Pd@[nBu4][Br] as a Simple Catalytic System for N-Alkylation Reactions with Alcohols
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization of the Catalyst
2.2. Optimisation of the N-Alkylation Reaction Conditions
2.3. N-Alkylation of Amines with Benzyl Alcohol Derivatives
2.4. Heterogeneous Catalysts for Cascade Oxidation/Imine Foration/Hydrogenation Leading to Benzylamine
3. Experimental Section
3.1. General Information
3.2. Chemicals
3.3. General Procedure
3.4. Analyses
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lawrence, S.A. Amines: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2006; p. 384. [Google Scholar]
- Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Internal olefins to linear amines. Science 2002, 297, 1676–1678. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.R. The Organic Chemistry of Aliphatic Nitrogen Compounds; Oxford University Press: Oxford, UK, 1994; p. 800. [Google Scholar]
- Buchwald, S.L.; Mauger, C.; Mignani, G.; Scholz, U. Industrial-scale palladium-catalyzed coupling of aryl halides and amines—A personal account. Adv. Synth. Catal. 2006, 348, 23–39. [Google Scholar] [CrossRef]
- Alonso, F.; Riente, P.; Yus, M. Nickel nanoparticles in hydrogen transfer reactions. Acc. Chem. Res. 2011, 44, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Asencio, A.; Yus, M.; Ramon, D.J. Palladium (II) acetate as catalyst for the N-alkylation of aromatic amines, sulfonamides, and related nitrogenated compounds with alcohols by a hydrogen autotransfer process. Synthesis 2011, 22, 3730–3740. [Google Scholar] [CrossRef]
- Bui, T.K.; Concilio, C.; Porzi, G. A facile synthesis of symmetrical secondary amines from primary amines promoted by the homogeneous catalyst RuCl2 (Ph3P) 3. J. Organomet. Chem. 1981, 208, 249–251. [Google Scholar]
- Pridmore, S.J.; Slatford, P.A.; Daniel, A.; Whittlesey, M.K.; Williams, J.M.J. Ruthenium-catalyzed conversion of 1,4-alkynediols into pyrroles. Tetrahedron Lett. 2007, 48, 5115–5120. [Google Scholar] [CrossRef]
- Hamid, M.H.S.A.; Allen, C.L.; Lamb, G.W.; Maxwell, A.C.; Maytum, H.C.; Watson, A.J.A.; Williams, J.M.J. Ruthenium-Catalyzed N-alkylation of Amines and Sulfonamides Using Borrowing Hydrogen Methodology. J. Am. Chem. Soc. 2009, 131, 1766–1774. [Google Scholar] [CrossRef] [PubMed]
- Baehn, S.; Imm, S.; Mevius, K.; Neubert, L.; Tillack, A.; Williams, J.M.J.; Beller, M. Selective ruthenium-catalyzed N-alkylation of indoles by using alcohols. Chem. Eur. J. 2010, 16, 3590–3593. [Google Scholar] [CrossRef] [PubMed]
- Imm, S.; Baehn, S.; Neubert, L.; Neumann, H.; Beller, M. An Efficient and General Synthesis of Primary Amines by Ruthenium-Catalyzed Amination of Secondary Alcohols with Ammonia. Angew. Chem. Int. Ed. 2010, 49, 8126–8129. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, W.; Feng, C.; Deng, G. Ruthenium-Catalyzed One-Pot Aromatic Secondary Amine Formation from Nitroarenes and Alcohols. Chem. Asian J. 2011, 6, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Prades, A.; Corberan, R.; Poyatos, M.; Peris, E. [IrCl2Cp*(NHC)] complexes as highly versatile efficient catalysts for the cross-coupling of alcohols and amines. Chem. Eur. J. 2008, 14, 11474–11479. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, R.; Fujita, K.-I.; Yamaguchi, R. Multialkylation of Aqueous Ammonia with Alcohols Catalyzed by Water-Soluble Cp*Ir-Ammine Complexes. J. Am. Chem. Soc. 2010, 132, 15108–15111. [Google Scholar] [CrossRef] [PubMed]
