Antimicrobial and Antioxidant Activities and Phenolic Profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-UV-MS Analysis of Polyphenols
Polyphenolic Compounds | m/z Value | RT ± SD (min) | E. globulus Leaves | C. ficifolia Leaves |
---|---|---|---|---|
Gentisic acid | 153 | 3.69 ± 0.03 | NF | <0.02 |
Chlorogenic acid | 353 | 6.43 ± 0.05 | <0.02 | <0.02 |
p-Coumaric acid | 163 | 9.48 ± 0.08 | NF | <0.02 |
Hyperoside | 463 | 19.32 ± 0.12 | 666.42 ± 5.02 | 454.95 ± 0.02 |
Isoquercitrin | 463 | 20.29 ± 0.10 | 38.95 ± 5.72 | 71.31 ± 0.07 |
Rutin | 609 | 20.76 ± 0.15 | 48.65 ± 3.32 | 180.77 ± 0.21 |
Myricetin | 317 | 21.13 ± 0.12 | 92.34 ±0.21 | 124.46 ± 0.24 |
Quercitrin | 447 | 23.64 ± 0.13 | 287.83 ± 2.12 | 334.57 ± 0.35 |
Quercetin | 301 | 27.55 ± 0.15 | 2.01 ± 0.06 | 5.04 ± 0.04 |
Luteoline | 285 | 29.64 ± 0.19 | 34.40 ± 1.73 | 69.67 ± 0.09 |
Apigenine | 279 | 39.45 ± 0.15 | 2.85 ± 0.02 | 10.69 ± 0.01 |
2.2. Determination of Phenolic Compounds Content
Samples | TPC (mg GAE/g Plant Material) | Flavonoids (mg RE/g Plant Material) |
---|---|---|
E. globulus leaves | 235.87 ± 4.38 | 35.76 ± 0.95 |
C. ficifolia leaves | 108.51 ± 1.43 | 44.44 ± 1.23 |
2.3. Antioxidant Activity Assays
Samples | DPPH (µg QE/mg Plant Material) | TEAC (µg TE/mg Plant Material) | HAPX (%) |
---|---|---|---|
E. globulus leaves | 15.27 ± 1.77 | 9.02 ± 0.26 | 61.16 ± 5.56 |
C. ficifolia leaves | 11.76 ± 0.71 | 5.45 ± 0.26 | 158.20 ± 29.48 |
2.4. Antimicrobial Activity Assays
Bacterial Strains | Standard Antibiotic | Inhibition Zone (mm) | ||
---|---|---|---|---|
Gentamicin | Ciprofloxacine | E. globulus Leaves | C. ficifolia Leaves | |
Staphylococcus aureus | 5.1 ± 0.2 | 5.2 ± 0.3 | 8.1 ± 0.1 | 12.4 ± 0.3 |
Bacillus subtilis | 4.2 ± 0.3 | 4.4 ± 0.1 | 2.2 ± 0.2 | 1.1 ± 0.2 |
Listeria monocytogenes | 7.3 ± 0.3 | 6.2 ± 0.2 | 10.1 ± 0.4 | 10.5 ± 0.4 |
Escherichia coli | 4.1 ± 0.2 | 5.1 ± 0.4 | 2.3 ± 0.1 | 7.3 ± 0.1 |
Salmonella typhimurium | 4.2 ± 0.1 | 4.3 ± 0.1 | 0 | 3.2 ± 0.5 |
Bacterial Strains | MIC (µg/mL) | |
---|---|---|
E. globulus Leaves | C. ficifolia Leaves | |
Staphylococcus aureus | 50 | 20 |
Bacillus subtilis | >100 | >100 |
Listeria monocytogenes | 30 | 30 |
Escherichia coli | >100 | 50 |
Salmonella typhimurium | >100 | >100 |
3. Experimental Section
3.1. Plant Materials and Extraction Procedure
3.2. Chemical and Instrumentation
3.3. HPLC-UV/MS Analysis of Polyphenols
3.3.1. Apparatus and Chromatographic Conditions for the Analysis of Polyphenols
3.3.2. Identification and Quantification of Polyphenols
3.4. Determination of Total Polyphenols and Flavonoids Content
3.5. In Vitro Antioxidant Activity Assays
3.5.1. DPPH Bleaching Assay
3.5.2. Trolox Equivalent Antioxidant Capacity (TEAC) Assay
3.5.3. Hemoglobin/Ascorbate Peroxidase Activity Inhibition (HAPX) Assay
3.5.4. Inhibition of Lipid Peroxidation Catalyzed by Cytochrome c
3.6. Determination of Antimicrobial Activity
3.6.1. Microorganisms and Culture Growth
3.6.2. Antimicrobial Activity Assay
3.6.3. Minimum Inhibitory Concentration
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Luo, Y.; Cobb, R.E.; Zhao, H. Recent advances in natural product discovery. Curr. Opin. Biotechnol. 2014, 30, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Wolfender, J.L.; Eugster, P.J.; Bohni, N.; Cuendet, M. Advanced methods for natural products discovery in the field of nutraceuticals. Chimia 2011, 65, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Sytsma, K.J.; Litt, A.; Zjhra, M.L.; Pires, C.; Nepokroeff, M.; Conti, E.; Walker, J.; Wilson, P.G. Clades, clocks, and continents: Historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the shouthern hemisphere. Int. J. Plant Sci. 2004, 165, S85–S105. [Google Scholar] [CrossRef]
- Brooker, M.I.H.; Kleinig, D.A. Field Guide to Eucalypts, Volume 1, South-eastern Australia, 3rd ed.; Bloomings Books Pty Ltd: Richmond, VA, USA, 2006. [Google Scholar]
- Luis, A.; Neiva, D.; Pereira, H.; Gominho, J.; Domingues, F.; Duarte, A.P. Stumps of Eucalyptus globulus as a source of antioxidant and antimicrobial polyphenols. Molecules 2014, 19, 16428–16446. [Google Scholar] [CrossRef]
