Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Characteristic Compounds of Commercial Chinese Liquors for the Preparation of FLs
2.2. Effect of RAAE on the IDs of FLs
2.3. Effect of Fusel Alcohol Concentration on the IDs of FLs
2.4. Effect of the Ratio of Isoamyl Alcohol to Isobutanol (IA/IB) on the IDs of FLs
3. Materials and Methods
3.1. Chemical Reagents
3.2. Animals
3.3. Preparation of the FLs
3.4. Analysis of ID
3.4.1. Alcohol Feeding of Model Animals
3.4.2. Tests of Behavioral Reactions
3.4.3. Assays of Blood Alcohol Concentrations (BAC)
3.4.4. Evaluation of ID
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Collins, M.A.; Neafsey, E.J.; Mukamal, K.J.; Gray, M.O.; Parks, D.A.; Das, D.K.; Korthuis, R.J. Alcohol in moderation, cardioprotection, and neuroprotection: Epidemiological considerations and mechanistic studies. Alcohol. Clin. Exp. Res. 2009, 33, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Fuller, T.D. Moderate alcohol consumption and the risk of mortality. Demography 2011, 48, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Solà, J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat. Rev. Cardiol. 2015, 12, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Schrieks, I.C.; Heil, A.L.; Hendriks, H.F.; Mukamal, K.J.; Beulens, J.W. The effect of alcohol consumption on insulin sensitivity and glycemic status: A systematic review and meta-analysis of intervention studies. Diabetes Care 2015, 38, 723–732. [Google Scholar] [PubMed]
- Baliunas, D.O.; Taylor, B.J.; Irving, H.; Roerecke, M.; Patra, J.; Mohapatra, S.; Rehm, J. Alcohol as a risk factor for type 2 diabetes. Diabetes Care 2009, 32, 2123–2132. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Mack, H.A.; Cherbuin, N. Alcohol consumption as a risk factor for dementia and cognitive decline: Meta-analysis of prospective studies. Am. J. Geriatr. Psychiatry 2009, 17, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lee, I.M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Alcohol consumption, weight gain, and risk of becoming overweight in middle-aged and older women. Arch. Intern. Med. 2010, 170, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Penning, R.; McKinney, A.; Verster, J.C. Alcohol hangover symptoms and their contribution to the overall hangover severity. Alcohol Alcohol. 2012, 47, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.K.; Kamath, P.S.; Gores, G.J.; Shah, V.H. Alcoholic hepatitis: Current challenges and future directions. Clin. Gastroenterol. Hepatol. 2014, 12, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Guzzo-Merello, G.; Cobo-Marcos, M.; Gallego-Delgado, M.; Garcia-Pavia, P. Alcoholic cardiomyopathy. World J. Cardiol. 2014, 6, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Husain, K.; Ansari, R.A.; Ferder, L. Alcohol-induced hypertension: Mechanism and prevention. World J. Cardiol. 2014, 6, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qin, Y.Y.; Chen, Q.; Jiang, H.; Chen, X.Z.; Xu, C.L.; Mao, P.J.; He, J.; Zhou, Y.H. Alcohol intake and risk of stroke: A dose–response meta-analysis of prospective studies. Int. J. Cardiol. 2014, 174, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y. Alcohol and Neurological Diseases. J. Nihon Univ. Med. Assoc. 