- Saidi, O.; Blacker, A.J.; Farah, M.M.; Marsden, S.P.; Williams, J.M.J. Iridium-catalysed amine alkylation with alcohols in water. Chem. Commun. 2010, 46, 1541–1543. [Google Scholar] [CrossRef] [PubMed]
- Saidi, O.; Williams, J.M.J. Iridium-catalyzed hydrogen transfer reactions. Top. Organomet. Chem. 2011, 34, 77–106. [Google Scholar]
- Grigg, R.; Mitchell, T.R.B.; Sutthivaiyakit, S.; Tongpenyai, N. Transition metal-catalyzed N-alkylation of amines by alcohols. J. Chem. Soc. Chem. Commun. 1981, 611–612. [Google Scholar] [CrossRef]
- Feng, S.L.; Liu, C.Z.; Li, Q.; Yu, X.C.; Xu, Q. Rhodium-catalyzed aerobic N-alkylation of sulfonamides with alcohols. Chin. Chem. Lett. 2011, 22, 1021–1024. [Google Scholar] [CrossRef]
- Cui, X.; Shi, F.; Tse, M.K.; Goerdes, D.; Thurow, K.; Beller, M.; Deng, Y. Copper-Catalyzed N-alkylation of Sulfonamides with Benzylic Alcohols: Catalysis and Mechanistic Studies. Adv. Synth. Catal. 2009, 351, 2949–2958. [Google Scholar] [CrossRef]
- Martinez-Asencio, A.; Ramon, D.J.; Yus, M. N-alkylation of poor nucleophilic amine and sulfonamide derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper (II) acetate. Tetrahedron Lett. 2010, 51, 325–327. [Google Scholar] [CrossRef]
- Martinez-Asencio, A.; Ramon, D.J.; Yus, M. N-alkylation of poor nucleophilic amines and derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper (II) acetate: Scope and mechanistic considerations. Tetrahedron 2011, 67, 3140–3149. [Google Scholar] [CrossRef]
- Cui, X.; Shi, F.; Zhang, Y.; Deng, Y. Fe (II)-catalyzed N-alkylation of sulfonamides with benzylic alcohols. Tetrahedron Lett. 2010, 51, 2048–2051. [Google Scholar] [CrossRef]
- Zhao, Y.; Foo, S.W.; Saito, S. Iron/Amino Acid Catalyzed Direct N-alkylation of Amines with Alcohols. Angew. Chem. Int. Ed. 2011, 50, 3006–3009. [Google Scholar] [CrossRef] [PubMed]
- De Luca, L.; Porcheddu, A. Microwave-Assisted Synthesis of Polysubstituted Benzimidazoles by Heterogeneous Pd-Catalyzed Oxidative C-H Activation of Tertiary Amines. Eur. J. Org. Chem. 2011, 2011, 5791–5795. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, X.; Cui, X.; Shi, F.; Deng, Y. Palladium catalyzed N-alkylation of amines with alcohols. Tetrahedron Lett. 2011, 52, 1334–1338. [Google Scholar] [CrossRef]
- Zhang, Y.-Q.; Wei, X.-W.; Yu, R. Fe3O4 Nanoparticles-Supported Palladium-Bipyridine Complex: Effective Catalyst for Suzuki Coupling Reaction. Catal. Lett. 2010, 135, 256–262. [Google Scholar] [CrossRef]
- Anderson, M.; Afewerki, S.; Berglund, P.; Córdova, A. Total Synthesis of Capsaicin Analogues from Lignin-Derived Compounds by Combined Heterogeneous Metal, Organocatalytic and Enzymatic Cascades in One Pot. Adv. Synth. Catal. 2014, 356, 2113–2118. [Google Scholar] [CrossRef]
- Deiana, L.; Jiang, Y.; Palo-Nieto, C.; Afewerki, S.; Incerti-Pradillos, C.A.; Verho, O.; Tai, C.-W.; Johnston, E.V.; Córdova, A. Combined Heterogeneous Metal/Chiral Amine: Multiple Relay Catalysis for Versatile Eco-Friendly Synthesis. Angew. Chem. Int. Ed. 2014, 53, 3447–3451. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Koike, T.; Kim, J.W.; Ogasawara, Y.; Mizuno, N. Highly dispersed ruthenium hydroxide supported on titanium oxide effective for liquid-phase hydrogen-transfer reactions. Chem. Eur. J. 2008, 14, 11480–11487. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. W.; Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide. J. Catal. 2009, 263, 205–208. [Google Scholar] [CrossRef]