- Singh, H.P.; Kaur, S.; Negi, K.; Kumari, S.; Saini, V.; Batish, D.R.; Kohli, R.K. Assessment of in vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt; Myrtaceae) and its major constituents. LWT-Food Sci. Technol. 2012, 48, 237–241. [Google Scholar] [CrossRef]
- Pereira, V.; Dias, C.; Vasconcelos, M.C.; Rosa, E.; Saavedra, M.J. Antibacterial activity and synergistic effects between Eucalyptus globulus leaf residues (essential oils and extracts) and antibiotics against several isolates of respiratory trac tinfections (Pseudomonas aeruginosa). Ind. Crops Prod. 2014, 52, 1–7. [Google Scholar] [CrossRef]
- Boulekbache-Makhlouf, L.; Slimani, S.; Madani, K. Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria. Ind. Crops Prod. 2013, 41, 85–89. [Google Scholar] [CrossRef]
- Bachir, R.G.; Benali, M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Med. 2012, 2, 739–742. [Google Scholar] [CrossRef]
- Shepherd, M.; Baker, N.; Kasem, S.; Lee, D.; Henry, R.J. Comparative mapping of Eucalyptus and Corymbia. In Breeding for Success: Diversity in Action, Proceedings of the 13th Australasian Plant Breeding Conference, Christchurch, New Zealand, 18–21 April 2006; Mercer, C.F., Ed.; New Zealand Grassland Association: Dunedin, New Zealand, 2006. [Google Scholar]
- Yulia, E.; Hardy, G.E.S.J.; Barber, P.; Dell, B. A severe canker disease of Corymbia ficifolia caused by Quambalaria coyrecup in native and urban forests of Western Australia. For. Pathol. 2014, 44, 201–210. [Google Scholar] [CrossRef]
- Nobakht, M.; Grkovic, T.; Trueman, S.J.; Wallace, H.M.; Katouli, M.; Quinn, R.J.; Brooks, P.R. Chemical constituents of kino extract from Corymbia torelliana. Molecules 2014, 19, 17862–17871. [Google Scholar] [CrossRef] [PubMed]
- Gilles, M.; Zhao, J.; An, M.; Agboola, S. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem. 2010, 119, 731–737. [Google Scholar] [CrossRef]
- Hasegawa, T.; Takano, F.; Takata, T.; Niiyama, M.; Ohta, T. Bioactive monoterpene glycosides conjugated with gallic acid from the leaves of Eucalyptus globulus. Phytochemistry 2008, 69, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Vernin, G.A.; Parkanyi, C.; Cozzolino, F.; Fellous, R. GC/MS analysis of the volatile constituents of Corymbia citriodora hook. from Réunion Island. J. Essent. Oil Res. 2004, 16, 560–565. [Google Scholar] [CrossRef]
- Silou, T.; Loumouamou, A.N.; Loukakou, E.; Chalcat, J.-C.; Figueredo, G. Intra and interspecific variations of yield and chemical composition of essential oils from five Eucalyptus species growing in the Congo-Brazzaville. Corymbia Subgenus. J. Essent. Oil Res. 2011, 21, 203–211. [Google Scholar] [CrossRef]
- Massaro, C.F.; Katouli, M.; Grkovic, T.; Vu, H.; Quinn, R.J.; Heard, T.A.; Carvalho, C.; Manley-Harris, M.; Wallace, H.M.; Brooks, P. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 2014, 95, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Neto, C.P.; Silvestre, A.J.D. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood. J. Chromatogr. B 2013, 938, 65–74. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Ben Hassine, D.; Abderrabba, M.; Yvon, Y.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Bouajila, J. Chemical composition and in vitro evaluation of the antioxidant and antimicrobial activities of Eucalyptus gillii essential oil and extracts. Molecules 2012, 17, 9540–9558. [Google Scholar] [CrossRef]
- Mocan, A.; Vlase, L.; Vodnar, D.C.; Bischin, C.; Hanganu, D.; Gheldiu, A.-M.; Oprean, R.; Silaghi-Dumitrescu, R.; Crișan, G. Polyphenolic content, antioxidant and antimicrobial activities of Lycium Barbarum L. and Lycium Chinense Mill. leaves. Molecules 2014, 19, 10056–10073. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Crișan, G.; Vlase, L.; Crișan, O.; Vodnar, D.C.; Raita, O.; Gheldiu, A.-M.; Toiu, A.; Oprean, R.; Tilea, I. Comparative studies on polyphenolic composition, antioxidant and antimicrobial activities of Schisandra chinensis leaves and fruits. Molecules 2014, 19, 15162–15179. [Google Scholar] [CrossRef]