2011, 70, 150–154. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.Y.; Brown, R.A.; Ren, J. Ethanol and acetaldehyde in alcoholic cardiomyopathy: From bad to ugly en route to oxidative stress. Alcohol 2004, 32, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Ramchandani, V.A.; Bosron, W.F.; Li, T.K. Research advances in ethanol metabolism. Pathol. Biol. 2001, 49, 676–682. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, X.; Ji, K.; Guo, K.; Li, Y.; Wu, C.; Xu, G. Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal. Chim. Acta 2007, 597, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, L.A.; Daran, J.M.; van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbial. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Haupt, S.; Schulz, K. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products. Regul. Toxicol. Pharmacol. 2008, 50, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Standardization Administration of the People’s Republic of China. Hygienic Standard for Distilled Liquor and Formulated Liquor (GB 2757-1981) and 1st and 2nd Amendments; SAC: Beijing, China, 2009. [Google Scholar]
- Lachenmeier, D.W.; Rehm, J.; Gmel, G. Surrogate alcohol: What do we know and where do we go? Alcohol. Clin. Exp. Res. 2007, 31, 1613–1624. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Q.; Tian, X.F.; He, S.G.; Quan, L.; Wei, Y.L.; Wu, Z.Q. Evaluation of intoxicating effects of liquor products on drunken mice. Med. Chem. Commun. 2017, 8, 122–129. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Yin, C.S. Effects of the Content and Ratio Relationship of the Chromatic Spectrum Structure Components on Liquor Flavour Style and Quality. Liquor-Mak. Sci. Technol. 2000, 6, 93–96. [Google Scholar]
- Zhang, J.; Gao, H.Y.; Zhao, L.; Yin, J.Y. Correlations between Physico-chemical Properties and Aroma Quality of Different Flavors of Liquors. Food Sci. 2010, 10, 283–286. [Google Scholar]
- Wang, Y. Investigation of the Methanol and Multiple-alcohol Content of Wine. J. Wuhan Food Ind. Coll. 1998, 3, 31–33. [Google Scholar]
- Zhang, Y.T.; Liu, Q.; Wang, Z.M. Simple Discussion of fusel alcohols. Liquor Mak. 2002, 29, 18–20. [Google Scholar]
- Fan, W.; Qian, M.C. Identification of aroma compounds in Chinese ‘Yanghe Daqu’ liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry. Flavour Fragr. J. 2006, 21, 333–342. [Google Scholar] [CrossRef]
- Paine, A.; Dayan, A. Defining a tolerable concentration of methanol in alcoholic drinks. Hum. Exp. Toxicol. 2001, 20, 563–568. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F. Does regular ethanol consumption promote insulin sensitivity and leanness by stimulating AMP-activated protein kinase? Med. Hypotheses 2001, 57, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, S.; Murakami, R.; Takahashi, M.; Fushimi, T.; Murohara, T.; Kishi, M.; Kajimoto, Y.; Kitakaze, M.; Kaga, T. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Biosci. Biotechnol. Biochem. 2010, 74, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, S.; Yamauchi, T.; Oshima, Y.; Tsukamoto, Y.; Kadowaki, T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun. 2006, 344, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 2009, 57, 5982–5986. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Matsumoto, M.; Pacold, C.M.; Cho, W.K.; Crabb, D.W. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004, 127, 1798–1808. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.L.; Wu, J.; Wang, H.Q.; Xue, L.M.; Tan, Y.Z.; Ping, L.; Li, C.X.; Huang, N.H.; Yao, Y.M.; Ren, L.Z.; et al. Effect of Maotai liquor in inducing metallothioneins and on hepatic stellate cells. World J. Gastroenterol. 2002, 8, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cheng, M.L.; Zhang, G.H.; Zhai, R.W.; Huang, N.H.; Li, C.X.; Luo, T.Y.; Lu, S.; Yu, Z.Q.; Yao, Y.M.; et al. Epidemiological and histopathological study of relevance of Guizhou Maotai liquor and liver diseases. World J. Gastroenterol. 2002, 8, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Lal, J.J.; Kumar, C.S.; Suresh, M.; Indira, M.; Vijayammal, P. Effect of exposure to a country liquor (Toddy) during gestation on lipid metabolism in rats. Plant Foods Hum. Nutr. 2001, 56, 133–143. [Google Scholar] [CrossRef] [PubMed]
- McKee, M.; Sűzcs, S.; Sárváry, A.; Ádany, R.; Kiryanov, N.; Saburova, L.; Tomkins, S.; Andreev, E.; Leon, D.A. The composition of surrogate alcohols consumed in Russia. Alcohol. Clin. Exp. Res. 2005, 29, 1884–1888. [Google Scholar] [CrossRef] [PubMed]
- Lang, K.; VÄLi, M.; Szűcs, S.; Ádány, R.; Mckee, M. The composition of surrogate and illegal alcohol products in Estonia. Alcohol Alcohol. 2006, 41, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Peneda, J.; Baptista, A.; Lopes, J.M. Interaction of the constituents of alcoholic beverages in the promotion of liver damage. Acta Med. Port. 1994, 7, 51–55. [Google Scholar]
- Forsander, O.A. Influence of some aliphatic alcohols on the metabolism of rat liver slices. Biochem. J. 1967, 105, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Tomita, Y.; Kurosu, M.; Ohno, Y. Dose and time changes in liver alcohol dehydrogenase (ADH) activity during acute alcohol intoxication involve not only class I but also class III ADH and govern elimination rate of blood ethanol. Legal Med. 2003, 5, 202–211. [Google Scholar] [CrossRef]
- Vidal, F.; Perez, J.; Morancho, J.; Pinto, B.; Richart, C. Hepatic alcohol dehydrogenase activity in alcoholic subjects with and without liver disease. Gut 1990, 31, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P.; Turvy, C.G. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J. Pharmacol. Exp. Ther. 1991, 256, 1189–1194. [Google Scholar] [PubMed]
- De Craemer, D.; Kerckaert, I.; Roels, F. Hepatocellular peroxisomes in human alcoholic and drug-induced hepatitis: A quantitative study. Hepatology 1991, 14, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Haseba, T.; Duester, G.; Shimizu, A.; Yamamoto, I.; Kameyama, K.; Ohno, Y. In vivo contribution of Class III alcohol dehydrogenase (ADH3) to alcohol metabolism through activation by cytoplasmic solution hydrophobicity. Biochim. Biophys. Acta 2006, 1762, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, I.; Haseba, T.; Kurosu, M.; Watanabe, T. Allosterism of acidic alcohol dehydrogenase (Class III ADH) of mouse liver and its role in alcohol metabolism. Nihon Ika Daigaku Zasshi 1992, 59, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Jörnvall, H. The alcohol dehydrogenase system. In Toward a Molecular Basis of Alcohol Use and Abuse; Birkhäuser: Basel, Switzerland, 1994; pp. 221–229. [Google Scholar]