- Shi, F.; Tse, M. K.; Zhou, S.; Pohl, M.-M.; Radnik, J.; Huebner, S.; Jaehnisch, K.; Brueckner, A.; Beller, M. Green and Efficient Synthesis of Sulfonamides Catalyzed by Nano-Ru/Fe3O4. J. Am. Chem. Soc. 2009, 131, 1775–1779. [Google Scholar] [CrossRef] [PubMed]
- Cano, R.; Ramon, D.J.; Yus, M. Impregnated Ruthenium on Magnetite as a Recyclable Catalyst for the N-alkylation of Amines, Sulfonamides, Sulfinamides, and Nitroarenes Using Alcohols as Electrophiles by a Hydrogen Autotransfer Process. J. Org. Chem. 2011, 76, 5547–5557. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, L.; Sun, C.; Wu, K.; He, S.; Chen, J.; Wu, P.; Yu, Z. Pt-Sn/γ-Al2O3-Catalyzed Highly Efficient Direct Synthesis of Secondary and Tertiary Amines and Imines. Chem. Eur. J. 2011, 17, 13308–13317. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, W.; Wu, K.; He, S.; Sun, C.; Yu, Z. Heterogeneous bimetallic Pt-Sn/γ-Al2O3 catalyzed direct synthesis of diamines from N-alkylation of amines with diols through a borrowing hydrogen strategy. Tetrahedron Lett. 2011, 52, 7103–7107. [Google Scholar] [CrossRef]
- He, L.; Lou, X.-B.; Ni, J.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Efficient and clean Gold-catalyzed one-pot selective N-alkylation of amines with alcohols. Chem. Eur. J. 2010, 16, 13965–13969. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Zhang, Y.; Shi, F.; Deng, Y. Fe2O3-supported nano-gold catalyzed one-pot synthesis of N-alkylated anilines from nitroarenes and alcohols. Chem. Commun. 2011, 47, 6476–6478. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-H.; He, L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Direct One-Pot Reductive N-alkylation of Nitroarenes by using Alcohols with Supported Gold Catalysts. Chem. Eur. J. 2011, 17, 7172–7177. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Qian, Y.; Ding, R.-S.; Liu, Y.-M.; He, H.-Y.; Fan, K.-N.; Cao, Y. Highly Efficient Heterogeneous Gold-catalyzed Direct Synthesis of Tertiary and Secondary Amines from Alcohols and Urea. ChemSusChem 2012, 5, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Takamura, R.; Takei, T.; Akita, T.; Haruta, M. Support effects of metal oxides on gold-catalyzed one-pot N-alkylation of amine with alcohol. Appl. Catal. A: Gen. 2012, 413–414, 261–266. [Google Scholar] [CrossRef]
- Zotova, N.; Roberts, F.J.; Kelsall, G.H.; Jessiman, A.S.; Hellgardt, K.; Hii, K.K. Catalysis in flow: Au-catalyzed alkylation of amines by alcohols. Green Chem. 2012, 14, 226–232. [Google Scholar] [CrossRef]
- Shimizu, K.; Nishimura, M.; Satsuma, A. γ-Alumina-Supported Silver Cluster for N-Benzylation of Anilines with Alcohols. ChemCatChem 2009, 1, 497–503. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, Y.; Shi, F.; Deng, Y. Organic Ligand-Free Alkylation of Amines, Carboxamides, Sulfonamides, and Ketones by Using Alcohols Catalyzed by Heterogeneous Ag/Mo Oxides. Chem. Eur. J. 2011, 17, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Winans, C.F.; Adkins, H. The alkylation of amines as catalyzed by nickel. J. Am. Chem. Soc. 1932, 54, 306–312. [Google Scholar] [CrossRef]
- Imabeppu, M.; Kiyoga, K.; Okamura, S.; Shoho, H.; Kimura, H. One-step amination of α,ω-alkylenediols over Cu/Ni-based catalysts. Catal. Commun. 2009, 10, 753–757. [Google Scholar] [CrossRef]