- Mot, A.C.; Bischin, C.; Damian, G.; Silaghi-Dumitrescu, R. Antioxidant activity evaluation involving hemoglobin-related free radical reactivity. In Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology; Springer: New York, NY, USA, 2013; Volume 1208, pp. 247–255. [Google Scholar]
- Bischin, C.; Tusan, C.; Bartok, A.; Septelean, R.; Damian, G.; Silaghi-Dumitrescu, R. Evalution of the biochemical effects of silyl-phosphaalkenes on oxidative and nitrosative stress pathways involving metallocenters. Phosphorus Sulfur Silicon Relat. Elem. 2014. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In vitro antioxidant properties of rutin. LWT-Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Bischin, C.; Deac, F.; Silaghi-Dumitrescu, R.; Worrall, J.A.; Rajagopal, B.S.; Damian, G.; Cooper, C.E. Ascorbate peroxidase activity of cytochrome c. Free Radic. Res. 2011, 45, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Moussa-Ayoub, T.E.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Identification and quantification of flavonol aglycons in cactus pear (Opuntia ficus indica) fruit using a commercial pectinase and cellulose preparation. Food Chem. 2011, 124, 1177–1184. [Google Scholar] [CrossRef]
- Varadarajan, P.; Rathinaswamy, G.; Asirvatahm, D. Antimicrobial properties and phytochemical constituents of Rheo discolor Hance. Ethnobot. Leaf. 2008, 12, 841–845. [Google Scholar]
- Salvat, A.; Antonacci, L.; Fortunato, R.H.; Suarez, E.Y.; Godo, H.M. Antimicrobial activity in methanolic extracts of several plant species from Northern Argentina. Phytomedicine 2004, 11, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Antonini, E.; Brunori, M. Hemoglobin and Myoglobin in Their Reaction with Ligands; North-Holland Publishing Company: Amsterdam, The Netherlands, 1971; pp. 98–134. [Google Scholar]
- Mot, A.C.; Damian, G.; Sarbu, C.; Silaghi-Dumitrescu, R. Redox reactivity in propolis: Direct detection of free radicals in basic medium and interaction with hemoglobin. Redox Rep. 2009, 14, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Vlase, L.; Pârvu, M.; Pârvu, E.A.; Toiu, A. Chemical constituents of three Allium species from Romania. Molecules 2013, 18, 114–127. [Google Scholar] [CrossRef]
- Vlase, L.; Mocan, A.; Hanganu, D.; Benedec, D.; Gheldiu, A.; Crișan, G. Comparative study of polyphenolic content, antioxidant and antimicrobial activity of four Galium species (Rubiaceae). Dig. J. Nanomat. Biostruct. 2014, 9, 1085–1094. [Google Scholar]
- Romanian Pharmacopoeia Commission National Medicines Agency. Romanian Pharmacopoeia, Xth ed.; Medical Publishing House: Bucharest, Romania, 1993; p. 335. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [PubMed]
- Sample Availability: Samples of the extracts are not available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dezsi, Ș.; Bădărău, A.S.; Bischin, C.; Vodnar, D.C.; Silaghi-Dumitrescu, R.; Gheldiu, A.-M.; Mocan, A.; Vlase, L. Antimicrobial and Antioxidant Activities and Phenolic Profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson Leaves. Molecules 2015, 20, 4720-4734. https://doi.org/10.3390/molecules20034720
Dezsi Ș, Bădărău AS, Bischin C, Vodnar DC, Silaghi-Dumitrescu R, Gheldiu A-M, Mocan A, Vlase L. Antimicrobial and Antioxidant Activities and Phenolic Profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson Leaves. Molecules. 2015; 20(3):4720-4734. https://doi.org/10.3390/molecules20034720
Chicago/Turabian StyleDezsi, Ștefan, Alexandru Sabin Bădărău, Cristina Bischin, Dan Cristian Vodnar, Radu Silaghi-Dumitrescu, Ana-Maria Gheldiu, Andrei Mocan, and Laurian Vlase. 2015. "Antimicrobial and Antioxidant Activities and Phenolic Profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson Leaves" Molecules 20, no. 3: 4720-4734. https://doi.org/10.3390/molecules20034720
APA StyleDezsi, Ș., Bădărău, A. S., Bischin, C., Vodnar, D. C., Silaghi-Dumitrescu, R., Gheldiu, A. -M., Mocan, A., & Vlase, L. (2015). Antimicrobial and Antioxidant Activities and Phenolic Profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson Leaves. Molecules, 20(3), 4720-4734. https://doi.org/10.3390/molecules20034720