- Beisswenger, T.B.; Holmquist, B.; Vallee, B.L. chi-ADH is the sole alcohol dehydrogenase isozyme of mammalian brains: Implications and inferences. Proc. Natl. Acad. Sci. USA 1985, 82, 8369–8373. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, K. On various factors affecting formation of isobutanol and isoamyl alcohol during alcoholic fermentation. Agric. Biol. Chem. 1966, 30, 634–641. [Google Scholar] [CrossRef]
- Murphree, H.; Greenberg, L.; Carroll, R. Neuropharmacological effects of substances other than ethanol in alcoholic beverages. Fed. Proc. 1967, 26, 1468–1473. [Google Scholar] [PubMed]
- MacGregor, D.; Schönbaum, E.; Bigelow, W. Acute toxicity studies on ethanol, propanol, and butanol. Can. J. Physiol. Pharmacol. 1964, 42, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Wallgren, H. Relative intoxicating effects on rats of ethyl, propyl and butyl alcohols. Basic Clin. Pharmacol. Toxicol. 1960, 16, 217–222. [Google Scholar] [CrossRef]
- Hedlund, S.G.; Kiessling, K.H. The physiological mechanism involved in hangover 1. The oxidation of some lower aliphatic fusel alcohols and aldehydes in rat liver and their effect on the mitochondrial oxidation of various substrates. Basic Clin. Pharmacol. Toxicol. 1969, 27, 381–396. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Compounds | Jiang-Flavor | Strong Aromatic | Mild Aromatic | Rice Aromatic | Te-Flavor | Feng-Flavor | |||||||
Lang Liquor | Moutai | Jian Nan Chun | Wu Liang Ye | Wan Li Chun | Wan Xian Daqu | Shui Jing Fang | Yuchan Daqu | Fen Liquor | Sanhua Liquor | Site Liquor | Taibai Liquor | Xifeng Liquor | |
Esters | 297 a | 329 | 530 | 520 | 455.17 | 224.42 | 499.5 | 376.19 | 570 | 126 | 249.2 | 382.59 | 196.4 |
Ethyl hexanoate | 23.3 | 42.4 | 216.4 | 198.4 | 154.5 | 66.8 | - | 123.5 | 2.2 | 1.71 | 120.1 | 125.5 | 80.3 |
Ethyl lactate | 110.7 | 137.8 | 136.4 | 135.4 | 161.7 | 88.7 | - | 125.9 | 261.2 | 46.2 | 32.8 | 124 | 34.3 |
Ethyl acetate | 105.8 | 147 | 101.7 | 126.4 | 91.33 | 42.9 | - | 81 | 305.9 | 42.1 | 68.4 | 87.9 | 38.3 |
Ethyl butyrate | 21.2 | 26.1 | 40.2 | 20.5 | 13.2 | 6.8 | - | 15 | - | 0.6 | 15 | 13.3 | 15.4 |
Ethyl formate | - | 21.2 | - | - | - | - | - | - | - | - | - | - | - |
Butyl acetate | - | - | - | - | - | - | - | - | - | - | - | 10.4 | - |
Ethyl heptanoate | - | - | - | - | - | - | - | - | - | - | 12.9 | - | 28.1 |
Ethyl palmitate | - | 30.1 | - | - | - | - | - | - | 30.5 | 50.2 | - | - | - |
Acids | 176 | 208 | 140 | 134 | 129.06 | 107.56 | 321.6 | 97.31 | 124 | 85 | 160 | 170.87 | 145.6 |
n-Hexanoic acid | 10.2 | 21.8 | 29.1 | 29.6 | 29.8 | 21.9 | - | 17 | 0.2 | - | - | 39.8 | - |
l-Lactic acid | 62.3 | 105.7 | 21 | 25.7 | 28.2 | 19.4 | - | 17.3 | 28.4 | 48.7 | - | 36.9 | - |
Acetic acid | 76.3 | 11 | 54.6 | 46.5 | 52.9 | 51 | - | 41.8 | 94.5 | 33.9 | - | 67.1 | - |
n-Butyric acid | 14.8 | 20.3 | 34.3 | 10.4 | 12.2 | 9.8 | - | 8.1 | 1.1 | 2.4 | - | 13.8 | - |
Alcohols | 179 | 261 | 114 | 97 | 80.8 | 72.8 | 108.9 | 71.4 | 80 | 83 | 81.2 | 88.3 | 66.9 |