- Cui, X.; Dai, X.; Deng, Y.; Shi, F. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia. Chem. Eur. J. 2013, 19, 3665–3675. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Liu, C.; Jiang, L.; Xu, Q. Manganese Dioxide Catalyzed N-alkylation of Sulfonamides and Amines with Alcohols under Air. Org. Lett. 2011, 13, 6184–6187. [Google Scholar] [CrossRef] [PubMed]
- Likhar, P.R.; Arundhathi, R.; Kantam, M.L.; Prathima, P.S. Amination of Alcohols Catalyzed by Copper-Aluminum Hydrotalcite: A Green Synthesis of Amines. Eur. J. Org. Chem. 2009, 2009, 5383–5389. [Google Scholar] [CrossRef]
- He, J.; Yamaguchi, K.; Mizuno, N. Selective synthesis of secondary amines via N-alkylation of primary amines and ammonia with alcohols by supported copper hydroxide catalysts. Chem. Lett. 2010, 39, 1182–1183. [Google Scholar] [CrossRef]
- Shimizu, K.-I.; Shimura, K.; Nishimura, M.; Satsuma, A. Silver cluster-promoted heterogeneous copper catalyst for N-alkylation of amines with alcohols. RSC Adv. 2011, 1, 1310–1317. [Google Scholar] [CrossRef]
- Martinez, R.; Ramon, D.J.; Yus, M. Selective N-monoalkylation of aromatic amines with benzylic alcohols by a hydrogen autotransfer process catalyzed by unmodified magnetite. Org. Biomol. Chem. 2009, 7, 2176–2181. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.V.S.; Krishna, A.S.; Ganesh, A.V.; Kumar, G.G.K.S.N. Nano Fe3O4 as magnetically recyclable catalyst for the synthesis of α-aminophosphonates in solvent-free conditions. Tetrahedron Lett. 2011, 52, 1359–1362. [Google Scholar] [CrossRef]
- Parvulescu, V.I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2615–2665. [Google Scholar] [CrossRef] [PubMed]
- Scholten, J.D.; Leal, B.C.; Dupont, J. Transition Metal Nanoparticle Catalysis in Ionic Liquids. ACS Catal. 2012, 2, 184–200. [Google Scholar] [CrossRef]
- Hassine, F.; Pucheault, M.; Vaultier, M. Exceptional efficiency of palladium nanoparticle catalyzed Heck cross-coupling in binary task specific ionic liquids. Comptes Rendus Chim. 2011, 14, 671–679. [Google Scholar] [CrossRef]
- Richter, K.; Campbell, P.S.; Baecker, T.; Schimitzek, A.; Yaprak, D.; Mudring, A.-V. Ionic liquids for the synthesis of metal nanoparticles. Phys. Status Solidi B 2013, 250, 1152–1164. [Google Scholar] [CrossRef]
- Cansell, F.; Aymonier, C. Design of functional nanostructured materials using supercritical fluids. J. Supercrit. Fluids 2009, 47, 508–516. [Google Scholar] [CrossRef]
- Zhang, Y.; Erkey, C. Preparation of supported metallic nanoparticles using supercritical fluids: A review. J. Supercrit. Fluids 2006, 38, 252–267. [Google Scholar] [CrossRef]
- Pascu, O.; Liautard, V.; Vaultier, M.; Pucheault, M.; Aymonier, C. Catalysed stereodivergent hydrosilylation with Onium Salts stabilised M(0) Nanocatalysts prepared in scCO2. RSC Adv. 2014, 4, 59953–59960. [Google Scholar] [CrossRef]
- Pascu, O.; Marciasini, L.; Marre, S.; Vaultier, M.; Pucheault, M.; Aymonier, C. Continuous coflow synthesis of hybrid palladium nanocrystals as catalysts for borylation reaction. Nanoscale 2013, 5, 12425–12431. [Google Scholar] [CrossRef] [PubMed]
- Pascu, O.; Moisan, S.; Marty, J.-D.; Aymonier, C. Highly Reactive Pd NCs by Versatile Continuous Supercritical Fluids Synthesis for the Preparation of Metal-Nonmetal Pd-Based NCs. J. Phys. Chem. C 2014, 118, 14017–14025. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors.
Entry | Ratio | OS | Pd@IL | Solvent | Yield (%) 2 |
---|---|---|---|---|---|
1a:2a | (mol %) | ||||
