L.; Green, D.E.; Otto, N.J.; Xu, Y.; DeAngelis, P.L.; Liu, J.; Dordick, J.S.; et al. Fibroblast Growth Factor-based Signaling through Synthetic Heparan Sulfate Blocks Copolymers Studied Using High Cell Density Three-dimensional Cell Printing. J. Biol. Chem. 2014, 289, 9754–9765. [Google Scholar] [CrossRef] [PubMed]
- Multhaupt, H.A.B.; Couchman, J.R. Heparan Sulfate Biosynthesis: Methods for Investigation of the Heparanosome. J. Histochem. Cytochem. 2012, 60, 908–915. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lawrence, R.; Frazier, B.A.; Esko, J.D. CHO glycosylation mutants: Proteoglcans. Methods Enzymol. 2006, 416, 205–221. [Google Scholar] [PubMed]
- Baik, J.Y.; Gasimli, L.; Yang, B.; Datta, P.; Zhang, F.; Glass, C.A.; Esko, J.D.; Linhardt, R.J.; Sharfstein, S.T. Metabolic engineering of Chinese hamster ovary cells: Towards a bioengineered heparin. Metab. Eng. 2012, 14, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Baik, J.Y.; Wang, C.L.; Yang, B.; Linhardt, R.J.; Sharfstein, S.T. Toward a bioengineered heparin: Challenges and strategies for metabolic engineering of mammalian cells. Bioengineered 2012, 3, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Datta, P.; Li, G.; Yang, B.; Zhao, X.; Baik, J.Y.; Gemmill, T.R.; Sharfstein, S.T.; Linhardt, R.J. Bioengineered chinese hamster ovary cells with golgi-targeted 3-O-sulfotransferase-1 biosynthesize heparan sulfate with an antithrombin-binding site. J. Biol. Chem. 2013, 288, 37308–37318. [Google Scholar] [CrossRef] [PubMed]
- Gasimli, L.; Glass, C.A.; Datta, P.; Yang, B.; Li, G.; Gemmill, T.R.; Baik, J.Y.; Sharfstein, S.T.; Esko, J.D.; Linhardt, R.J. Bioengineering murine mastocytoma cells to produce anticoagulant heparin. Glycobiology 2014, 24, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Dolan, M.; Horchar, T.; Rigatti, B.; Hassell, J.R. Identification of sites in domain I of perlecan that regulate heparan sulfate synthesis. J. Biol. Chem. 1997, 272, 4316–4322. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.D.; Whitelock, J.M.; Underwood, P.A. Expression of human perlecan domain I as a recombinant heparan sulfate proteoglycan with 20-kDa glycosaminoglycan chains. Biochem. Biophys. Res. Commun. 1999, 256, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.L.; Pan, W.; Yang, G.; Jones, K.; Chuang, C.; Whitelock, J.M.; DeCarlo, A.A. Similarity of recombinant human perlecan domain 1 by alternative expression systems bioactive heterogenous recombinant human perlecan D1. BMC Biotechnol. 2010, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Whitelock, J.; Ma, J.L.; Davies, N.; Nielsen, N.; Chuang, C.; Rees, M.; Iozzo, R.V.; Knox, S.; Lord, M. Recombinant heparan sulfate for use in tissue engineering applications. J. Chem. Technol. Biotechnol. 2008, 83, 496–504. [Google Scholar] [CrossRef]
- DeCarlo, A.A.; Belousova, M.; Ellis, A.L.; Petersen, D.; Grenett, H.; Hardigan, P.; O’Grady, R.; Lord, M.; Whitelock, J.M. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis. BMC Biotechnol. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.D.; Gomes, R.R., Jr.; Alicknavitch, M.; Farach-Carson, M.C.; Carson, D.D. Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril scaffolds. Tissue Eng. 2005, 11, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, A.; Cooper, C.R.; Gomes, R.R., Jr. Soluble perlecan domain I enhances vascular endothelial growth factor-165 activity and receptor phosphorylation in human bone marrow endothelial cells. BMC Biochem. 2010, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Costell, M.; Mann, K.; Yamada, Y.; Timpl, R. Characterization of recombinant perlecan domain I and its substitution by glycosaminoglycans and oligosaccharides. Eur. J. Biochem. 1997, 243, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Kokenyesi, R.; Silbert, J.E. Formation of heparan sulfate or chondroitin/dermatan sulfate on recombinant domain I of mouse perlecan expressed in Chinese hamster ovary cells. Biochem. Biophys. Res. Commun. 1995, 211, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.V.; Göhring, W.; Mörgelin, M.; Brancaccio, A.; David, G.; Timpl, R. Structural basis of glycosaminoglycan modification and of heterotypic interactions of perlecan domain V. J. Mol. Biol. 1999, 294, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.C.; Sasaki, T.; Gohring, W.; Yamada, Y.; Timpl, R. The C-terminal domain V of perlecan promotes β-1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified with glycosaminoglycans. Eur. J. Biochem. 1997, 250, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Tapanadechopone, P.; Hassell, J.R.; Rigatti, B.; Couchman, J.R. Localization of glycosaminoglycan substitution sites on domain V of mouse perlecan. Biochem. Biophys. Res. Commun. 1999, 265, 680–690. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lord, M.S.; Cheng, B.; Lyons, J.G.; Alkhouri, H.; Hughes, J.M.; McCarthy, S.J.; Iozzo, R.V.; Whitelock, J.M. Mast Cells Produce Novel Shorter Forms of Perlecan That Contain Functional Endorepellin: A role in angiogenesis and wound healing. J. Biol. Chem. 2013, 288, 3289–3304. [Google Scholar] [CrossRef] [PubMed]