Isoamyl alcohol | 45.1 | 49.6 | 34.9 | 34.1 | 32.2 | 34.5 | 38 | 33.3 | 54.6 | 57.8 | 2.1 | 40.2 | 21 |
Isobutanol | 17.2 | 17 | 18.3 | 10.5 | 11.3 | 1.08 (10.8) | 16.1 | 9.4 | 11.6 | 37.4 | 8.2 | 10.7 | 6.6 |
1-Propanol | 71.1 | 22 | 23.6 | 17.1 | 20.2 | 20.2 | - | 14.9 | 9.5 | 15.7 | - | 16.6 | - |
n-Butanol | - | - | 34.3 | 7 | - | - | 19.7 | - | - | - | - | - | 21.7 |
2-Butanol | 12.8 | - | 6.8 | 5.5 | - | - | - | - | 3.3 | - | 66.5 | - | 13.2 |
1-Hexanol | - | - | 12.7 | 6.4 | - | - | - | - | - | - | - | - | - |
Methanol | - | 21 | 10.6 | 9.3 | 14 | 9.6 | 17.6 | 13.4 | 17.4 | 6.5 | - | - | - |
β-Phenylethanol | - | - | - | - | - | - | - | - | - | 33.2 | - | - | - |
Aldehydes | 83 | 111.8 | 70 | 65 | 14 | 11 | 10.1 | - | 21.9 | ||||
Acetaldehyde | 57.4 | 55 | 58 | 35.5 | 43.5 | 38.8 | 50.2 | 37.5 | 14 | 4.4 | 1.9 | - | 13.7 |
Acetal | 15.5 | 7 | 108.8 | 46.8 | 64.5 | 41.5 | 38.3 | 46.4 | 51.4 | 4 | 8.2 | - | - |
Isovaleraldehyde | - | 9.8 | - | - | - | - | - | - | - | - | - | 11 | - |
Furfural | - | 29.4 | - | - | - | - | - | - | - | - | - | - | - |
Jiang-Flavor | Strong Aromatic | Mild Aromatic | Rice Aromatic | Te-Flavor | Feng-Flavor | ||||||||
RAAE d | 1:1:1.7 | 1:1.5:5.3, (1:3:4.6, Shui jing fang) | 1:1.6:7.1 | 1:1:1.5 | 1:2:3.1 | 1:2.2:3.0 | |||||||
Fusel alcohols b | 0.62 | 0.67 | 0.53 | 0.45 | 0.44 | 0.35 | 0.54 | 0.43 | 0.66 | 0.95 | 0.10 | 0.51 | 0.28 |
IA/IB c | 2.6 | 2.9 | 1.9 | 3.2 | 2.8 | 3.2 | 2.3 | 3.5 | 4.7 | 1.5 | 0.25 | 3.8 | 3.2 |
Concentration or Proportion | ||||||
---|---|---|---|---|---|---|
Experiment A | ||||||
A1 | A2 | A3 | A4 | A5 | ||
RAAE | 1:1:1.5 | 1:1.5:5 | 1:1.5:7 | 1:2:3 | 1:3:5 | |
Fusel alcohols (g/L) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
IA/IB a | 3 | 3 | 3 | 3 | 3 | |
Experiment B | ||||||
B1 | B2 | B3 | B4 | B5 | B6 | |
RAAE | Optimal RAAE b | Pessimal RAAE b | ||||
Fusel alcohols (g/L) | 0.5 | 1.5 | 2.5 | 0.5 | 1.5 | 2.5 |
IA/IB | 3 | 3 | 3 | 3 | 3 | 3 |
Experiment C | ||||||
C1 | C2 | C3 | C4 | C5 | C6 | |
RAAE | Optimal RAAE | |||||
Fusel alcohols (g/L) | Optimal level c | |||||
IA/IB | 0.25 | 0.5 | 1.5 | 2.5 | 3.5 | 4.5 |
FL | i RAAE | ii ID |
---|---|---|
A1 | 1:1:1.5 | iii 1.294 ± 0.018 a A |
A2 | 1:1.5:5 | 1.270 ± 0.031 a A |
A3 | 1:1.5:7 | 1.102 ± 0.012 b B |
A4 | 1:2:3 | 1.020 ± 0.018 c B |
A5 | 1:3:5 | 1.120 ± 0.089 b B |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Tian, X.-F.; He, S.-G.; Wei, Y.-L.; Peng, B.; Wu, Z.-Q. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters. Molecules 2018, 23, 1239. https://doi.org/10.3390/molecules23061239
Xie J, Tian X-F, He S-G, Wei Y-L, Peng B, Wu Z-Q. Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters. Molecules. 2018; 23(6):1239. https://doi.org/10.3390/molecules23061239
Chicago/Turabian StyleXie, Jia, Xiao-Fei Tian, Song-Gui He, Yun-Lu Wei, Bin Peng, and Zhen-Qiang Wu. 2018. "Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters" Molecules 23, no. 6: 1239. https://doi.org/10.3390/molecules23061239
APA StyleXie, J., Tian, X. -F., He, S. -G., Wei, Y. -L., Peng, B., & Wu, Z. -Q. (2018). Evaluating the Intoxicating Degree of Liquor Products with Combinations of Fusel Alcohols, Acids, and Esters. Molecules, 23(6), 1239. https://doi.org/10.3390/molecules23061239