1 | 1:1 | [nBu4N][Br] | 0.2 | - | 48 |
2 | 1:1 | [nBu4N][Br] | 0.5 | - | 71 |
3 | 1:1 | [nBu4N][Br] | 1 | - | 78 |
4 | 1:1 | [nBu4N][Br] | 1 | - | 71 |
5 | 2:1 | [nBu4N][Br] | 1 | - | 86 |
6 | 5:1 | [nBu4N][Br] | 1 | - | 85 |
7 | 1:2 | [nBu4N][Br] | 1 | - | 60 |
8 | 2:1 | [nBu4N][Br] | 1 | EG 3 | 44 |
9 | 2:1 | [nBu4N][Br] | 1 | diglyme | 46 |
10 | 2:1 | [nBu4N][Br] | 1 | toluene | 97 |
11 | 2:1 | [nBu4N][Br] | 1 | mesitylene | 78 |
12 | 2:1 | [nBu4N][Br] | 1 | anisole | >99 |
13 | 2:1 | [nBu4N][Br] | 1 | water | 33 |
14 | 2:1 | [Et4N][Br] | 1 | toluene | 28 |
15 | 2:1 | [BnNMe3][Br] | 1 | toluene | 43 |
16 | 2:1 | [C16NMe3][Br] | 1 | toluene | 63 |
17 | 2:1 | [C16NMe3][NTf2] | 1 | toluene | 51 |
18 | 2:1 | [C16NMe3][PF6] | 1 | toluene | 62 |
Entry | Alcohol 1 | Amine 2 | Product | Yield (%) 2 |
---|---|---|---|---|
1 | 1a (R1 = H) | 2a (R2 = H) | 3aa | 96 |
2 | 1a | 2b (R2 = 4-Me) | 3ab | 95 |
3 | 1a | 2c (R2 = 4-tBu) | 3ac | 91 |
4 | 1a | 2d (R2 = 4-OMe) | 3ad | 91 |
5 | 1a | 2e (R2 = 4-Cl) | 3ae | 88 |
6 | 1a | 2f (R2 = 4-F) | 3af | 92 |
7 | 1a | 2g (R2 = 3-F) | 3ag | 87 |
8 | 1a | 2h (R2 = 3,4-Cl) | 3ah | 94 |
9 | 1a | 2i (R2 = 3,5-Cl) | 3ai | 87 |
10 | 1a | 2j (R2 = 3-Cl,4-F) | 3aj | 97 |
11 | 1a | 2k (R2 = 4-CF3) | 3ak | 76 |
12 | 1a | 2m | 3am | 93 |
13 | 1a | 2n | 3an | 88 |
14 | 1a | 2l | 3al | 52 |
15 | 1b (R1 = 4-Me) | 2a | 3ba | 92 |
16 | 1c (R1 = 4-OMe) | 2a | 3ca | 97 |
17 | 1d (R1 = 4-Cl) | 2a | 3da | 50 |
18 | 1e | 2a | 3ea | 54 |
Entry | Pd:TBAB:Support Ratio | Support | Yield (%) 2 |
---|---|---|---|
1 | 1:250:250 | C | 60 |
2 | 1:250:500 | C | 35 |
3 | 1:250:1000 | C | 36 |
4 | 1:250:2000 | C | 9 |
5 | 1:500:1000 | C | 39 |
6 | 1:1000:1000 | C | 46 |
7 | 1:250:250 | SiC | 99 |
8 | 1:250:500 | SiC | 99 |
9 | 1:250:1000 | SiC | 73 |
10 | 1:250:2000 | SiC | 59 |
11 | 1:500:1000 | SiC | 77 |
12 | 1:1000:1000 | SiC | 80 |
Entry | Run | Support | Time | Yield (%) 2 | |
---|---|---|---|---|---|
1 | 1 | C (1:250:250) | anisole 3 | 4 h | 60 |
2 | 2 | C (1:250:250) | anisole 3 | 4 h | 0 |
3 | 1 | SiC (1:250:500) | anisole 3 | 4 h | 99 |
4 | 2 | SiC (1:250:500) | anisole 3 | 4 h | 98 |
5 | 3 | SiC (1:250:500) | anisole 3 | 4 h | 85 |
6 | 4 | SiC (1:250:500) | anisole 3 | 4 h | 60 |
7 | 5 | SiC (1:250:500) | anisole 3 | 4 h | 0 |
8 | 1 | SiC (1:250:500) | scCO2 4 | 4 h | <5 |
9 | 1 | SiC (1:250:500) | scCO2 5 | 6 h | 51 |
10 | 2 | SiC (1:250:500) | scCO2 5 | 6 h | 50 |
11 | 3 | SiC (1:250:500) | scCO2 5 | 6 h | 50 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciuttolo, B.; Pascu, O.; Aymonier, C.; Pucheault, M. Pd@[nBu4][Br] as a Simple Catalytic System for N-Alkylation Reactions with Alcohols. Molecules 2016, 21, 1042. https://doi.org/10.3390/molecules21081042
Cacciuttolo B, Pascu O, Aymonier C, Pucheault M. Pd@[nBu4][Br] as a Simple Catalytic System for N-Alkylation Reactions with Alcohols. Molecules. 2016; 21(8):1042. https://doi.org/10.3390/molecules21081042
Chicago/Turabian StyleCacciuttolo, Bastien, Oana Pascu, Cyril Aymonier, and Mathieu Pucheault. 2016. "Pd@[nBu4][Br] as a Simple Catalytic System for N-Alkylation Reactions with Alcohols" Molecules 21, no. 8: 1042. https://doi.org/10.3390/molecules21081042
APA StyleCacciuttolo, B., Pascu, O., Aymonier, C., & Pucheault, M. (2016). Pd@[nBu4][Br] as a Simple Catalytic System for N-Alkylation Reactions with Alcohols. Molecules, 21(8), 1042. https://doi.org/10.3390/molecules21081042