- Mongiat, M.; Sweeney, S.M.; San Antonio, J.D.; Fu, J.; Iozzo, R.V. Endorepellin, a Novel Inhibitor of Angiogenesis Derived from the C Terminus of Perlecan. J. Biol. Chem. 2003, 278, 4238–4249. [Google Scholar] [CrossRef] [PubMed]
- Lord, M.S.; Chuang, C.Y.; Melrose, J.; Davies, M.J.; Iozzo, R.V.; Whitelock, J.M. The role of vascular-derived perlecan in modulating cell adhesion, proliferation and growth factor signaling. Matrix Biol. 2014, 35, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Groffen, A.J.; Ruegg, M.A.; van de Velden, T.J.; Buskens, C.A.; van den Born, J.; Assmann, K.J.; Monnens, L.A.; Veerkamp, J.H.; van den Heuvel, L.P. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J. Histochem. Cytochem. 1998, 46, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Bixby, J.L.; Baerwald-de la Torre, K.; Wang, C.; Rathjen, F.G.; Ruegg, M.A. A neuronal inhibitory domain in the N-terminal half of agrin. J. Neurobiol. 2002, 50, 164–179. [Google Scholar] [CrossRef] [PubMed]
- Winzen, U.; Cole, G.J.; Halfter, W. Agrin is a chimeric proteoglycan with the attachment sites for heparan sulfate/chondroitin sulfate located in two multiple serine-glycine clusters. J. Biol. Chem. 2003, 278, 30106–20114. [Google Scholar] [CrossRef] [PubMed]
- Viklund, L.; Loo, B.M.; Hermonen, J.; El-Darwish, K.; Jalkanen, M.; Salmivirta, M. Expression and characterization of minican, a recombinant syndecan-1 with extensively truncated core protein. Biochem. Biophys. Res. Commun. 2002, 290, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Romaris, M.; Coomans, C.; Ceulemans, H.; Bruystens, A.M.; Vekemans, S.; David, G. Molecular polymorphism of the syndecans. Identification of a hypo-glycanated murine syndecan-1 splice variant. J. Biol. Chem. 1999, 274, 18667–18674. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, A.; Asada, M.; Oda, Y.; Suzuki, M.; Imamura, T. Engineering of an FGF-proteoglycan fusion protein with heparin-independent, mitogenic activity. Nat. Biotechnol. 2000, 18, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Svensson, G.; Mani, K. S-Nitrosylation of secreted recombinant human glypican-1. Glycoconj. J. 2009, 26, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.L.; Lander, A.D. Mechanisms underlying preferential assembly of heparan sulfate on glypican-1. J. Biol. Chem. 2001, 276, 7507–7517. [Google Scholar] [CrossRef] [PubMed]
- Kolset, S.O.; Gallagher, J.T. Proteoglycans in haemopoietic cells. Biochim. Biophys. Acta 1990, 1032, 191–211. [Google Scholar] [PubMed]
- Kolset, S.O.; Pejler, G. Serglycin: A Structural and Functional Chameleon with Wide Impact on Immune Cells. J. Immunol. 2011, 187, 4927–4933. [Google Scholar] [CrossRef] [PubMed]
- Kolset, S.O.; Tveit, H. Serglycin—Structure and biology. Cell. Mol. Life Sci. 2008, 65, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Kolset, S.O.; Mann, D.M.; Uhlin-Hansen, L.; Winberg, J.O.; Ruoslahti, E. Serglycin-binding proteins in activated macrophages and platelets. J. Leukoc. Biol. 1996, 59, 545–554. [Google Scholar] [PubMed]
- Biederbick, A.; Licht, A.; Kleene, R. Serglycin proteoglycan is sorted into zymogen granules of rat pancreatic acinar cells. Eur. J. Cell Biol. 2003, 82, 19–29. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrugia, B.L.; Lord, M.S.; Melrose, J.; Whitelock, J.M. Can We Produce Heparin/Heparan Sulfate Biomimetics Using “Mother-Nature” as the Gold Standard? Molecules 2015, 20, 4254-4276. https://doi.org/10.3390/molecules20034254
Farrugia BL, Lord MS, Melrose J, Whitelock JM. Can We Produce Heparin/Heparan Sulfate Biomimetics Using “Mother-Nature” as the Gold Standard? Molecules. 2015; 20(3):4254-4276. https://doi.org/10.3390/molecules20034254
Chicago/Turabian StyleFarrugia, Brooke L., Megan S. Lord, James Melrose, and John M. Whitelock. 2015. "Can We Produce Heparin/Heparan Sulfate Biomimetics Using “Mother-Nature” as the Gold Standard?" Molecules 20, no. 3: 4254-4276. https://doi.org/10.3390/molecules20034254
APA StyleFarrugia, B. L., Lord, M. S., Melrose, J., & Whitelock, J. M. (2015). Can We Produce Heparin/Heparan Sulfate Biomimetics Using “Mother-Nature” as the Gold Standard? Molecules, 20(3), 4254-4276. https://doi.org/10.3390/molecules20034254